
Implementation of a KKT-based
active-set QP solver

ISMP 2006

19th International Symposium on

Mathematical Programming
Rio de Janeiro, Brazil, July 30–August 4, 2006

Hanh Huynh and Michael Saunders

SCCM Program Dept of Management Sci & Eng

Stanford University Stanford University

Stanford, CA 94305-9025 Stanford, CA 94305-4026

hhuynh@stanford.edu saunders@stanford.edu

Block-LU updates – p. 1/27

Abstract

Sparse SQP methods such as SNOPT need a

QP solver that permits warm starts each major

iteration and can handle many degrees of freedom.

An active-set QP method with direct KKT solves

seems the only option.

We discuss some implementation issues such as

updating the KKT factors, scaling the QP Hessian,

and recovering from KKT singularity.

Acknowledgements:

Philip Gill, UC San Diego

Comsol, Inc

Block-LU updates – p. 2/27

Why a new QP solver?

Block-LU updates – p. 3/27

SNOPT
Sparse SQP solver for NLP (Gill, Murray & Saunders 2005)

Sequence of QP subproblems:

QPk minimize
x

gT
k x + 1

2
xTHkx

subject to linearized constraints and bounds

Limited-memory quasi-Newton Hessian
H0 = I or diagonal
H1 = (I + vuT)H0(I + uvT), etc

Warm start, few iterations ⇒ active-set method SQOPT

SQOPT’s reduced Hessian ZTHkZ can be large

CG on ZTHkZ works unexpectedly well sometimes

Need a QP solver that works with KKT systems

Block-LU updates – p. 4/27

SNOPT
Sparse SQP solver for NLP (Gill, Murray & Saunders 2005)

Sequence of QP subproblems:

QPk minimize
x

gT
k x + 1

2
xTHkx

subject to linearized constraints and bounds

Limited-memory quasi-Newton Hessian
H0 = I or diagonal
H1 = (I + vuT)H0(I + uvT), etc

Warm start, few iterations ⇒ active-set method SQOPT

SQOPT’s reduced Hessian ZTHkZ can be large

CG on ZTHkZ works unexpectedly well sometimes

Need a QP solver that works with KKT systems

Block-LU updates – p. 4/27

SNOPT
Sparse SQP solver for NLP (Gill, Murray & Saunders 2005)

Sequence of QP subproblems:

QPk minimize
x

gT
k x + 1

2
xTHkx

subject to linearized constraints and bounds

Limited-memory quasi-Newton Hessian
H0 = I or diagonal
H1 = (I + vuT)H0(I + uvT), etc

Warm start, few iterations ⇒ active-set method SQOPT

SQOPT’s reduced Hessian ZTHkZ can be large

CG on ZTHkZ works unexpectedly well sometimes

Need a QP solver that works with KKT systems

Block-LU updates – p. 4/27

SNOPT
Sparse SQP solver for NLP (Gill, Murray & Saunders 2005)

Sequence of QP subproblems:

QPk minimize
x

gT
k x + 1

2
xTHkx

subject to linearized constraints and bounds

Limited-memory quasi-Newton Hessian
H0 = I or diagonal
H1 = (I + vuT)H0(I + uvT), etc

Warm start, few iterations ⇒ active-set method SQOPT

SQOPT’s reduced Hessian ZTHkZ can be large

CG on ZTHkZ works unexpectedly well sometimes

Need a QP solver that works with KKT systems
Block-LU updates – p. 4/27

Linear Algebra Q1

Updating basis factors

Block-LU updates – p. 5/27

Updating a basis

Aim Use SuperLU, PARDISO, . . . as black box solvers for B0

Product-form update Bk = B0T1T2 . . . Tk

Simple, but perhaps dense, unstable

Schur-complement update (Bisschop & Meeraus 1977)

Initially: B0x = b0

Later:

(

B0 Vk

W T
k

)(

x1

x2

)

=

(

bk

0

)

2 solves with B0

1 solve with Ck = W T
k B−1

0
Vk (small),

sparse products Vkv, W T
k w

Block-LU updates – p. 6/27

Updating a basis

Aim Use SuperLU, PARDISO, . . . as black box solvers for B0

Product-form update Bk = B0T1T2 . . . Tk

Simple, but perhaps dense, unstable

Schur-complement update (Bisschop & Meeraus 1977)

Initially: B0x = b0

Later:

(

B0 Vk

W T
k

)(

x1

x2

)

=

(

bk

0

)

2 solves with B0

1 solve with Ck = W T
k B−1

0
Vk (small),

sparse products Vkv, W T
k w

Block-LU updates – p. 6/27

Linear Algebra Q2

Updating KKT factors

Block-LU updates – p. 7/27

Updating KKT systems
for QP active-set solver

Aim Use MA57, PARDISO, . . . as black box solvers for K0

Initially: K0y = d

Later:
(

K0 Vk

V T
k

)(

y1

y2

)

=

(

d1

d2

)

Existing work: Gould & Toint, Gondzio

Block-LU updates – p. 8/27

QPA in GALAHAD
Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

(

K0 V

V T

)

=

(

I

V TK−1

0
I

)(

K0 V

C

)

K0 = L0D0L
T
0

via MA27 or MA57

C = −V TK−1

0
V factored by SCU (small)

2 solves with K0, 1 solve with C, products V v, V T w

1 solve with K0 if K−1

0
V were stored (but it is fairly dense)

Block-LU updates – p. 9/27

QPA in GALAHAD
Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

(

K0 V

V T

)

=

(

I

V TK−1

0
I

)(

K0 V

C

)

K0 = L0D0L
T
0

via MA27 or MA57

C = −V TK−1

0
V factored by SCU (small)

2 solves with K0, 1 solve with C, products V v, V T w

1 solve with K0 if K−1

0
V were stored (but it is fairly dense)

Block-LU updates – p. 9/27

QPA in GALAHAD
Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

(

K0 V

V T

)

=

(

I

V TK−1

0
I

)(

K0 V

C

)

K0 = L0D0L
T
0

via MA27 or MA57

C = −V TK−1

0
V factored by SCU (small)

2 solves with K0, 1 solve with C, products V v, V T w

1 solve with K0 if K−1

0
V were stored (but it is fairly dense)

Block-LU updates – p. 9/27

Symmetric Block-LU updates

(

K0 V

V T

)

=

(

L0

Y TD−1

0
I

)(

D0L
T
0

Y

C

)

L0Y = V, C = −Y T D−1

0
Y

K0 = L0D0L
T
0

via MA27, MA57, PARDISO, . . .

C factored by LUMOD (LC = U , L square, small)

Solves with L0, D0, C, D0, LT
0
, products with Y , Y T

MA57 treats L0, D0 as two black boxes (Thanks Iain!)

Y is likely to be well-conditioned and sparse

Block-LU updates – p. 10/27

Symmetric Block-LU updates

(

K0 V

V T

)

=

(

L0

Y TD−1

0
I

)(

D0L
T
0

Y

C

)

L0Y = V, C = −Y T D−1

0
Y

K0 = L0D0L
T
0

via MA27, MA57, PARDISO, . . .

C factored by LUMOD (LC = U , L square, small)

Solves with L0, D0, C, D0, LT
0
, products with Y , Y T

MA57 treats L0, D0 as two black boxes (Thanks Iain!)

Y is likely to be well-conditioned and sparse

Block-LU updates – p. 10/27

Unsymmetric Block-LU updates

(

K0 V

W T

)

=

(

L0

ZT I

)(

U0 Y

C

)

L0Y = V,

UT
0 Z = W,

C = −ZT Y

K0 = L0U0 via LUSOL, SuperLU, UMFPACK, PARDISO, . . .

Solves with L0, U0, C, products with Y , ZT

L0, U0 are two black boxes

Y and Z are likely to be sparse

Block-LU updates – p. 11/27

QPBLU
Active-set QP solver (Hanh Huynh’s thesis)

QP minimize
x

cTx + 1

2
xTHx

subject to Ax = b, l ≤ x ≤ u

• Matlab prototype, F90 version under way

• Block-LU updates of KKT factors

• K0 = L0U0 with black-box solvers for L0, U0

• SNOPT’s H1 = (I + vuT)H0(I + uvT), etc
handled by block-LU updates

Block-LU updates – p. 12/27

Experiments with Matlab QPBLU

QP minimize
x

cTx + 1

2
xTx

subject to Ax = b, l ≤ x ≤ u

• QP problems with H = I

• A, b, c, l, u come from LPnetlib collection (Tim Davis)

• [L0,U0,P,Q] = lu(K0) via UMFPACK (Tim Davis)

• 20 Block-LU updates then factorize current KKT

Block-LU updates – p. 13/27

Block-LU updates

(

K0 V

W T

)

=

(

L0

ZT I

)(

U0 Y

C

)

Two possible implementations:

L0 = I, U0 = K0 Separate L0 and U0

Y = V L0Y = V

UT
0
LT

0
Z = W UT

0
Z = W

Compare nonzeros in Y and Z

Block-LU updates – p. 14/27

Black-box K0 vs separate L0, U0

0 100 200 300 400 500
0

1000

2000

3000

N
um

be
r

of
 N

on
ze

ro
s

Iterations

Data Source: capri, K0 = I*K0

0 100 200 300 400 500
0

1000

2000

3000

N
um

be
r

of
 N

on
ze

ro
s

Iterations

Data Source: capri, K0 = L0*U0

Y
Z

Y
Z

Block-LU updates – p. 15/27

Linear Algebra Q3

Rank-revealing factors

Block-LU updates – p. 16/27

LUSOL

Three pivoting options:

TPP Threshold Partial Pivoting

TRP Threshold Rook Pivoting

TCP Threshold Complete Pivoting

Block-LU updates – p. 17/27

TPP: Threshold Partial Pivoting

.
. . .

...
. . .

...

2.0 × ×

3.0 ×

× ×

4.0 × × ×

× ×

Require |Lij | ≤ τ , τ = 2.0 say (not 1.0)

Block-LU updates – p. 18/27

TRP: Threshold Rook Pivoting

.
. . .

...
. . .

...

4.0 1.0 8.0

3.0 ×

× ×

4.0 × × ×

× ×

Block-LU updates – p. 19/27

TCP: Threshold Complete Pivoting

.
. . .

...
. . .

...

4.5 1.0 8.0

3.0 ×

× ×

4.0 × × 9.0

× ×

Block-LU updates – p. 20/27

Rank-Revealing Factors

A = XDY T =

Demmel et al. (1999):

X, Y well-conditioned ⇒ cond(A) ≈ cond(D)

• SVD UDV T

• QR with column interchanges QDR

• LU with Rook Pivoting LDU

• LU with Complete Pivoting LDU

Block-LU updates – p. 21/27

Rank-Revealing Factors

A = XDY T =

Demmel et al. (1999):

X, Y well-conditioned ⇒ cond(A) ≈ cond(D)

• SVD UDV T

• QR with column interchanges QDR

• LU with Rook Pivoting LDU

• LU with Complete Pivoting LDU

• MA27, MA57 (Lij bounded, D block-diag) LDLT

Block-LU updates – p. 22/27

Linear Algebra Q4

KKT repair

Block-LU updates – p. 23/27

Two-stage KKT repair

K =

(

H AT

A

)

[L,U,p,q] = lusol(A) with Threshold Rook Pivoting
detects singularities in A

[L,D,p] = ma57(K) with strict pivot tolerance
detects singularities in K

Block-LU updates – p. 24/27

Linear Algebra Q5

Condition of K0

Block-LU updates – p. 25/27

Scaling H

As we know from least squares,

(

αI AT

A

)

is better conditioned if

α ≈ σmin(A).

Hence, QPBLU solves

QP minimize
x

α(cTx + 1

2
xTHx) + ω × suminf

subject to Ax = b, l ≤ x ≤ u

K0 =

(

αH0 AT
0

A0

)

is better conditioned (if we can guess good α).

Schur-complements Ck = −V T
k K−1

0
Vk also.

Block-LU updates – p. 26/27

Summary
QPBLU active-set QP solver

KKT solves: K0 =

0

@

H0 AT

0

A0

1

A

Block-LU updates:

(

K0 V

W T D

)

=

(

L0

ZT I

)(

U0 Y

C

)

Black-box solvers for L0, U0

Y, Z sparse, so worth storing
One hope for parallelism in LP/QP/NLP solvers

Sparse LU, LDL’ solvers
LUSOL, MA27, MA57 already suitable
Need |Lij | ≤ 2 (say) to be rank-revealing

Request to SuperLU, PARDISO, UMFPACK, . . . developers
Separate solves with L0, D0, U0

At least one factor well-conditioned (tell us which one!)
Options for rank-revealing factors of K0

Block-LU updates – p. 27/27

Summary
QPBLU active-set QP solver

KKT solves: K0 =

0

@

H0 AT

0

A0

1

A

Block-LU updates:

(

K0 V

W T D

)

=

(

L0

ZT I

)(

U0 Y

C

)

Black-box solvers for L0, U0

Y, Z sparse, so worth storing
One hope for parallelism in LP/QP/NLP solvers

Sparse LU, LDL’ solvers
LUSOL, MA27, MA57 already suitable
Need |Lij | ≤ 2 (say) to be rank-revealing

Request to SuperLU, PARDISO, UMFPACK, . . . developers
Separate solves with L0, D0, U0

At least one factor well-conditioned (tell us which one!)
Options for rank-revealing factors of K0

Block-LU updates – p. 27/27

Summary
QPBLU active-set QP solver

KKT solves: K0 =

0

@

H0 AT

0

A0

1

A

Block-LU updates:

(

K0 V

W T D

)

=

(

L0

ZT I

)(

U0 Y

C

)

Black-box solvers for L0, U0

Y, Z sparse, so worth storing
One hope for parallelism in LP/QP/NLP solvers

Sparse LU, LDL’ solvers
LUSOL, MA27, MA57 already suitable
Need |Lij | ≤ 2 (say) to be rank-revealing

Request to SuperLU, PARDISO, UMFPACK, . . . developers
Separate solves with L0, D0, U0

At least one factor well-conditioned (tell us which one!)
Options for rank-revealing factors of K0

Block-LU updates – p. 27/27

	
	�lue {SNOPT}
	�lue {SNOPT}
	�lue {SNOPT}
	�lue {SNOPT}

	
	Updating a basis
	Updating a basis

	
	Updating KKT systems
	�lue {QPA in GALAHAD}
	�lue {QPA in GALAHAD}
	�lue {QPA in GALAHAD}

	�lue {Symmetric Block-LU updates}
	�lue {Symmetric Block-LU updates}

	�lue {Unsymmetric Block-LU updates}
	�lue {QPBLU}
	
 �lue {Experiments with Matlab QPBLU}
	�lue {Block-LU updates}
	
 �lue {Black-box} green {K_0} vs �lue {separate} green {L_0}, green {U_0}
	
	ed {LUSOL}
	
 TPP : Threshold Partial Pivoting
	
 TRP : Threshold Rook Pivoting
	
 TCP : Threshold Complete Pivoting
	
 Rank-Revealing Factors
	
 Rank-Revealing Factors
	
	Two-stage KKT repair
	
	Scaling H
	Summary
	Summary
	Summary

