CG and MINRES: An empirical comparison Prequel to LSQR and LSMR: Two least-squares solvers

David Fong and Michael Saunders
Institute for Computational and Mathematical Engineering Stanford University

Abstract

For iterative solution of symmetric systems $A x=b$, the conjugate gradient method (CG) is commonly used when A is positive definite, while the minimal residual method (MINRES) is typically reserved for indefinite systems. We investigate the sequence of solutions generated by each method and suggest that even if A is positive definite, MINRES may be preferable to CG if iterations are to be terminated early.

The classic symmetric positive-definite system comes from the full-rank least-squares (LS) problem min $\|A x-b\|$. Specialization of CG and MINRES to the associated normal equation $A^{T} A x=A^{T} b$ leads to LSQR and LSMR respectively. We include numerical comparisons of these two LS solvers because they motivated this retrospective study of CG versus MINRES.
(1) CG and MINRES

The Lanczos Process
Properties
Backward Errors
(2) LSQR and LSMR
(3 LSMR Derivation
Golub-Kahan bidiagonalization
Properties
(4) LSMR Experiments

Backward Errors
(5) Summary

Part I: CG and MINRES

Iterative algorithms for $A x=b, A=A^{T}$ based on the Lanczos process

Krylov-subspace methods: $x_{k}=V_{k} y_{k}$

Lanczos process (summary)

$$
\beta_{1} v_{1}=b \quad A V_{k}=V_{k+1} H_{k}
$$

$$
\begin{aligned}
& V_{k}=\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{k}
\end{array}\right) \\
& T_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{k} \\
& & \beta_{k} & \alpha_{k}
\end{array}\right) \\
& H_{k}=\binom{T_{k}}{\beta_{k+1} e_{k}^{T}}
\end{aligned}
$$

Lanczos process (summary)

$$
\beta_{1} v_{1}=b \quad A V_{k}=V_{k+1} H_{k}
$$

$$
\begin{aligned}
V_{k} & =\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{k}
\end{array}\right) \\
T_{k} & =\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{k} \\
& \beta_{k} & \alpha_{k}
\end{array}\right) \\
H_{k} & =\left(\begin{array}{cc}
T_{k} & \\
\beta_{k+}+1 e_{k}^{T}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
r_{k} & =b-A x_{k} \\
& =\beta_{1} v_{1}-A V_{k} y_{k} \\
& =V_{k+1}\left(\beta_{1} e_{1}-H_{k} y_{k}\right),
\end{aligned}
$$

Aim: $\quad \beta_{1} e_{1} \approx H_{k} y_{k}$

Lanczos process (summary)

$$
\beta_{1} v_{1}=b \quad A V_{k}=V_{k+1} H_{k}
$$

$$
\begin{aligned}
& V_{k}=\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{k}
\end{array}\right) \\
& T_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{k} \\
& \beta_{k} & \alpha_{k}
\end{array}\right) \\
& H_{k}=\binom{T_{k}}{\beta_{k+1} e_{k}^{T}}
\end{aligned}
$$

$$
\begin{aligned}
r_{k} & =b-A x_{k} \\
& =\beta_{1} v_{1}-A V_{k} y_{k} \\
& =V_{k+1}\left(\beta_{1} e_{1}-H_{k} y_{k}\right),
\end{aligned}
$$

Aim: $\quad \beta_{1} e_{1} \approx H_{k} y_{k}$
Two subproblems

$$
\begin{array}{lrl}
\text { CG } & T_{k} y_{k}=\beta_{1} e_{1} & x_{k}=V_{k} y_{k} \\
\text { MINRES } & \min \left\|H_{k} y_{k}-\beta_{1} e_{1}\right\| & x_{k}=V_{k} y_{k}
\end{array}
$$

Common practice

$$
A x=b, \quad A=A^{T}
$$

Common practice

$$
A x=b, \quad A=A^{T}
$$

A positive definite \Rightarrow Use CG
A indefinite $\quad \Rightarrow$ Use MINRES

Common practice

$$
A x=b, \quad A=A^{T}
$$

A positive definite \Rightarrow Use CG
A indefinite $\quad \Rightarrow$ Use MINRES

Experiment: CG vs MINRES on $A \succ 0$

Common practice

$$
A x=b, \quad A=A^{T}
$$

A positive definite \Rightarrow Use CG A indefinite $\quad \Rightarrow$ Use MINRES

Experiment: CG vs MINRES on $A \succ 0$

- Hestenes and Stiefel (1952) proposed both CG and CR for $A \succ 0$ and proved many properties
- $\mathrm{CR} \equiv$ MINRES when $A \succ 0$

They both minimize $\left\|r_{k}\right\|=\left\|b-A x_{k}\right\|$ in the Krylov subspace

Theoretical properties for $A x=b, A \succ 0$

CG
HS 1952
HS 1952
Steihaug 1983

CR (MINRES)

HS 1952
HS 1952
Fong 2012

Theoretical properties for $A x=b, A \succ 0$

CG

HS 1952
HS 1952
Steihaug 1983

CR (MINRES)

HS 1952
HS 1952
Fong 2012

CR (MINRES)
HS 1952
Fong 2012

Backward error for square systems $A x=b$

An approximate solution x_{k} is acceptable iff $\exists E, f$ st

$$
(A+E) x_{k}=b+f \quad \frac{\|E\|}{\|A\|} \leq \alpha \quad \frac{\|f\|}{\|b\|} \leq \beta
$$

Backward error for square systems $A x=b$

An approximate solution x_{k} is acceptable iff $\exists E, f$ st

$$
(A+E) x_{k}=b+f \quad \frac{\|E\|}{\|A\|} \leq \alpha \quad \frac{\|f\|}{\|b\|} \leq \beta
$$

Smallest perturbations E, f : (Titley-Peloquin 2010)

$$
\begin{array}{ll}
E=\frac{\alpha\|A\|}{\psi\left\|x_{k}\right\|} r_{k} x_{k}^{T} & \frac{\|E\|}{\|A\|}=\alpha \frac{\left\|r_{k}\right\|}{\psi} \\
f=-\frac{\beta\|b\|}{\psi} r_{k} & \frac{\|f\|}{\|b\|}=\beta \frac{\left\|r_{k}\right\|}{\psi}
\end{array}
$$

Backward error for square systems $A x=b$

An approximate solution x_{k} is acceptable iff $\exists E, f$ st

$$
(A+E) x_{k}=b+f \quad \frac{\|E\|}{\|A\|} \leq \alpha \quad \frac{\|f\|}{\|b\|} \leq \beta
$$

Smallest perturbations E, f : (Titley-Peloquin 2010)

$$
\begin{array}{ll}
E=\frac{\alpha\|A\|}{\psi\left\|x_{k}\right\|} r_{k} x_{k}^{T} & \frac{\|E\|}{\|A\|}=\alpha \frac{\left\|r_{k}\right\|}{\psi} \\
f=-\frac{\beta\|b\|}{\psi} r_{k} & \frac{\|f\|}{\|b\|}=\beta \frac{\left\|r_{k}\right\|}{\psi}
\end{array}
$$

Stopping rule:

$$
\left\|r_{k}\right\| \leq \psi \equiv \alpha\|A\|\left\|x_{k}\right\|+\beta\|b\|
$$

Backward error for square systems, $\beta=0$

$$
\begin{gathered}
\left(A+E^{(k)}\right) x_{k}=b \\
E^{(k)}=\frac{r_{k} x_{k}^{T}}{\left\|x_{k}\right\|^{2}} \quad\left\|E^{(k)}\right\|=\frac{\left\|r_{k}\right\|}{\left\|x_{k}\right\|}
\end{gathered}
$$

Data: Tim Davis's sparse matrix collection Real, symmetric posdef examples that include b Plot $\log _{10}\left\|E^{(k)}\right\|$ for CG and MINRES

Backward Error of CG vs MINRES on $A \succ 0$

Part II: LSQR and LSMR

LSQR $\equiv \mathrm{CG}$
on $A^{T} A x=A^{T} b$
LSMR \equiv MINRES on $A^{T} A x=A^{T} b$

What problems do LSQR and LSMR solve?

solve $A x=b$

What problems do LSQR and LSMR solve?
solve $A x=b$
$\min \|A x-b\|_{2}$

What problems do LSQR and LSMR solve?

solve $A x=b$
$\min \|A x-b\|_{2}$
$\begin{array}{cc}\min & \|x\| \\ \text { st } & A x=b\end{array}$

What problems do LSQR and LSMR solve?

solve $A x=b$
$\min \|A x-b\|_{2}$
$\begin{array}{cc}\min & \|x\| \\ \text { st } & A x=b\end{array}$
$\min \left\|\binom{A}{\lambda I} x-\binom{b}{0}\right\|_{2}$

What problems do LSQR and LSMR solve?

$$
\begin{array}{cc}
\text { solve } A x=b & \min \|A x-b\|_{2} \\
\text { min } \begin{array}{c}
\|x\| \\
\text { st } \\
\text { s }
\end{array} & \min \left\|\binom{A}{\lambda I} x-\binom{b}{0}\right\|_{2}
\end{array}
$$

Properties

- A is rectangular $(m \times n)$ and often sparse
- A can be an operator (\Rightarrow allows preconditioning)
- $A v, A^{T} u$ plus $O(m+n)$ operations per iteration

Why invent another algorithm?

Reason one CG vs MINRES

Reason two
Monotone convergence of residuals
$\left\|r_{k}\right\|$ and $\left\|A^{T} r_{k}\right\| \searrow$

$\min \|A x-b\|$

Measure of convergence

- $r_{k}=b-A x_{k}$
- $\left\|r_{k}\right\| \rightarrow\|\hat{r}\|,\left\|A^{T} r_{k}\right\| \rightarrow 0$

$\min \|A x-b\|$

Measure of convergence

- $r_{k}=b-A x_{k}$
- $\left\|r_{k}\right\| \rightarrow\|\hat{r}\|,\left\|A^{T} r_{k}\right\| \rightarrow 0$

LSQR

Name:Ip fit1p, Dim:1677x627, nnz:9868, id=625

LSQR $\quad \log \left\|A^{T} r_{k}\right\|$

$\min \|A x-b\|$

Measure of convergence

- $r_{k}=b-A x_{k}$
- $\left\|r_{k}\right\| \rightarrow\|\hat{r}\|,\left\|A^{T} r_{k}\right\| \rightarrow 0$
— LSQR
- LSMR

$\log \left\|A^{T} r_{k}\right\|$

LSMR Derivation

Golub-Kahan bidiagonalization

Given $A(m \times n)$ and $b(m \times 1)$

Direct bidiagonalization

$$
U^{T}\left(\begin{array}{ll}
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{c}
\times \times \underset{\times}{\times} \times \\
\times \\
\times \times \times \\
\times
\end{array}\right) \Rightarrow\left(\begin{array}{ll}
b & A V
\end{array}\right)=U\left(\begin{array}{ll}
\beta_{1} e_{1} & B
\end{array}\right)
$$

Golub-Kahan bidiagonalization

Given $A(m \times n)$ and $b(m \times 1)$

Direct bidiagonalization

$$
U^{T}\left(\begin{array}{ll}
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{c}
\times \times \underset{\times}{\times} \times \\
\times \\
\times \times \times
\end{array}\right) \Rightarrow\left(\begin{array}{ll}
b & A V
\end{array}\right)=U\left(\begin{array}{ll}
\beta_{1} e_{1} & B
\end{array}\right)
$$

Iterative bidiagonalization Bidiag (A, b)
Half a page in the 1965 Golub-Kahan SVD paper

Golub-Kahan bidiagonalization (2)

$$
\begin{aligned}
b & =U_{k+1}\left(\beta_{1} e_{1}\right) \\
A V_{k} & =U_{k+1} B_{k} \\
A^{T} U_{k} & =V_{k} B_{k}^{T}\binom{I_{k}}{0}
\end{aligned}
$$

where

$$
B_{k}=\left(\begin{array}{cccc}
\alpha_{1} & & & \\
\beta_{2} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right) \quad \begin{aligned}
& \left.U_{k}=\left(\begin{array}{lll}
u_{1} & \cdots & u_{k}
\end{array}\right) \quad \begin{array}{lll}
V_{k}=\left(\begin{array}{lll}
v_{1} & \cdots & v_{k}
\end{array}\right)
\end{array} \quad \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

Golub-Kahan bidiagonalization (3)

V_{k} spans the Krylov subspace:

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}=\operatorname{span}\left\{A^{T} b,\left(A^{T} A\right) A^{T} b, \ldots,\left(A^{T} A\right)^{k-1} A^{T} b\right\}
$$

Golub-Kahan bidiagonalization (3)

V_{k} spans the Krylov subspace:

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}=\operatorname{span}\left\{A^{T} b,\left(A^{T} A\right) A^{T} b, \ldots,\left(A^{T} A\right)^{k-1} A^{T} b\right\}
$$

Define $x_{k}=V_{k} y_{k}$

Subproblem to solve

$$
\begin{align*}
& \min _{y_{k}}\left\|r_{k}\right\|=\min _{y_{k}}\left\|\beta_{1} e_{1}-B_{k} y_{k}\right\| \tag{LSQR}\\
& \min _{y_{k}}\left\|A^{T} r_{k}\right\|=\min _{y_{k}}\left\|\bar{\beta}_{1} e_{1}-\binom{B_{k}^{T} B_{k}}{\bar{\beta}_{k+1} e_{k}^{T}} y_{k}\right\| \\
& \text { (LSQR) }
\end{align*}
$$

where $r_{k}=b-A x_{k}, \bar{\beta}_{k}=\alpha_{k} \beta_{k}$

Computational and storage requirement

	Storage		Work	
	m	n	m	n
MINRES on $A^{T} A x=A^{T} b$	$A v_{1}$	$x, v_{1}, v_{2}, w_{1}, w_{2}$		8
LSQR	$A v, u$	x, v, w	3	5
LSMR	$A v, u$	x, v, h, \bar{h}	3	6

where h_{k}, \bar{h}_{k} are scalar multiples of w_{k}, \bar{w}_{k}

Theoretical properties for min $\|A x=b\|$

		LSQR	LSMR		
$\left\\|x^{*}-x_{k}\right\\|$	\searrow	HS 1952	HS 1952		
$\left\\|r^{*}-r_{k}\right\\|$	\searrow	HS 1952	HS 1952		
$\left\\|x_{k}\right\\|$	\nearrow	Steihaug 1983	Fong 2012		
$\left\\|r_{k}\right\\|$	\searrow	PS 1982	Fong 2012		

Theoretical properties for min $\|A x=b\|$

$$
\begin{array}{lll}
& & \text { LSQR } \\
\left\|x^{*}-x_{k}\right\| & \searrow & \text { HS 1952 } \\
\left\|r^{*}-r_{k}\right\| & \searrow & \text { HS 1952 } \\
\left\|x_{k}\right\| & \nearrow & \text { Steihaug 1983 } \\
\left\|r_{k}\right\| & \searrow & \text { PS 1982 }
\end{array}
$$

LSMR

HS 1952
HS 1952
Fong 2012
Fong 2012

		LSQR	LSMR								
$\left\\|A^{T} r_{r_{2}}\right\\|$	\searrow		FS 2011								
$\left\\|A^{T} r_{k}\right\\| /\left\\|r_{k}\right\\|$	\searrow		mostly								
		$\left\\|A^{T} r_{k}\right\\| /\left\\|r_{k}\right\\| \geq$	$\left\\|A^{T} r_{k}\right\\| /\left\\|r_{k}\right\\|$								

LSMR Experiments

Overdetermined systems

Test Data

- Tim Davis, University of Florida Sparse Matrix Collection
- LPnetlib: Linear Programming Problems
- $A=$ (Problem. A) $\quad b=$ Problem.c (127 problems)

Overdetermined systems

Test Data

- Tim Davis, University of Florida Sparse Matrix Collection
- LPnetlib: Linear Programming Problems
- $A=$ (Problem. A) $\quad b=$ Problem.c (127 problems)

Solve min $\|A x-b\|_{2}$ with LSQR and LSMR

Backward error - estimates

$$
\begin{array}{cccc}
A^{T} A \hat{x} & =A^{T} b & \hat{r}=b-A \hat{x} & \\
\text { exact } \\
\left(A+E_{i}\right)^{T}\left(A+E_{i}\right) x & =\left(A+E_{i}\right)^{T} b & & r=b-A x
\end{array} \quad \begin{array}{ll}
\text { any } x
\end{array}
$$

Backward error - estimates

$$
\begin{array}{cccc}
A^{T} A \hat{x} & =A^{T} b & \hat{r}=b-A \hat{x} & \\
\text { exact } \\
\left(A+E_{i}\right)^{T}\left(A+E_{i}\right) x & =\left(A+E_{i}\right)^{T} b & & r=b-A x
\end{array} \quad \begin{array}{ll}
\text { any } x
\end{array}
$$

Two estimates given by Stewart (1975 and 1977)

$$
\begin{array}{lll}
E_{1}=\frac{e x^{T}}{\|x\|^{2}} & \left\|E_{1}\right\|=\frac{\|e\|}{\|x\|} & e=\hat{r}-r \\
E_{2}=-\frac{r_{2}{ }^{T}}{\|r\|^{2}} & \left\|E_{2}\right\|=\frac{\left\|A^{T} \cdot\right\|}{\|r\|} & \text { computable }
\end{array}
$$

Backward error - estimates

$$
\begin{array}{rlrl}
A^{T} A \hat{x} & =A^{T} b & \hat{r}=b-A \hat{x} & \\
\text { exact } \\
\left(A+E_{i}\right)^{T}\left(A+E_{i}\right) x & =\left(A+E_{i}\right)^{T} b & & r=b-A x
\end{array} \quad \begin{array}{ll}
\text { any } x
\end{array}
$$

Two estimates given by Stewart (1975 and 1977)

$$
\begin{array}{lll}
E_{1}=\frac{e x^{T}}{\|x\|^{2}} & \left\|E_{1}\right\|=\frac{\|e\|}{\|x\|} & e=\hat{r}-r \\
E_{2}=-\frac{r_{2} T_{A}}{\|r\|^{2}} & \left\|E_{2}\right\|=\frac{\left\|A^{T} r\right\|}{\|r\|^{2}} & \text { computable }
\end{array}
$$

Theorem

$$
\left\|E_{2}^{\mathrm{LSMR}}\right\| \leq\left\|E_{2}^{\mathrm{LSQR}}\right\|
$$

$\log _{10}\left\|E_{2}\right\|$ for LSQR and LSMR - typical

$\log _{10}\left\|E_{2}\right\|$ for LSQR and LSMR - rare

Name:Ip sc205, Dim:317x205, nnz:665, id=665

Backward error - optimal

$$
\mu(x) \equiv \min _{E}\|E\| \quad \text { st } \quad(A+E)^{T}(A+E) x=(A+E)^{T} b
$$

Exact $\mu(x) \quad$ (Waldén, Karlson, \& Sun 1995, Higham 2002)

$$
C \equiv\left[\begin{array}{ll}
A & \left.\frac{\|r\|}{\|x\|}\left(I-\frac{r r^{T}}{\|r\|^{2}}\right)\right] \quad \mu(x)=\sigma_{\min }(C), ~
\end{array}\right.
$$

Backward error - optimal

$$
\mu(x) \equiv \min _{E}\|E\| \quad \text { st } \quad(A+E)^{T}(A+E) x=(A+E)^{T} b
$$

Cheaper estimate $\tilde{\mu}(x) \quad$ (Grcar, Saunders, \& Su 2007)

$$
\begin{array}{ll}
K=\binom{A}{\frac{\|r\|}{\|x\|} I} & v=\binom{r}{0} \\
\min _{y}\|K y-v\| & \tilde{\mu}(x)=\frac{\|K y\|}{\|x\|}
\end{array}
$$

Backward error - optimal

$$
\mu(x) \equiv \min _{E}\|E\| \quad \text { st } \quad(A+E)^{T}(A+E) x=(A+E)^{T} b
$$

Cheaper estimate $\tilde{\mu}(x) \quad$ (Grcar, Saunders, \& Su 2007)

$$
\begin{aligned}
& K=\binom{A}{\frac{\|r\|}{\|x\|} I} \quad v=\binom{r}{0} \\
& \min _{y}\|K y-v\| \quad \tilde{\mu}(x)=\frac{\|K y\|}{\|x\|} \\
& r=b-A * x ; \\
& \mathrm{p}=\operatorname{colamd}(\mathrm{A}) ; \\
& \mathrm{eta}=\operatorname{norm}(\mathrm{r}) / \operatorname{norm}(\mathrm{x}) ; \\
& \mathrm{K}=[\mathrm{A}(:, \mathrm{p}) ; \operatorname{eta*speye}(\mathrm{n})] ; \\
& \mathrm{V}=[r ; \operatorname{zeros}(\mathrm{n}, 1)] ; \\
& {[\mathrm{c}, \mathrm{R}] \quad=\operatorname{qr}(\mathrm{K}, \mathrm{v}, 0) ;} \\
& \text { mutilde }=\operatorname{norm}(\mathrm{c}) / \operatorname{norm}(\mathrm{x}) ;
\end{aligned}
$$

Backward errors for LSQR - typical

Backward errors for LSQR - rare

Backward errors for LSMR - typical

Backward errors for LSMR - rare

For LSMR

$\left\|E_{2}\right\| \approx$ optimal BE almost always

Typical: $\left\|E_{2}\right\| \approx \tilde{\mu}(x)$

Rare: $\left\|E_{1}\right\| \approx \tilde{\mu}(x)$

Optimal backward errors $\tilde{\mu}(x)$

Seem monotonic for LSMR
 Usually not for LSQR

Typical for LSQR and LSMR

Rare LSQR, typical LSMR

Optimal backward errors $\tilde{\mu}\left(x^{\mathrm{LSMR}}\right) \leq \tilde{\mu}\left(x^{\mathrm{LSQR}}\right)$ almost always

Typical

Rare

Errors in x_{k}

- $\left\|x^{\mathrm{LSQR}}-x^{*}\right\| \leq\left\|x^{\mathrm{LSMR}}-x^{*}\right\|$ seems true

$\left\|x_{k}-x^{*}\right\|$ for LSMR and LSQR

Square consistent systems

- $A x=b$
- Backward error: $\frac{\left\|r_{k}\right\|}{\left\|x_{k}\right\|}$
- LSQR slightly faster than LSMR in most cases

Underdetermined systems

Infinitely many solutions

$$
A x=b
$$

Unique solution

$\min \|x\|$ st $A x=b$

Theorem

LSQR and LSMR both return the minimum-norm solution

Summary

Theoretical properties for $A x=b, A \succ 0$

CG and MINRES

$$
\begin{aligned}
& \left\|x^{*}-x_{k}\right\|^{\searrow} \\
& \left\|x^{*}-x_{k}\right\|_{A} \\
& \left\|x_{k}\right\| \\
& \searrow
\end{aligned}
$$

Theoretical properties for $A x=b, A \succ 0$

CG and MINRES

$$
\begin{aligned}
& \left\|x^{*}-x_{k}\right\| \\
& \left\|x^{*}-x_{k}\right\|_{A} \quad \searrow \\
& \left\|x_{k}\right\|
\end{aligned}
$$

MINRES

$$
\begin{array}{ll}
\left\|r_{k}\right\| & \searrow \\
\left\|r_{k}\right\| /\left\|x_{k}\right\| \\
\left\|r_{k}\right\| /\left(\alpha\|A\|\left\|x_{k}\right\|+\beta\|b\|\right) & \searrow
\end{array}
$$

Theoretical properties for $A x=b, A \succ 0$

CG and MINRES

$$
\begin{aligned}
& \left\|x^{*}-x_{k}\right\| \\
& \left\|x^{*}-x_{k}\right\|_{A} \quad \underset{~}{\left\|x_{k}\right\|}
\end{aligned}
$$

MINRES

$$
\begin{array}{ll}
\left\|r_{k}\right\| \\
\left\|r_{k}\right\| /\left\|x_{k}\right\| \\
\left\|r_{k}\right\| /\left(\alpha\|A\|\left\|x_{k}\right\|+\beta\|b\|\right) & \searrow \\
\hline
\end{array}
$$

For MINRES, backward errors are monotonic
\Rightarrow safe to stop early

Theoretical properties for min $\|A x-b\|$
LSQR and LSMR

$x_{k} \rightarrow$ min-length x^{*} if $\operatorname{rank}(A)<n$

Theoretical properties for min $\|A x-b\|$

LSQR and LSMR

$\left\\|x^{*}-x_{k}\right\\|$	\searrow
$\left\\|r^{*}-r_{k}\right\\|$	\searrow
$\left\\|r_{k}\right\\|$	\searrow
$\left\\|x_{k}\right\\|$	\nearrow

$x_{k} \rightarrow$ min-length x^{*} if $\operatorname{rank}(A)<n$

LSMR

$$
\begin{array}{ll}
\left\|A^{T} r_{k}\right\| & \searrow \\
\left\|A^{T} r_{k}\right\| /\left\|r_{k}\right\| & \searrow \text { almost always } \\
& \approx \text { optimal BE almost always }
\end{array}
$$

Theoretical properties for min $\|A x-b\|$
 LSQR and LSMR

$$
\begin{aligned}
& \left\|x^{*}-x_{k}\right\| \quad \searrow \\
& \left\|r^{*}-r_{k}\right\| \quad \searrow \\
& \left\|r_{k}\right\| \quad \searrow \\
& \left\|x_{k}\right\| \quad \nearrow \\
& x_{k} \rightarrow \text { min-length } x^{*} \text { if } \operatorname{rank}(A)<n
\end{aligned}
$$

LSMR

$$
\begin{array}{ll}
\left\|A^{T} r_{k}\right\| & \searrow \\
\left\|A^{T} r_{k}\right\| /\left\|r_{k}\right\| & \searrow \text { almost always } \\
& \approx \text { optimal BE almost always }
\end{array}
$$

For LSMR, optimal backward errors seem monotonic
\Rightarrow safe to stop early

References:

- LSMR: An iterative algorithm for sparse least-squares problems David Fong and Michael Saunders, SISC 2011
- CG versus MINRES: An empirical comparison David Fong and Michael Saunders, SQU Journal for Science 2012

Kindest thanks:
Georg Bock and colleagues
Phan Thanh An and colleagues

