Implementation of a KKT-based active-set QP solver

ISMP 2006
19th International Symposium on Mathematical Programming
Rio de Janeiro, Brazil, July 30-August 4, 2006

Hanh Huynh and Michael Saunders

SCCM Program
Stanford University
Stanford, CA 94305-9025
hhuynh@stanford.edu

Dept of Management Sci \& Eng
Stanford University
Stanford, CA 94305-4026
saunders@stanford.edu

Abstract

Sparse SQP methods such as SNOPT need a QP solver that permits warm starts each major iteration and can handle many degrees of freedom. An active-set QP method with direct KKT solves seems the only option.

We discuss some implementation issues such as updating the KKT factors, scaling the QP Hessian, and recovering from KKT singularity.

Acknowledgements:

Philip Gill, UC San Diego
Comsol, Inc

Why a new QP solver?

SNOPT

Sparse SQP solver for NLP (Gill, Murray \& Saunders 2005)
Sequence of QP subproblems:

$$
\begin{array}{lll}
\mathrm{QP}_{k} & \underset{x}{\operatorname{minimize}} g_{k}^{T} x+\frac{1}{2} x^{T} H_{k} x \\
& \text { subject to linearized constraints and bounds }
\end{array}
$$

Limited-memory quasi-Newton Hessian
$H_{0}=I$ or diagonal

$$
H_{1}=\left(I+v u^{T}\right) H_{0}\left(I+u v^{T}\right), \text { etc }
$$

Warm start, few iterations \Rightarrow active-set method SQOPT

SNOPT

Sparse SQP solver for NLP (Gill, Murray \& Saunders 2005)
Sequence of QP subproblems:

$$
\begin{array}{lll}
\mathrm{QP}_{k} & \underset{x}{\operatorname{minimize}} & g_{k}^{T} x+\frac{1}{2} x^{T} H_{k} x \\
& \text { subject to } & \text { linearized constraints and bounds }
\end{array}
$$

Limited-memory quasi-Newton Hessian
$H_{0}=I$ or diagonal

$$
H_{1}=\left(I+v u^{T}\right) H_{0}\left(I+u v^{T}\right), \text { etc }
$$

Warm start, few iterations \Rightarrow active-set method SQOPT
SQOPT's reduced Hessian $Z^{T} H_{k} Z$ can be large

SNOPT

Sparse SQP solver for NLP (Gill, Murray \& Saunders 2005)
Sequence of QP subproblems:

$$
\begin{array}{lll}
\mathrm{QP}_{k} & \underset{x}{\operatorname{minimize}} g_{k}^{T} x+\frac{1}{2} x^{T} H_{k} x \\
& \text { subject to } & \text { linearized constraints and bounds }
\end{array}
$$

Limited-memory quasi-Newton Hessian
$H_{0}=I$ or diagonal

$$
H_{1}=\left(I+v u^{T}\right) H_{0}\left(I+u v^{T}\right), \text { etc }
$$

Warm start, few iterations \Rightarrow active-set method SQOPT
SQOPT's reduced Hessian $Z^{T} H_{k} Z$ can be large
CG on $Z^{T} H_{k} Z$ works unexpectedly well sometimes

SNOPT

Sparse SQP solver for NLP (Gill, Murray \& Saunders 2005)
Sequence of QP subproblems:

$$
\begin{array}{lll}
\mathrm{QP}_{k} & \underset{x}{\operatorname{minimize}} g_{k}^{T} x+\frac{1}{2} x^{T} H_{k} x \\
& \text { subject to } & \text { linearized constraints and bounds }
\end{array}
$$

Limited-memory quasi-Newton Hessian $H_{0}=I$ or diagonal

$$
H_{1}=\left(I+v u^{T}\right) H_{0}\left(I+u v^{T}\right), \text { etc }
$$

Warm start, few iterations \Rightarrow active-set method SQOPT
SQOPT's reduced Hessian $Z^{T} H_{k} Z$ can be large
CG on $Z^{T} H_{k} Z$ works unexpectedly well sometimes
Need a QP solver that works with KKT systems

Linear Algebra Q1 Updating basis factors

Updating a basis

Aim Use SuperLU, PARDISO, \ldots as black box solvers for B_{0}

Product-form update $\quad B_{k}=B_{0} T_{1} T_{2} \ldots T_{k}$
Simple, but perhaps dense, unstable

Updating a basis

Aim Use SuperLU, PARDISO, ... as black box solvers for B_{0}

Product-form update $\quad B_{k}=B_{0} T_{1} T_{2} \ldots T_{k}$
Simple, but perhaps dense, unstable
Schur-complement update (Bisschop \& Meeraus 1977) Initially:

$$
B_{0} x=b_{0}
$$

Later: $\quad\left(\begin{array}{cc}B_{0} & V_{k} \\ W_{k}^{T} & \end{array}\right)\binom{x_{1}}{x_{2}}=\binom{b_{k}}{0}$
2 solves with B_{0}
1 solve with $C_{k}=W_{k}^{T} B_{0}^{-1} V_{k}$ (small),
sparse products $V_{k} v, W_{k}^{T} w$

Linear Algebra Q2 Updating KKT factors

Updating KKT systems

 for QP active-set solverAim Use MA57, PARDISO, ... as black box solvers for K_{0}

Initially:

$$
K_{0} y=d
$$

Later:

$$
\left(\begin{array}{cc}
K_{0} & V_{k} \\
V_{k}^{T} &
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{d_{1}}{d_{2}}
$$

Existing work: Gould \& Toint, Gondzio

QPA in GALAHAD

Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

$$
\left(\begin{array}{ll}
K_{0} & V \\
V^{T} &
\end{array}\right)=\left(\begin{array}{cc}
I & \\
V^{T} K_{0}^{-1} & I
\end{array}\right)\left(\begin{array}{ll}
K_{0} & V \\
& C
\end{array}\right)
$$

$K_{0}=L_{0} D_{0} L_{0}^{T}$ via MA27 or MA57
$C=-V^{T} K_{0}^{-1} V$ factored by SCU (small)

QPA in GALAHAD

Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

$$
\left(\begin{array}{ll}
K_{0} & V \\
V^{T} &
\end{array}\right)=\left(\begin{array}{cc}
I & \\
V^{T} K_{0}^{-1} & I
\end{array}\right)\left(\begin{array}{ll}
K_{0} & V \\
& C
\end{array}\right)
$$

$K_{0}=L_{0} D_{0} L_{0}^{T}$ via MA27 or MA57
$C=-V^{T} K_{0}^{-1} V$ factored by SCU (small)

2 solves with $K_{0}, \quad 1$ solve with C, products $V v, V^{T} w$

QPA in GALAHAD

Active-set QP solver (Gould and Toint 2001)

Sequence of updated KKT systems

$$
\left(\begin{array}{ll}
K_{0} & V \\
V^{T} &
\end{array}\right)=\left(\begin{array}{cc}
I & \\
V^{T} K_{0}^{-1} & I
\end{array}\right)\left(\begin{array}{ll}
K_{0} & V \\
& C
\end{array}\right)
$$

$K_{0}=L_{0} D_{0} L_{0}^{T}$ via MA27 or MA57
$C=-V^{T} K_{0}^{-1} V$ factored by SCU (small)

2 solves with $K_{0}, 1$ solve with C, products $V v, V^{T} w$

1 solve with K_{0} if $K_{0}^{-1} V$ were stored (but it is fairly dense)

Symmetric Block-LU updates

$$
\begin{aligned}
\left(\begin{array}{ll}
K_{0} & V \\
V^{T} &
\end{array}\right) & =\left(\begin{array}{cc}
L_{0} & \\
Y^{T} D_{0}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
D_{0} L_{0}^{T} & Y \\
& C
\end{array}\right) \\
L_{0} Y & =V, \quad C=-Y^{T} D_{0}^{-1} Y
\end{aligned}
$$

$K_{0}=L_{0} D_{0} L_{0}^{T}$ via MA27, MA57, PARDISO, \ldots
C factored by LUMOD ($L C=U, L$ square, small)

Symmetric Block-LU updates

$$
\begin{aligned}
\left(\begin{array}{cc}
K_{0} & V \\
V^{T} &
\end{array}\right) & =\left(\begin{array}{cc}
L_{0} & \\
Y^{T} D_{0}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
D_{0} L_{0}^{T} & Y \\
& C
\end{array}\right) \\
L_{0} Y & =V, \quad C=-Y^{T} D_{0}^{-1} Y
\end{aligned}
$$

$K_{0}=L_{0} D_{0} L_{0}^{T}$ via MA27, MA57, PARDISO, \ldots
C factored by LUMOD ($L C=U, L$ square, small)

Solves with $L_{0}, D_{0}, C, D_{0}, L_{0}^{T}$, products with Y, Y^{T}
MA57 treats L_{0}, D_{0} as two black boxes (Thanks lain!)
Y is likely to be well-conditioned and sparse

Unsymmetric Block-LU updates

$$
\begin{aligned}
\left(\begin{array}{cc}
K_{0} & V \\
W^{T} &
\end{array}\right) & =\left(\begin{array}{ll}
L_{0} & \\
Z^{T} & I
\end{array}\right)\left(\begin{array}{ll}
U_{0} & Y \\
& C
\end{array}\right) \\
L_{0} Y & =V \\
U_{0}^{T} Z & =W \\
C & =-Z^{T} Y
\end{aligned}
$$

$K_{0}=L_{0} U_{0}$ via LUSOL, SuperLU, UMFPACK, PARDISO, \ldots

Solves with L_{0}, U_{0}, C, products with Y, Z^{T}
L_{0}, U_{0} are two black boxes
Y and Z are likely to be sparse

QPBLU

Active-set QP solver (Hanh Huynh's thesis)

$$
\begin{array}{ll}
\text { QP } & \underset{x}{\operatorname{minimize}} \quad c^{T} x+\frac{1}{2} x^{T} H x \\
& \text { subject to } \quad A x=b, \quad l \leq x \leq u
\end{array}
$$

- Matlab prototype, F90 version under way
- Block-LU updates of KKT factors
- $K_{0}=L_{0} U_{0}$ with black-box solvers for L_{0}, U_{0}
- SNOPT's $H_{1}=\left(I+v u^{T}\right) H_{0}\left(I+u v^{T}\right)$, etc handled by block-LU updates

Experiments with Matlab QPBLU

$$
\begin{array}{|ll}
\hline \text { QP } & \underset{x}{\operatorname{minimize}} c^{T} x+\frac{1}{2} x^{T} x \\
& \text { subject to } A x=b, \quad l \leq x \leq u
\end{array}
$$

- QP problems with $H=I$
- A, b, c, l, u come from LPnetlib collection (Tim Davis)
- [LO, UO, P, Q] = lu(KO) via UMFPACK (Tim Davis)
- 20 Block-LU updates then factorize current KKT

Block-LU updates

$$
\left(\begin{array}{ll}
K_{0} & V \\
W^{T} &
\end{array}\right)=\left(\begin{array}{cc}
L_{0} & \\
Z^{T} & I
\end{array}\right)\left(\begin{array}{ll}
U_{0} & Y \\
& C
\end{array}\right)
$$

Two possible implementations:

$$
\begin{array}{c|c}
L_{0}=I, U_{0}=K_{0} & \text { Separate } L_{0} \text { and } U_{0} \\
\hline Y=V & L_{0} Y=V \\
U_{0}^{T} L_{0}^{T} Z=W & U_{0}^{T} Z=W
\end{array}
$$

Compare nonzeros in Y and Z

Black-box K_{0} vs separate L_{0}, U_{0}

Data Source: capri, KO = LO*U0

Linear Algebra Q3 Rank-revealing factors

LUSOL

Three pivoting options:
TPP Threshold Partial Pivoting
TRP Threshold Rook Pivoting
TCP Threshold Complete Pivoting

TPP: Threshold Partial Pivoting

Require $\left|L_{i j}\right| \leq \tau, \quad \tau=2.0$ say (not 1.0)

TRP: Threshold Rook Pivoting

тСР: Threshold Complete Pivoting

Rank-Revealing Factors

$$
A=X D Y^{T}=\square \square \square
$$

Demmel et al. (1999):

$$
X, Y \text { well-conditioned } \Rightarrow \operatorname{cond}(A) \approx \operatorname{cond}(D)
$$

- SVD
- QR with column interchanges
- LU with Rook Pivoting
- LU with Complete Pivoting
$U D V^{T}$
$Q D R$
LDU
LDU

Rank-Revealing Factors

$$
A=X D Y^{T}=\square \square \square
$$

Demmel et al. (1999):

$$
X, Y \text { well-conditioned } \Rightarrow \operatorname{cond}(A) \approx \operatorname{cond}(D)
$$

- SVD
- QR with column interchanges
- LU with Rook Pivoting
- LU with Complete Pivoting
- MA27, MA57 ($L_{i j}$ bounded, D block-diag)

Linear Algebra Q4 KKT repair

Two-stage KKT repair

$$
K=\left(\begin{array}{cc}
H & A^{T} \\
A &
\end{array}\right)
$$

[L, U, p, q] = lusol(A) with Threshold Rook Pivoting detects singularities in A
$[L, D, p]=\operatorname{ma57}(K)$ with strict pivot tolerance detects singularities in K

Linear Algebra Q5 Condition of K_{0}

Scaling H

As we know from least squares, $\left(\begin{array}{cc}\alpha I & A^{T} \\ A & \end{array}\right)$ is better conditioned if

$$
\alpha \approx \sigma_{\min }(A)
$$

Hence, QPBLU solves

$$
\begin{array}{ll}
\text { QP } & \underset{x}{\operatorname{minimize}} \alpha\left(c^{T} x+\frac{1}{2} x^{T} H x\right)+\omega \times \text { suminf } \\
& \text { subject to } A x=b, \quad l \leq x \leq u
\end{array}
$$

$K_{0}=\left(\begin{array}{cc}\alpha H_{0} & A_{0}^{T} \\ A_{0} & \end{array}\right)$ is better conditioned (if we can guess good α).
Schur-complements $C_{k}=-V_{k}^{T} K_{0}^{-1} V_{k}$ also.

Summary

QPBLU active-set QP solver

KKT solves: $\quad K_{0}=\left(\begin{array}{cc}H_{0} & A_{0}^{T} \\ A_{0} & \end{array}\right)$
Block-LU updates: $\left(\begin{array}{cc}K_{0} & V \\ W^{T} & D\end{array}\right)=\left(\begin{array}{cc}L_{0} & \\ Z^{T} & I\end{array}\right)\left(\begin{array}{cc}U_{0} & Y \\ & C\end{array}\right)$
Black-box solvers for L_{0}, U_{0}
Y, Z sparse, so worth storing
One hope for parallelism in LP/QP/NLP solvers

Summary

QPBLU active-set QP solver

KKT solves: $\quad K_{0}=\left(\begin{array}{cc}H_{0} & A_{0}^{T} \\ A_{0} & \end{array}\right)$
Block-LU updates: $\left(\begin{array}{cc}K_{0} & V \\ W^{T} & D\end{array}\right)=\left(\begin{array}{cc}L_{0} & \\ Z^{T} & I\end{array}\right)\left(\begin{array}{cc}U_{0} & Y \\ & C\end{array}\right)$
Black-box solvers for L_{0}, U_{0}
Y, Z sparse, so worth storing
One hope for parallelism in LP/QP/NLP solvers
Sparse LU, LDL' solvers
LUSOL, MA27, MA57 already suitable
Need $\left|L_{i j}\right| \leq 2$ (say) to be rank-revealing

Summary

QPBLU active-set QP solver

KKT solves: $\quad K_{0}=\left(\begin{array}{cc}H_{0} & A_{0}^{T} \\ A_{0} & \end{array}\right)$
Block-LU updates: $\left(\begin{array}{cc}K_{0} & V \\ W^{T} & D\end{array}\right)=\left(\begin{array}{cc}L_{0} & \\ Z^{T} & I\end{array}\right)\left(\begin{array}{cc}U_{0} & Y \\ & C\end{array}\right)$
Black-box solvers for L_{0}, U_{0}
Y, Z sparse, so worth storing
One hope for parallelism in LP/QP/NLP solvers
Sparse LU, LDL' solvers
LUSOL, MA27, MA57 already suitable
Need $\left|L_{i j}\right| \leq 2$ (say) to be rank-revealing
Request to SuperLU, PARDISO, UMFPACK, ... developers
Separate solves with L_{0}, D_{0}, U_{0}
At least one factor well-conditioned (tell us which one!)
Options for rank-revealing factors of K_{0}

