Implementation of a KKT-based active-set QP solver

ISMP 2006 19th International Symposium on Mathematical Programming Rio de Janeiro, Brazil, July 30-August 4, 2006

Hanh Huynh and Michael Saunders

SCCM Program Stanford University Stanford, CA 94305-9025 hhuynh@stanford.edu Dept of Management Sci & Eng Stanford University Stanford, CA 94305-4026 saunders@stanford.edu

Abstract

Sparse SQP methods such as SNOPT need a QP solver that permits warm starts each major iteration and can handle many degrees of freedom. An active-set QP method with direct KKT solves seems the only option.

We discuss some implementation issues such as updating the KKT factors, scaling the QP Hessian, and recovering from KKT singularity.

Acknowledgements:

Philip Gill, UC San Diego Comsol, Inc

Why a new QP solver?

Sequence of QP subproblems:

Limited-memory quasi-Newton Hessian $H_0 = I$ or diagonal $H_1 = (I + vu^T)H_0(I + uv^T)$, etc

Warm start, few iterations \Rightarrow active-set method SQOPT

Sequence of QP subproblems:

Limited-memory quasi-Newton Hessian $H_0 = I$ or diagonal $H_1 = (I + vu^T)H_0(I + uv^T)$, etc

Warm start, few iterations \Rightarrow active-set method SQOPT SQOPT's reduced Hessian $Z^T H_k Z$ can be large

Sequence of QP subproblems:

Limited-memory quasi-Newton Hessian $H_0 = I$ or diagonal $H_1 = (I + vu^T)H_0(I + uv^T)$, etc

Warm start, few iterations \Rightarrow active-set method SQOPT SQOPT's reduced Hessian $Z^T H_k Z$ can be large CG on $Z^T H_k Z$ works unexpectedly well sometimes

Sequence of QP subproblems:

Limited-memory quasi-Newton Hessian $H_0 = I$ or diagonal $H_1 = (I + vu^T)H_0(I + uv^T)$, etc

Warm start, few iterations \Rightarrow active-set method SQOPT SQOPT's reduced Hessian $Z^T H_k Z$ can be large CG on $Z^T H_k Z$ works unexpectedly well sometimes Need a QP solver that works with KKT systems

Linear Algebra Q1 Updating basis factors

Updating a basis

Aim Use SuperLU, PARDISO, ... as black box solvers for B_0

Product-form update $B_k = B_0 T_1 T_2 \dots T_k$

Simple, but perhaps dense, unstable

Updating a basis

Aim Use SuperLU, PARDISO, ... as black box solvers for B_0

Product-form update $B_k = B_0 T_1 T_2 \dots T_k$

Simple, but perhaps dense, unstable

Schur-complement update (Bisschop & Meeraus 1977)

Initially:

$$B_0 x = b_0$$

Later:

$$\begin{pmatrix} B_0 & V_k \\ W_k^T & \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_k \\ 0 \end{pmatrix}$$

2 solves with B_0 1 solve with $C_k = W_k^T B_0^{-1} V_k$ (small), sparse products $V_k v$, $W_k^T w$

Linear Algebra Q2 Updating KKT factors

Updating KKT systems

for QP active-set solver

Aim Use MA57, PARDISO, ... as black box solvers for K_0

Initially: $K_0 y = d$

Later:

$$\begin{pmatrix} K_0 & V_k \\ V_k^T & \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$$

Existing work: Gould & Toint, Gondzio

QPA in GALAHAD

Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

$$\begin{pmatrix} K_0 & V \\ V^T & \end{pmatrix} = \begin{pmatrix} I & \\ V^T K_0^{-1} & I \end{pmatrix} \begin{pmatrix} K_0 & V \\ & \mathbf{C} \end{pmatrix}$$

 $K_0 = L_0 D_0 L_0^T$ via MA27 or MA57 $C = -V^T K_0^{-1} V$ factored by SCU (small)

QPA in GALAHAD

Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

$$\begin{pmatrix} K_0 & V \\ V^T & \end{pmatrix} = \begin{pmatrix} I & \\ V^T K_0^{-1} & I \end{pmatrix} \begin{pmatrix} K_0 & V \\ & \mathbf{C} \end{pmatrix}$$

 $K_0 = L_0 D_0 L_0^T$ via MA27 or MA57 $C = -V^T K_0^{-1} V$ factored by SCU (small)

2 solves with K_0 , 1 solve with C, products Vv, V^Tw

QPA in GALAHAD

Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

$$\begin{pmatrix} K_0 & V \\ V^T & \end{pmatrix} = \begin{pmatrix} I & \\ V^T K_0^{-1} & I \end{pmatrix} \begin{pmatrix} K_0 & V \\ & \mathbf{C} \end{pmatrix}$$

 $K_0 = L_0 D_0 L_0^T$ via MA27 or MA57 $C = -V^T K_0^{-1} V$ factored by SCU (small)

2 solves with K_0 , 1 solve with C, products Vv, V^Tw

1 solve with K_0 if $K_0^{-1}V$ were stored (but it is fairly dense)

Symmetric Block-LU updates

$$\begin{pmatrix} K_0 & V \\ V^T & \end{pmatrix} = \begin{pmatrix} L_0 \\ Y^T D_0^{-1} & I \end{pmatrix} \begin{pmatrix} D_0 L_0^T & Y \\ C \end{pmatrix}$$
$$L_0 Y = V, \quad C = -Y^T D_0^{-1} Y$$

 $K_0 = L_0 D_0 L_0^T$ via MA27, MA57, PARDISO, ... *C* factored by LUMOD (LC = U, *L* square, small)

Symmetric Block-LU updates

$$\begin{pmatrix} K_0 & V \\ V^T & \end{pmatrix} = \begin{pmatrix} L_0 \\ Y^T D_0^{-1} & I \end{pmatrix} \begin{pmatrix} D_0 L_0^T & Y \\ C \end{pmatrix}$$
$$L_0 Y = V, \quad C = -Y^T D_0^{-1} Y$$

 $K_0 = L_0 D_0 L_0^T$ via MA27, MA57, PARDISO, ... *C* factored by LUMOD (LC = U, *L* square, small)

Solves with L_0 , D_0 , C, D_0 , L_0^T , products with Y, Y^T MA57 treats L_0 , D_0 as **two black boxes** (Thanks lain!) Y is likely to be **well-conditioned** and **sparse**

Unsymmetric Block-LU updates

$$\begin{pmatrix} K_0 & V \\ W^T \end{pmatrix} = \begin{pmatrix} L_0 \\ Z^T & I \end{pmatrix} \begin{pmatrix} U_0 & Y \\ & C \end{pmatrix}$$
$$L_0 Y = V,$$
$$U_0^T Z = W,$$
$$C = -Z^T Y$$

 $K_0 = L_0 U_0$ via LUSOL, SuperLU, UMFPACK, PARDISO, ...

Solves with L_0 , U_0 , C, products with Y, Z^T L_0 , U_0 are **two black boxes** Y and Z are likely to be **sparse**

QPBLU

Active-set QP solver (Hanh Huynh's thesis)

QP	$\underset{x}{\text{minimize}}$	$c^T x + \frac{1}{2} x^T H x$
	subject to	$Ax = b, l \le x \le u$

- MATLAB prototype, F90 version under way
- Block-LU updates of KKT factors
- $K_0 = L_0 U_0$ with black-box solvers for L_0 , U_0
- SNOPT's $H_1 = (I + vu^T)H_0(I + uv^T)$, etc handled by block-LU updates

Experiments with Matlab QPBLU

- QP problems with H = I
- A, b, c, l, u come from LPnetlib collection (Tim Davis)
- [L0,U0,P,Q] = lu(K0) via UMFPACK (Tim Davis)
- 20 Block-LU updates then factorize current KKT

Block-LU updates

$$\begin{pmatrix} K_0 & V \\ W^T & \end{pmatrix} = \begin{pmatrix} L_0 \\ Z^T & I \end{pmatrix} \begin{pmatrix} U_0 & Y \\ & C \end{pmatrix}$$

Two possible implementations:

$$L_0 = I, \ U_0 = K_0 \qquad \text{Separate } L_0 \text{ and } U_0$$

$$Y = V \qquad \qquad L_0 Y = V$$

$$U_0^T L_0^T Z = W \qquad \qquad U_0^T Z = W$$

Compare nonzeros in Y and Z

Black-box K_0 vs separate L_0 , U_0

Block-LU updates -p. 15/2

Linear Algebra Q3 Rank-revealing factors

LUSOL

Three pivoting options:

- TPP Threshold Partial Pivoting
- TRP Threshold Rook Pivoting
- **TCP** Threshold Complete Pivoting

TPP: Threshold Partial Pivoting

Require $|L_{ij}| \leq \tau$, $\tau = 2.0$ say (not 1.0)

TRP: Threshold Rook Pivoting

TCP: Threshold Complete Pivoting

Rank-Revealing Factors

Demmel et al. (1999):

X, Y well-conditioned \Rightarrow cond(A) \approx cond(D)

•	SVD	UDV^T
•	QR with column interchanges	$Q\mathbf{D}R$
•	LU with Rook Pivoting	$L \mathbf{D} U$
•	LU with Complete Pivoting	LDU

Rank-Revealing Factors

Demmel et al. (1999):

X, Y well-conditioned \Rightarrow cond(A) \approx cond(D)

• SVD	UDV^T
 QR with column interchanges 	$Q\mathbf{D}R$
 LU with Rook Pivoting 	LDU
 LU with Complete Pivoting 	LDU
• MA27, MA57 (L_{ij} bounded, D block-diag)	$L \frac{D}{D} L^{T}$

Linear Algebra Q4 KKT repair

Two-stage KKT repair

$$K = \begin{pmatrix} H & A^T \\ A & \end{pmatrix}$$

[L,D,p] = ma57(K) with strict pivot tolerance
 detects singularities in K

Linear Algebra Q5 Condition of K_0

Scaling H

As we know from least squares, $\begin{pmatrix} \alpha I & A^T \\ A & \end{pmatrix}$ is better conditioned if

 $\alpha \approx \sigma_{\min}(A).$

Hence, **QPBLU** solves

 $\begin{vmatrix} \mathsf{QP} & \min_{x} & \alpha(c^{T}x + \frac{1}{2}x^{T}Hx) + \omega \times \mathsf{suminf} \\ & \text{subject to} & Ax = b, \ l \le x \le u \end{vmatrix}$

 $K_0 = \begin{pmatrix} \alpha H_0 & A_0^T \\ A_0 & \end{pmatrix}$ is better conditioned (if we can guess good α). Schur-complements $C_k = -V_k^T K_0^{-1} V_k$ also. Block-LU updates - p. 26/2

Summary

QPBLU active-set **QP** solver

KKT solves: $K_0 = \begin{pmatrix} H_0 & A_0^T \\ A_0 \end{pmatrix}$ Block-LU updates: $\begin{pmatrix} K_0 & V \\ W^T & D \end{pmatrix} = \begin{pmatrix} L_0 \\ Z^T & I \end{pmatrix} \begin{pmatrix} U_0 & Y \\ & C \end{pmatrix}$ Black-box solvers for L_0 , U_0 Y, Z sparse, so worth storingOne hope for parallelism in LP/QP/NLP solvers

Summary

QPBLU active-set **QP** solver

KKT solves: $K_0 = \begin{pmatrix} H_0 & A_0^T \\ A_0 \end{pmatrix}$ Block-LU updates: $\begin{pmatrix} K_0 & V \\ W^T & D \end{pmatrix} = \begin{pmatrix} L_0 \\ Z^T & I \end{pmatrix} \begin{pmatrix} U_0 & Y \\ & C \end{pmatrix}$ Black-box solvers for L_0 , U_0 Y, Z sparse, so worth storing

One hope for parallelism in LP/QP/NLP solvers

Sparse LU, LDL' solvers

LUSOL, MA27, MA57 already suitable Need $|L_{ij}| \le 2$ (say) to be rank-revealing

Summary

QPBLU active-set **QP** solver

KKT solves: $K_0 = \begin{pmatrix} H_0 & A_0^T \\ A_0 \end{pmatrix}$ Block-LU updates: $\begin{pmatrix} K_0 & V \\ W^T & D \end{pmatrix} = \begin{pmatrix} L_0 \\ Z^T & I \end{pmatrix} \begin{pmatrix} U_0 & Y \\ & C \end{pmatrix}$ Black-box solvers for L_0 , U_0 Y, Z sparse, so worth storing

One hope for parallelism in LP/QP/NLP solvers

Sparse LU, LDL' solvers

LUSOL, MA27, MA57 already suitable Need $|L_{ij}| \le 2$ (say) to be rank-revealing

Request to SuperLU, PARDISO, UMFPACK, ... developers Separate solves with L_0 , D_0 , U_0 At least one factor well-conditioned (tell us which one!) Options for rank-revealing factors of K_0