QPBLUR: An active-set convex QP solver

Christopher Maes and Michael Saunders iCME, Stanford University

RTRA STAE Workshop

Advanced methods and perspectives in nonlinear optimisation and control

Toulouse, France

QPBLUR: An active-set convex QP solver based on regularized KKT systems SNOPT obtains search directions from convex QP subproblems, currently solved by SQOPT. For problems with many degrees of freedom, the nullspace active-set method of SQOPT becomes inefficient.

QPBLUR: An active-set convex QP solver based on regularized KKT systems SNOPT obtains search directions from convex QP subproblems, currently solved by SQOPT. For problems with many degrees of freedom, the nullspace active-set method of SQOPT becomes inefficient.

QPBLUR is an alternative QP solver intended for use within SNOPT. Primal and dual regularization ensures that the KKT system for any active set is nonsingular.

QPBLUR: An active-set convex QP solver based on regularized KKT systems
SNOPT obtains search directions from convex QP subproblems, currently solved by SQOPT. For problems with many degrees of freedom, the nullspace active-set method of SQOPT becomes inefficient.

QPBLUR is an alternative QP solver intended for use within SNOPT. Primal and dual regularization ensures that the KKT system for any active set is nonsingular.

A single-phase active-set method is possible. Warm starts can proceed from any active set. Block-LU updates of the KKT factors as in QPBLU (Hanh Huynh's PhD thesis 2008) allow use of packages such as LUSOL, MA57, PARDISO, SuperLU, or UMFPACK.

QPBLUR: An active-set convex QP solver based on regularized KKT systems
SNOPT obtains search directions from convex QP subproblems, currently solved by SQOPT. For problems with many degrees of freedom, the nullspace active-set method of SQOPT becomes inefficient.

QPBLUR is an alternative QP solver intended for use within SNOPT. Primal and dual regularization ensures that the KKT system for any active set is nonsingular.

A single-phase active-set method is possible. Warm starts can proceed from any active set. Block-LU updates of the KKT factors as in QPBLU (Hanh Huynh's PhD thesis 2008) allow use of packages such as LUSOL, MA57, PARDISO, SuperLU, or UMFPACK.

QPBLUR is effectively a penalty method with bounds. QPBCL (bound-constrained Lagrangian) includes a Lagrangian term to satisfy $A x=b$ more accurately.

Supported by the Office of Naval Research and AHPCRC

Motivation

Why another QP solver?

We would like a sparse QP solver that

- can handle a large number of free variables
- can warm-start efficiently (\Rightarrow active-set method)

Why another QP solver?

We would like a sparse QP solver that

- can handle a large number of free variables
- can warm-start efficiently (\Rightarrow active-set method)

Such a solver would be useful

- inside SQP methods (like SNOPT)
- for related QPs (e.g. model predictive control)

SNOPT: Large-scale NLP

- Nonlinear objective \& constraints, sparse Jacobian

SNOPT: Large-scale NLP

- Nonlinear objective \& constraints, sparse Jacobian
- SQP method solves a sequence of QP subproblems:

$$
\begin{array}{ll}
\min _{x} & c^{\top} x+\frac{1}{2} x^{\top} H x \\
& A x=b, \quad l \leq x \leq u,
\end{array}
$$

where c, H, A, b change less and less

SNOPT: Large-scale NLP

- Nonlinear objective \& constraints, sparse Jacobian
- SQP method solves a sequence of QP subproblems:

$$
\begin{array}{ll}
\min _{x} & c^{\top} x+\frac{1}{2} x^{\top} H x \\
& A x=b, \quad l \leq x \leq u,
\end{array}
$$

where c, H, A, b change less and less

- $H=G^{\top} G$ is a limited-memory BFGS approximation

$$
G=D\left(I+s_{1} v_{1}^{\top}\right)\left(I+s_{2} v_{2}^{\top}\right) \ldots
$$

SNOPT: Large-scale NLP

- Nonlinear objective \& constraints, sparse Jacobian
- SQP method solves a sequence of QP subproblems:

$$
\begin{array}{ll}
\min _{x} & c^{\top} x+\frac{1}{2} x^{\top} H x \\
& A x=b, \quad l \leq x \leq u,
\end{array}
$$

where c, H, A, b change less and less

- $H=G^{\top} G$ is a limited-memory BFGS approximation

$$
G=D\left(I+s_{1} v_{1}^{\top}\right)\left(I+s_{2} v_{2}^{\top}\right) \ldots
$$

- Currently use SQOPT (active-set null-space method)

SQOPT: Large-scale convex QP

SQOPT

$$
\min c^{\top} x+\frac{1}{2} x^{\top} H x \quad \text { st } \quad A x=b, \quad l \leq x \leq u
$$

Active-set null-space method

SQOPT

$$
\min c^{\top} x+\frac{1}{2} x^{\top} H x \quad \text { st } \quad A x=b, \quad l \leq x \leq u
$$

Active-set null-space method

OK if A_{k} is nearly square:
10000×12000 or 100000×102000

SQOPT

$$
\min c^{\top} x+\frac{1}{2} x^{\top} H x \quad \text { st } \quad A x=b, \quad l \leq x \leq u
$$

Active-set null-space method

For $A_{k} 100000 \times 400000$, we need a QP solver based on KKT systems like QPA in GALAHAD

KKT system for current active set

QPBLU

QPBLU (Thesis of Hanh Huynh 2008)

F90 convex QP solver based on block-LU updates of K

QPBLU (Thesis of Hanh Huynh 2008)

F90 convex QP solver based on block-LU updates of K

$$
K_{0}=\left(\begin{array}{cc}
H_{k} & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)=L_{0} D_{0} L_{0}^{T} \text { or } L_{0} U_{0}
$$

QPBLU (Thesis of Hanh Huynh 2008)

F90 convex QP solver based on block-LU updates of K

$$
K_{0}=\left(\begin{array}{cc}
H_{k} & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)=L_{0} D_{0} L_{0}^{T} \text { or } L_{0} U_{0}
$$

- Uses black-box factorizer on K_{0} (LUSOL, MA57, PARDISO, SuperLU, UMFPACK)

QPBLU (Thesis of Hanh Huynh 2008)

F90 convex QP solver based on block-LU updates of K

$$
K_{0}=\left(\begin{array}{cc}
H_{k} & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)=L_{0} D_{0} L_{0}^{T} \text { or } L_{0} U_{0}
$$

- Uses black-box factorizer on K_{0} (LUSOL, MA57, PARDISO, SuperLU, UMFPACK)
- Active-set method keeps K_{0} nonsingular in theory

QPBLU block-LU updates

$$
K_{0}=\left(\begin{array}{cc}
H_{k} & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)=L_{0} U_{0}
$$

QPBLU block-LU updates

$$
K_{0}=\left(\begin{array}{cc}
H_{k} & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)=L_{0} U_{0}
$$

To change active set (add/delete cols of A_{k}), work with bordered system:

QPBLU block-LU updates

$$
K_{0}=\left(\begin{array}{cc}
H_{k} & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)=L_{0} U_{0}
$$

To change active set (add/delete cols of A_{k}), work with bordered system:

- Y, Z sparse, C small

QPBLU block-LU updates

$$
K_{0}=\left(\begin{array}{cc}
H_{k} & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)=L_{0} U_{0}
$$

To change active set (add/delete cols of A_{k}), work with bordered system:

- Y, Z sparse, C small
- Quasi-Newton updates to H_{k} handled same way

QPBLU block-LU updates

$$
K_{0}=\left(\begin{array}{cc}
H_{k} & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)=L_{0} U_{0}
$$

To change active set (add/delete cols of A_{k}), work with bordered system:

- Y, Z sparse, C small
- Quasi-Newton updates to H_{k} handled same way
- Singular K_{0} is a difficulty in practice

QPBLUR: Large-scale QP with Regularization

QPBLUR (Thesis of Chris Maes 2010)

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

δ and μ small

QPBLUR (Thesis of Chris Maes 2010)

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{T} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

δ and μ small

$$
\left(\begin{array}{cc}
-\left(H_{k}+\delta I\right) & A_{k}^{T} \\
A_{k} & \mu I
\end{array}\right)\binom{\Delta x_{k}}{\Delta y}=\binom{g_{k}-A_{k}^{T} y}{0}
$$

QPBLUR (Thesis of Chris Maes 2010)

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

δ and μ small

$$
\left(\begin{array}{cc}
-\left(H_{k}+\delta I\right) & A_{k}^{T} \\
A_{k} & \mu I
\end{array}\right)\binom{\Delta x_{k}}{\Delta y}=\binom{g_{k}-A_{k}^{T} y}{0}
$$

- Nonsingular for any active set (any active cols A_{k})

QPBLUR (Thesis of Chris Maes 2010)

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{T} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

δ and μ small

$$
\left(\begin{array}{cc}
-\left(H_{k}+\delta I\right) & A_{k}^{T} \\
A_{k} & \mu I
\end{array}\right)\binom{\Delta x_{k}}{\Delta y}=\binom{g_{k}-A_{k}^{T} y}{0}
$$

- Nonsingular for any active set (any active cols A_{k})
- Always feasible (no Phase 1)

QPBLUR (Thesis of Chris Maes 2010)

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

δ and μ small

$$
\left(\begin{array}{cc}
-\left(H_{k}+\delta I\right) & A_{k}^{T} \\
A_{k} & \mu I
\end{array}\right)\binom{\Delta x_{k}}{\Delta y}=\binom{g_{k}-A_{k}^{T} y}{0}
$$

- Nonsingular for any active set (any active cols A_{k})
- Always feasible (no Phase 1)
- Can use LUSOL, MA57, UMFPACK, ... without change

QPBLUR (Thesis of Chris Maes 2010)

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{T} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

δ and μ small

$$
\left(\begin{array}{cc}
-\left(H_{k}+\delta I\right) & A_{k}^{T} \\
A_{k} & \mu I
\end{array}\right)\binom{\Delta x_{k}}{\Delta y}=\binom{g_{k}-A_{k}^{T} y}{0}
$$

- Nonsingular for any active set (any active cols A_{k})
- Always feasible (no Phase 1)
- Can use LUSOL, MA57, UMFPACK, ... without change
- Can use Hanh's block-LU updates without change

QPBLUR strategy

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

Matlab implementation

- Scale problem

QPBLUR strategy

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{T} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

Matlab implementation

- Scale problem
- Solve with $\delta, \mu=10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}$ opttol $=\sqrt{\delta}$

QPBLUR strategy

$$
\begin{array}{ll}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{array}
$$

Matlab implementation

- Scale problem
- Solve with $\delta, \mu=10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}$ opttol $=\sqrt{\delta}$
- Unscale

QPBLUR strategy

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{T} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

Matlab implementation

- Scale problem
- Solve with $\delta, \mu=10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}$ opttol $=\sqrt{\delta}$
- Unscale
- Solve with $\delta, \mu=\quad 10^{-8}, 10^{-10}, 10^{-12}$ opttol $=\sqrt{\delta}$

QPBLUR strategy

$$
\begin{aligned}
\min _{x, y} & c^{T} x+\frac{1}{2} x^{T} H x+\frac{1}{2} \delta\|x\|_{2}^{2}+\frac{1}{2} \mu\|y\|_{2}^{2} \\
& A x+\mu y=b, \quad l \leq x \leq u
\end{aligned}
$$

Matlab implementation

- Scale problem
- Solve with $\delta, \mu=10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}$ opttol $=\sqrt{\delta}$
- Unscale
- Solve with $\delta, \mu=\quad 10^{-8}, 10^{-10}, 10^{-12}$ opttol $=\sqrt{\delta}$
- Exit if small relative change in obj

Numerical Results

Accuracy of solutions

Residuals for 90 Meszaros QP test problems

KKT factorizations

No. of factorizations on 90 Meszaros QP test problems

QPBLUR pros and cons

$\min _{x, y} c^{\top} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta x^{\top} x+\frac{1}{2} \mu y^{\top} y \quad A x+\mu y=b, l \leq x \leq u$

Advantages

- Warm starts (any x_{0}, any working set)

QPBLUR pros and cons

$$
\min _{x, y} c^{T} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta x^{T} x+\frac{1}{2} \mu y^{\top} y \quad A x+\mu y=b, l \leq x \leq u
$$

Advantages

- Warm starts (any x_{0}, any working set)
- Any black-box LU or LDL' solver (preferably separate L/U solves and no refinement)

QPBLUR pros and cons

$$
\min _{x, y} c^{T} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta x^{T} x+\frac{1}{2} \mu y^{\top} y \quad A x+\mu y=b, l \leq x \leq u
$$

Advantages

- Warm starts (any x_{0}, any working set)
- Any black-box LU or LDL' solver (preferably separate L/U solves and no refinement)
- LU should never report singularity (no KKT repair)

QPBLUR pros and cons

$$
\min _{x, y} c^{T} x+\frac{1}{2} x^{T} H x+\frac{1}{2} \delta x^{T} x+\frac{1}{2} \mu y^{T} y \quad A x+\mu y=b, l \leq x \leq u
$$

Advantages

- Warm starts (any x_{0}, any working set)
- Any black-box LU or LDL' solver (preferably separate L/U solves and no refinement)
- LU should never report singularity (no KKT repair)
- Simple algorithm (strict convexity, always feasible, no primal degeneracy)

QPBLUR pros and cons

$$
\min _{x, y} c^{T} x+\frac{1}{2} x^{T} H x+\frac{1}{2} \delta x^{T} x+\frac{1}{2} \mu y^{T} y \quad A x+\mu y=b, l \leq x \leq u
$$

Advantages

- Warm starts (any x_{0}, any working set)
- Any black-box LU or LDL' solver (preferably separate L/U solves and no refinement)
- LU should never report singularity (no KKT repair)
- Simple algorithm (strict convexity, always feasible, no primal degeneracy)

Disadvantages

- Large regularization: many itns from cold start

QPBLUR pros and cons

$$
\min _{x, y} c^{\top} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta x^{\top} x+\frac{1}{2} \mu y^{\top} y \quad A x+\mu y=b, l \leq x \leq u
$$

Advantages

- Warm starts (any x_{0}, any working set)
- Any black-box LU or LDL' solver (preferably separate L/U solves and no refinement)
- LU should never report singularity (no KKT repair)
- Simple algorithm (strict convexity, always feasible, no primal degeneracy)

Disadvantages

- Large regularization: many itns from cold start
- Tiny regularization: risks ill-conditioned KKT (but so far so good)

Penalty vs Augmented Lagrangian

Rethink QPBLUR

QP objective: $\quad \phi(x)=c^{\top} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta\|x\|_{2}^{2}$

Rethink QPBLUR

QP objective: $\quad \phi(x)=c^{\top} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta\|x\|_{2}^{2}$
We've been doing regularized QP:

$$
\min _{x, y} \phi(x)+\frac{1}{2} \mu\|y\|_{2}^{2} \quad A x+\mu y=b, \quad l \leq x \leq u
$$

Rethink QPBLUR

QP objective: $\quad \phi(x)=c^{\top} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta\|x\|_{2}^{2}$
We've been doing regularized QP:

$$
\min _{x, y} \phi(x)+\frac{1}{2} \mu\|y\|_{2}^{2} \quad A x+\mu y=b, \quad l \leq x \leq u
$$

\equiv Penalty function:

$$
\min _{\ell \leq x \leq u} \phi(x)+\frac{1}{2} \rho\|b-A x\|_{2}^{2}
$$

$$
(\rho=1 / \mu)
$$

Rethink QPBLUR

QP objective: $\quad \phi(x)=c^{\top} x+\frac{1}{2} x^{\top} H x+\frac{1}{2} \delta\|x\|_{2}^{2}$
We've been doing regularized QP:

$$
\min _{x, y} \phi(x)+\frac{1}{2} \mu\|y\|_{2}^{2} \quad A x+\mu y=b, \quad l \leq x \leq u
$$

\equiv Penalty function:

$$
\min _{\ell \leq x \leq u} \phi(x)+\frac{1}{2} \rho\|b-A x\|_{2}^{2} \quad(\rho=1 / \mu)
$$

Why not Augmented Lagrangian?:

$$
\min _{\ell \leq x \leq u} \phi(x)-\hat{y}^{\top}(b-A x)+\frac{1}{2} \rho\|b-A x\|_{2}^{2}
$$

BCL method as in LANCELOT

BCL Method (LANCELOT)

$$
\min \phi(x) \text { st } c(x)=0, \quad \ell \leq x \leq u
$$

Bound-constrained augmented Lagrangian method

$$
L(x, \hat{y}, \rho)=\phi(x)-\hat{y}^{\top} c(x)+\frac{1}{2} \rho\|c(x)\|^{2}
$$

BCL Method (LANCELOT)

$$
\min \phi(x) \text { st } c(x)=0, \quad \ell \leq x \leq u
$$

Bound-constrained augmented Lagrangian method

$$
L(x, \hat{y}, \rho)=\phi(x)-\hat{y}^{\top} c(x)+\frac{1}{2} \rho\|c(x)\|^{2}
$$

- Subproblem: $\min _{x} L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$

BCL Method (LANCELOT)

$$
\min \phi(x) \text { st } c(x)=0, \quad \ell \leq x \leq u
$$

Bound-constrained augmented Lagrangian method

$$
L(x, \hat{y}, \rho)=\phi(x)-\hat{y}^{\top} c(x)+\frac{1}{2} \rho\|c(x)\|^{2}
$$

- Subproblem: $\min _{x} L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$
- Solve to get \hat{x}
(optimality tol $\omega \rightarrow 0$)

BCL Method (LANCELOT)

$$
\min \phi(x) \text { st } c(x)=0, \quad \ell \leq x \leq u
$$

Bound-constrained augmented Lagrangian method

$$
L(x, \hat{y}, \rho)=\phi(x)-\hat{y}^{\top} c(x)+\frac{1}{2} \rho\|c(x)\|^{2}
$$

- Subproblem: $\min _{x} L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$
- Solve to get \hat{x}
- If $\|c(\hat{x})\|<\eta$, update \hat{y}

BCL Method (LANCELOT)

$$
\min \phi(x) \text { st } c(x)=0, \quad \ell \leq x \leq u
$$

Bound-constrained augmented Lagrangian method

$$
L(x, \hat{y}, \rho)=\phi(x)-\hat{y}^{\top} c(x)+\frac{1}{2} \rho\|c(x)\|^{2}
$$

- Subproblem: $\min _{x} L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$
- Solve to get \hat{x}
- If $\|c(\hat{x})\|<\eta$, update \hat{y}
- Otherwise, increase ρ

BCL Method (LANCELOT)

$$
\min \phi(x) \text { st } c(x)=0, \quad \ell \leq x \leq u
$$

Bound-constrained augmented Lagrangian method

$$
L(x, \hat{y}, \rho)=\phi(x)-\hat{y}^{T} c(x)+\frac{1}{2} \rho\|c(x)\|^{2}
$$

- Subproblem: $\min _{x} L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$
- Solve to get \hat{x}
- If $\|c(\hat{x})\|<\eta$, update \hat{y}
- Otherwise, increase ρ
- Repeat

BCL Method for QP

$$
\min _{x} \phi(x) \text { st } A x=b, \quad \ell \leq x \leq u
$$

BCL subproblem

$$
\begin{aligned}
\min _{x, r} L(x, \hat{y}, \rho)= & \phi(x)+\hat{y}^{T} r+\frac{1}{2} \rho\|r\|^{2} \\
& A x+r=b, \quad \ell \leq x \leq u
\end{aligned}
$$

BCL Method for QP

$$
\min _{x} \phi(x) \text { st } A x=b, \quad \ell \leq x \leq u
$$

BCL subproblem

$$
\begin{aligned}
\min _{x, r} L(x, \hat{y}, \rho)= & \phi(x)+\hat{y}^{T} r+\frac{1}{2} \rho\|r\|^{2} \\
& A x+r=b, \quad \ell \leq x \leq u
\end{aligned}
$$

- Solve subproblem to get $\hat{x}, \hat{r} \quad$ (optimality tol $\omega \rightarrow 0$)

BCL Method for QP

$$
\min _{x} \phi(x) \text { st } A x=b, \quad \ell \leq x \leq u
$$

BCL subproblem

$$
\begin{aligned}
\min _{x, r} L(x, \hat{y}, \rho)= & \phi(x)+\hat{y}^{T} r+\frac{1}{2} \rho\|r\|^{2} \\
& A x+r=b, \quad \ell \leq x \leq u
\end{aligned}
$$

- Solve subproblem to get $\hat{x}, \hat{r} \quad$ (optimality tol $\omega \rightarrow 0$)
- If $\|\hat{r}\|<\eta$, update \hat{y}

BCL Method for QP

$$
\min _{x} \phi(x) \text { st } A x=b, \quad \ell \leq x \leq u
$$

BCL subproblem

$$
\begin{aligned}
\min _{x, r} L(x, \hat{y}, \rho)= & \phi(x)+\hat{y}^{T} r+\frac{1}{2} \rho\|r\|^{2} \\
& A x+r=b, \quad \ell \leq x \leq u
\end{aligned}
$$

- Solve subproblem to get $\hat{x}, \hat{r} \quad$ (optimality tol $\omega \rightarrow 0$)
- If $\|\hat{r}\|<\eta$, update \hat{y}
(feasibility tol $\eta \rightarrow 0$)
- Otherwise, increase ρ

BCL Method for QP

$$
\min _{x} \phi(x) \text { st } A x=b, \quad \ell \leq x \leq u
$$

BCL subproblem

$$
\begin{aligned}
\min _{x, r} L(x, \hat{y}, \rho)= & \phi(x)+\hat{y}^{T} r+\frac{1}{2} \rho\|r\|^{2} \\
& A x+r=b, \quad \ell \leq x \leq u
\end{aligned}
$$

- Solve subproblem to get $\hat{x}, \hat{r} \quad$ (optimality tol $\omega \rightarrow 0$)
- If $\|\hat{r}\|<\eta$, update \hat{y}
(feasibility tol $\eta \rightarrow 0$)
- Otherwise, increase ρ
- Repeat

QPBCL

QPBCL: Active-set method for convex QP

$$
A P=\left(\begin{array}{ll}
A_{k} & N_{k}
\end{array}\right)
$$

QPBCL: Active-set method for convex QP

$$
\begin{gathered}
A P=\left(\begin{array}{ll}
A_{k} & N_{k}
\end{array}\right) \\
\left(\begin{array}{cc}
-\left(\begin{array}{cc}
\left.H_{k}+\delta I\right) & A_{k}^{T} \\
A_{k} & \frac{1}{\rho} I
\end{array}\right)\binom{\Delta x_{k}}{\Delta y}=\binom{g_{k}-A_{k}^{T} y}{\frac{1}{\rho}(\hat{y}-y)+r} \\
\Delta r=\frac{1}{\rho}(y+\Delta y-\hat{y})-r
\end{array} .\right.
\end{gathered}
$$

QPBCL: Active-set method for convex QP

$$
\begin{gathered}
A P=\left(\begin{array}{ll}
A_{k} & N_{k}
\end{array}\right) \\
\left(\begin{array}{cc}
-\left(H_{k}+\delta I\right) & A_{k}^{T} \\
A_{k} & \frac{1}{\rho} I
\end{array}\right)\binom{\Delta x_{k}}{\Delta y}=\binom{g_{k}-A_{k}^{T} y}{\frac{1}{\rho}(\hat{y}-y)+r} \\
\Delta r=\frac{1}{\rho}(y+\Delta y-\hat{y})-r
\end{gathered}
$$

- Same system as QPBLUR - just different rhs
- Still single phase
- Still use Lusol, ma57, umfpack, ...
- Still use Hanh's block-LU updates

Numerical Results

Penalty and Regularization parameter

 QPBCL allows for smaller ρ (hence larger $\mu \equiv 1 / \rho$) compared to QPBLUR

QPBCL vs SQOPT

Compare QPBCL iterations and SQOPT minor iterations

QPBCL vs SQOPT

Compare QPBCL iterations and SQOPT minor iterations

There are 3 kinds of people: Those who can count, and those who cannot.

- George Carlin

Augmented Lagrangian methods for QP

- Conn, Gould, and Toint (1992)

LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag

Augmented Lagrangian methods for QP

- Conn, Gould, and Toint (1992)

LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag

- Nocedal and Wright (2006) Chapter 17 of Numerical Optimization, Springer

Augmented Lagrangian methods for QP

- Conn, Gould, and Toint (1992)

LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag

- Nocedal and Wright (2006) Chapter 17 of Numerical Optimization, Springer
- Z. Dostál, A. Friedlander, and S. A. Santos (2003)

Augmented Lagrangians with adaptive precision control for QP with simple bounds and equality constraints, SIOPT 13

Augmented Lagrangian methods for QP

- Conn, Gould, and Toint (1992)

LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag

- Nocedal and Wright (2006) Chapter 17 of Numerical Optimization, Springer
- Z. Dostál, A. Friedlander, and S. A. Santos (2003)

Augmented Lagrangians with adaptive precision control for QP with simple bounds and equality constraints, SIOPT 13

- M. P. Friedlander and S. Leyffer (2008)

Global and finite termination of a two-phase augmented Lagrangian filter method for general QP, SISC 30

Augmented Lagrangian methods for QP

- Conn, Gould, and Toint (1992)

LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag

- Nocedal and Wright (2006) Chapter 17 of Numerical Optimization, Springer
- Z. Dostál, A. Friedlander, and S. A. Santos (2003)

Augmented Lagrangians with adaptive precision control for QP with simple bounds and equality constraints, SIOPT 13

- M. P. Friedlander and S. Leyffer (2008)

Global and finite termination of a two-phase augmented Lagrangian filter method for general QP, SISC 30

- Philip Gill and Elizabeth Wong (2009-...) Continuing Hanh's f90 QPBLU for use in SNOPT BCL approach for indefinite QP (2nd derivatives in SNOPT)

Merci beaucoups a tous

Iain Duff
Serge Gratton
Xavier Vasseur Brigitte Yzel

RTRA
CERFACS

