A convex QP solver based on block-LU updates

PP06
 SIAM Conference on
 Parallel Processing for Scientific Computing San Francisco, CA, Feb 22-24, 2006

Hanh Huynh and Michael Saunders

SCCM Program
Stanford University
Stanford, CA 94305-9025
hhuynh@stanford.edu

Dept of Management Sci \& Eng
Stanford University
Stanford, CA 94305-4026
saunders@stanford.edu

Abstract

Active-set methods have an advantage over interior methods in permitting warm starts. We describe a convex QP method intended for use within SNOPT (a sparse SQP package for constrained optimization). An initial KKT system is factorized by any available method (LUSOL, MA57, PARDISO, SuperLU, ...). Active-set changes are implemented by block-LU updates that retain sparsity while leaving the original KKT factors intact.

Acknowledgements:
Philip Gill, UC San Diego
Comsol, Inc

Why a new QP solver?

SNOPT

Sequence of QP subproblems currently solved by SQOPT:

$$
\begin{array}{lll}
\mathrm{QP}_{k} & \underset{x}{\operatorname{minimize}} & g_{k}^{T} x+\frac{1}{2} x^{T} H_{k} x \\
& \text { subject to } & \text { linearized constraints and bounds }
\end{array}
$$

- Limited-memory quasi-Newton Hessian

$$
H_{1}=\left(I+v u^{T}\right) H_{0}\left(I+u v^{T}\right), \text { etc }
$$

- Warm start, few iterations \Rightarrow active-set method
- SQOPT's reduced Hessian $Z^{T} H_{k} Z$ can be large
- Need a QP solver that works with KKT systems (like QPA in GALAHAD)

KKT systems

Active-set QP solvers start with systems of the form

$$
K_{0} y=d, \quad K_{0}=\left(\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right)=L_{0} D_{0} L_{0}{ }^{T}
$$

and then add/delete rows and cols of H, A
Later systems are equivalent to

$$
\left(\begin{array}{ll}
K_{0} & V \\
V^{T} & D
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{d_{1}}{d_{2}}
$$

where we want to treat K_{0} as a black box

QPA

Active-set QP solver in GALAHAD (Gould and Toint, 2004)

Uses SCU to solve sequence of updated KKT systems

$$
\left(\begin{array}{ll}
K_{0} & V \\
V^{T} & D
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{d_{1}}{d_{2}}
$$

SCU maintains factors of Schur complement C, where

$$
\begin{aligned}
K_{0} T & =V \\
C & =D-V^{T} T
\end{aligned}
$$

- K_{0} is a black box (QPA uses $L_{0} D_{0} L_{0}^{T}$ via MA27 or MA57)
- T is not stored (may be fairly dense)
- One solve with dense C, but two solves with K_{0}

Symmetric Block-LU updates

$$
\begin{aligned}
\left(\begin{array}{ll}
K_{0} & V \\
V^{T} & D
\end{array}\right) & =\left(\begin{array}{cc}
L_{0} & \\
Y^{T} D_{0}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
D_{0} L_{0}^{T} & Y \\
& C
\end{array}\right) \\
K_{0} & =L_{0} D_{0} L_{0}^{T} \\
L_{0} Y & =V \\
C & =D-Y^{T} D_{0}^{-1} Y
\end{aligned}
$$

Solves with $L_{0}, D_{0}, C, D_{0}, L_{0}{ }^{T}$, and products with Y^{T}, Y

- L_{0}, D_{0} are two black boxes

MA57 has separate solves with $L_{0}, D_{0}, L_{0}{ }^{T}$
(Thanks lain!)

- Y is likely to be sparse
- Small dense $L C=U$ with L square

Unsymmetric Block-LU updates

$$
\begin{aligned}
\left(\begin{array}{cc}
K_{0} & V \\
W^{T} & D
\end{array}\right) & =\left(\begin{array}{ll}
L_{0} & \\
Z^{T} & I
\end{array}\right)\left(\begin{array}{ll}
U_{0} & Y \\
& C
\end{array}\right) \\
K_{0} & =L_{0} U_{0}, \\
L_{0} Y & =V, \\
U_{0}{ }^{T} Z & =W, \\
C & =D-Z^{T} Y
\end{aligned}
$$

Solves with L_{0}, C, U_{0}, and products with Z^{T}, Y

- L_{0}, U_{0} are two black boxes
- Y and Z are likely to be sparse
- Small dense $L C=U$ with L square
- Same approach for updating simplex-type basis $B_{0}=L_{0} U_{0}$

Special request to PARDISO, SuperLU, ... developers:

Allow separate solves with L, D, U factors

(MA57 already does)

Rank-Revealing Factors

Partial Pivoting

Rook Pivoting

6.0	1.0	0.1	6.0
2.0	\times	\times	\times
1.0	\times	\times	\times
4.0	\times	\times	\times
0.1	\times	\times	\times

Complete Pivoting

$$
\begin{array}{cccc}
9.0 & 1.0 & 0.1 & 6.0 \\
2.0 & \times & \times & \times \\
1.0 & \times & \times & \times \\
4.0 & \times & \times & 9.0 \\
0.1 & \times & 0.1 & \times
\end{array}
$$

LUSOL pivoting options

TPP Threshold Partial Pivoting
TRP Threshold Rook Pivoting
TCP Threshold Complete Pivoting

TPP: Threshold Partial Pivoting

Require $\left|L_{i j}\right| \leq 2.0$ (say)

TRP: Threshold Rook Pivoting

$$
A=L D U \quad \text { Require }\left|L_{i j}\right| \text { and }\left|U_{i j}\right| \leq 2.0 \text { (say) }
$$

TCP: Threshold Complete Pivoting

$$
A=L D U \quad \text { Require }\left|L_{i j}\right| \text { and }\left|U_{i j}\right| \leq 2.0 \text { (say) }
$$

Rank-Revealing Factors

$$
A=X D Y^{T}=\square \square \square
$$

Demmel et al. (1999):
X, Y well-conditioned, D diagonal $\Rightarrow \operatorname{cond}(A) \approx \operatorname{cond}(D)$

- SVD
- QR with column interchanges
- LU with Rook Pivoting
- LU with Complete Pivoting
$U D V^{T}$
$Q D R$
LDU
LDU

Rank-Revealing Factors

$$
A=X D Y^{T}=\square \square \square
$$

Demmel et al. (1999):
X, Y well-conditioned, D diagonal $\Rightarrow \operatorname{cond}(A) \approx \operatorname{cond}(D)$

- SVD
- QR with column interchanges
- LU with Rook Pivoting
- LU with Complete Pivoting
- MA27, MA57 ($L_{i j}$ bounded, D block-diag)
$U D V^{T}$
$Q D R$
LDU
LDU
$L D L^{T}$

Special request to PARDISO, SuperLU, ... developers:

Provide options for computing rank-revealing factors

(LUSOL, MA57 already do)
Need off-diags ≤ 2.5 say (MA57's pivot tol ≥ 0.4)

Numerical results

$$
\begin{array}{ll}
\operatorname{QP} \quad \underset{x}{\operatorname{minimize}} \quad c^{T} x+\frac{1}{2} x^{T} x \\
& \text { subject to } A x=b, \quad l \leq x \leq u
\end{array}
$$

- QP problems with $H=I$
- A, b, c, l, u come from LPnetlib collection (Tim Davis)
- Matlab implementation of proposed QP solver using block-LU updates of KKT system
- [LO, UO, P, Q] = lu(KO) via UMFPACK (Tim Davis)
- Update 20 times then refactorize current KKT matrix

Block-LU updates

$$
\left(\begin{array}{ll}
K_{0} & V \\
W^{T} & D
\end{array}\right)=\left(\begin{array}{ll}
L_{0} & \\
Z^{T} & I
\end{array}\right)\left(\begin{array}{ll}
U_{0} & Y \\
& C
\end{array}\right)
$$

Compare nonzeros in Y and Z :

$$
\begin{array}{c|r}
" L_{0} "=I, " U_{0} "=L_{0} U_{0} & \text { Separate } L_{0} \text { and } U_{0} \\
\hline Y=V & L_{0} Y=V \\
U_{0} T_{L_{0}} T Z=W & U_{0} T_{Z}=W
\end{array}
$$

Black-box K_{0} vs separate L_{0}, U_{0}

Data Source: capri, KO = LO*U0

Summary

Block-LU updates:

$$
\left(\begin{array}{cc}
K_{0} & V \\
W^{T} & D
\end{array}\right)=\left(\begin{array}{cc}
L_{0} & \\
Z^{T} & I
\end{array}\right)\left(\begin{array}{cc}
U_{0} & Y \\
& C
\end{array}\right)
$$

- Black-box $K_{0}=L_{0} U_{0}$ or $L_{0} D_{0} L_{0}^{T}$
- Our main hope for parallelism in LP/QP/NLP solvers
- Need separate solves with L_{0}, D_{0}, U_{0}
- Need rank-revealing factors of K_{0}
- Ideally parallel products $Y v, Y^{T} w, Z v, Z^{T} w$ (OBLAS?)

