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Abstract

Sparse SQP methods such as SNOPT need a

QP solver that permits warm starts each major

iteration and can handle many degrees of freedom.

An active-set QP method with direct KKT solves

seems the only option.

We discuss some implementation issues such as

updating the KKT factors, scaling the QP Hessian,

and recovering from KKT singularity.
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Why a new QP solver?
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SNOPT
Sparse SQP solver for NLP (Gill, Murray & Saunders 2005)

Sequence of QP subproblems:

QPk minimize
x

gT
k x + 1

2
xTHkx

subject to linearized constraints and bounds

Limited-memory quasi-Newton Hessian
H0 = I or diagonal
H1 = (I + vuT )H0(I + uvT ), etc

Warm start, few iterations ⇒ active-set method SQOPT

SQOPT’s reduced Hessian ZTHkZ can be large

CG on ZTHkZ works unexpectedly well sometimes

Need a QP solver that works with KKT systems
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Linear Algebra Q1

Updating basis factors
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Updating a basis

Aim Use SuperLU, PARDISO, . . . as black box solvers for B0

Product-form update Bk = B0T1T2 . . . Tk

Simple, but perhaps dense, unstable

Schur-complement update (Bisschop & Meeraus 1977)

Initially: B0x = b0

Later:

(

B0 Vk

W T
k

)(

x1

x2

)

=

(

bk

0

)

2 solves with B0

1 solve with Ck = W T
k B−1

0
Vk (small),

sparse products Vkv, W T
k w
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Linear Algebra Q2

Updating KKT factors
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Updating KKT systems
for QP active-set solver

Aim Use MA57, PARDISO, . . . as black box solvers for K0

Initially: K0y = d

Later:
(

K0 Vk

V T
k

)(

y1

y2

)

=

(

d1

d2

)

Existing work: Gould & Toint, Gondzio

Block-LU updates – p. 8/27



QPA in GALAHAD
Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

(

K0 V

V T

)

=

(

I

V TK−1

0
I

)(

K0 V

C

)

K0 = L0D0L
T
0

via MA27 or MA57

C = −V TK−1

0
V factored by SCU (small)

2 solves with K0, 1 solve with C, products V v, V T w

1 solve with K0 if K−1

0
V were stored (but it is fairly dense)
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Symmetric Block-LU updates

(

K0 V

V T

)

=

(

L0

Y TD−1

0
I

)(

D0L
T
0

Y

C

)

L0Y = V, C = −Y T D−1

0
Y

K0 = L0D0L
T
0

via MA27, MA57, PARDISO, . . .

C factored by LUMOD (LC = U , L square, small)

Solves with L0, D0, C, D0, LT
0
, products with Y , Y T

MA57 treats L0, D0 as two black boxes (Thanks Iain!)

Y is likely to be well-conditioned and sparse
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Unsymmetric Block-LU updates

(

K0 V

W T

)

=

(

L0

ZT I

)(

U0 Y

C

)

L0Y = V,

UT
0 Z = W,

C = −ZT Y

K0 = L0U0 via LUSOL, SuperLU, UMFPACK, PARDISO, . . .

Solves with L0, U0, C, products with Y , ZT

L0, U0 are two black boxes

Y and Z are likely to be sparse
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QPBLU
Active-set QP solver (Hanh Huynh’s thesis)

QP minimize
x

cTx + 1

2
xTHx

subject to Ax = b, l ≤ x ≤ u

• Matlab prototype, F90 version under way

• Block-LU updates of KKT factors

• K0 = L0U0 with black-box solvers for L0, U0

• SNOPT’s H1 = (I + vuT )H0(I + uvT ), etc
handled by block-LU updates
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Experiments with Matlab QPBLU

QP minimize
x

cTx + 1

2
xTx

subject to Ax = b, l ≤ x ≤ u

• QP problems with H = I

• A, b, c, l, u come from LPnetlib collection (Tim Davis)

• [L0,U0,P,Q] = lu(K0) via UMFPACK (Tim Davis)

• 20 Block-LU updates then factorize current KKT
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Block-LU updates

(

K0 V

W T

)

=

(

L0

ZT I

)(

U0 Y

C

)

Two possible implementations:

L0 = I, U0 = K0 Separate L0 and U0

Y = V L0Y = V

UT
0
LT

0
Z = W UT

0
Z = W

Compare nonzeros in Y and Z
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Black-box K0 vs separate L0, U0
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Linear Algebra Q3

Rank-revealing factors
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LUSOL

Three pivoting options:

TPP Threshold Partial Pivoting

TRP Threshold Rook Pivoting

TCP Threshold Complete Pivoting
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TPP: Threshold Partial Pivoting

. . . . . . . . . . . . . . . . .
. . .

...
. . .

...

2.0 × ×

3.0 ×

× ×

4.0 × × ×

× ×

Require |Lij | ≤ τ , τ = 2.0 say (not 1.0)
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TRP: Threshold Rook Pivoting

. . . . . . . . . . . . . . . . .
. . .

...
. . .

...

4.0 1.0 8.0

3.0 ×

× ×

4.0 × × ×

× ×
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TCP: Threshold Complete Pivoting

. . . . . . . . . . . . . . . . .
. . .

...
. . .

...

4.5 1.0 8.0

3.0 ×

× ×

4.0 × × 9.0

× ×
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Rank-Revealing Factors

A = XDY T =

Demmel et al. (1999):

X, Y well-conditioned ⇒ cond(A) ≈ cond(D)

• SVD UDV T

• QR with column interchanges QDR

• LU with Rook Pivoting LDU

• LU with Complete Pivoting LDU
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Linear Algebra Q4

KKT repair
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Two-stage KKT repair

K =

(

H AT

A

)

[L,U,p,q] = lusol(A) with Threshold Rook Pivoting
detects singularities in A

[L,D,p] = ma57(K) with strict pivot tolerance
detects singularities in K
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Linear Algebra Q5

Condition of K0
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Scaling H

As we know from least squares,

(

αI AT

A

)

is better conditioned if

α ≈ σmin(A).

Hence, QPBLU solves

QP minimize
x

α(cTx + 1

2
xTHx) + ω × suminf

subject to Ax = b, l ≤ x ≤ u

K0 =

(

αH0 AT
0

A0

)

is better conditioned (if we can guess good α).

Schur-complements Ck = −V T
k K−1

0
Vk also.
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Summary
QPBLU active-set QP solver

KKT solves: K0 =

0

@

H0 AT

0

A0

1

A

Block-LU updates:

(

K0 V

W T D

)

=

(

L0

ZT I

)(

U0 Y

C

)

Black-box solvers for L0, U0

Y, Z sparse, so worth storing
One hope for parallelism in LP/QP/NLP solvers

Sparse LU, LDL’ solvers
LUSOL, MA27, MA57 already suitable
Need |Lij | ≤ 2 (say) to be rank-revealing

Request to SuperLU, PARDISO, UMFPACK, . . . developers
Separate solves with L0, D0, U0

At least one factor well-conditioned (tell us which one!)
Options for rank-revealing factors of K0
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