SCALABLE ALGORITHMS FOR SENSOR LOCALIZATION

Holly Jin Toronto/Stanford Michael Carter Toronto

Michael Saunders Yinyu Ye Stanford Stanford

Stanford-Berkeley Innovator's Challenge, April 19, 2005

A DIFFICULT PROBLEM

Sensor localization

Ad hoc wireless sensor network A few anchors have known locations Known distance measurements among sensors Determine positions of all other sensors

Geometric model with noisy distances

- vectors in 2D or 3D x_i
- rradio range

minimize $\sum \alpha_{ij} $			
$\ x_i - x_j\ ^2 + \alpha_{ij}$	=	d_{ij}^2	(some i, j)
$\ x_i - x_j\ ^2$	\geq	r^2	$({\rm most}~i,j)$
x_k	=	a_k	(anchors)

Non-convex constrained optimization

HIERARCHICAL SOLUTION METHOD

Semidefinite programming (SDP): < 20 nodes

SpaseLoc algorithm: < 10000 nodes Adaptive sequence of tiny SDP subproblems

Distributed algorithm: arbitrary network size SpaseLoc called in parallel Adaptive sequence of parallel clusters

Moving sensors: dynamic network SpaseLoc called each time step

COMPUTATIONAL RESULTS

Implementation

MATLAB with Mex interface to SDP solver

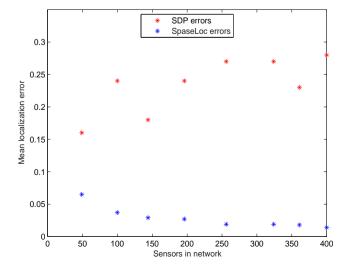
Parameters

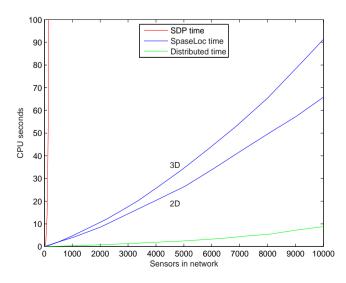
Radio range, no. of anchors, noise level, no. of moving sensors, no. of clusters

Simulations

Varied topologies of anchor/sensor placement 2D, 3D Dynamic sensor tracking Distributed computation Bus arrival reporting system

Results


SpaseLoc accuracy and speed \gg pure SDP SpaseLoc linear complexity Distributed algorithm also linear complexity


IMPACT

Deployable algorithms enable myriad applications: forest fire detection, building automation, traffic monitoring, security services, preemptive maintenance

Soon 100 million sensors in use in industry

Software essential, scalability essential Real-time results from lower-power CPUs

