
Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

QPBLUR: An active-set convex QP solver

Christopher Maes and Michael Saunders
iCME, Stanford University

RTRA STAE Workshop

Advanced methods and perspectives

in nonlinear optimisation and control

Toulouse, France

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 1/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

QPBLUR: An active-set convex QP solver based on regularized KKT systems

SNOPT obtains search directions from convex QP
subproblems, currently solved by SQOPT. For problems
with many degrees of freedom, the nullspace active-set
method of SQOPT becomes inefficient.

QPBLUR is an alternative QP solver intended for use within
SNOPT. Primal and dual regularization ensures that the
KKT system for any active set is nonsingular.

A single-phase active-set method is possible. Warm starts
can proceed from any active set. Block-LU updates of the
KKT factors as in QPBLU (Hanh Huynh’s PhD thesis 2008)
allow use of packages such as LUSOL, MA57, PARDISO,
SuperLU, or UMFPACK.

QPBLUR is effectively a penalty method with bounds.
QPBCL (bound-constrained Lagrangian) includes a
Lagrangian term to satisfy A = b more accurately.

Supported by the Office of Naval Research and AHPCRC
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Motivation

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 3/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

Why another QP solver?

We would like a sparse QP solver that

can handle a large number of free variables

can warm-start efficiently (⇒ active-set method)

Such a solver would be useful

inside SQP methods (like SNOPT)

for related QPs (e.g. model predictive control)
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SNOPT: Large-scale NLP

Nonlinear objective & constraints, sparse Jacobian

SQP method solves a sequence of QP subproblems:

min


cT+ 1
2

TH

A = b,  ≤  ≤ ,

where c,H, A, b change less and less

H = GTG is a limited-memory BFGS approximation

G = D( + s1T1)( + s2
T
2
) . . .

Currently use SQOPT (active-set null-space method)
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SQOPT: Large-scale convex QP
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SQOPT

min cT+ 1
2

TH st A = b,  ≤  ≤ 

Active-set null-space method

free variables fixed variables

APk = Ak Nk

OK if Ak is nearly square:
10000× 12000 or 100000× 102000

free variables fixed variables

APk = Ak Nk

For Ak 100000× 400000, we need a
QP solver based on KKT systems like QPA in GALAHAD
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KKT system for current active set

Solve K0

�

Δk
Δy

�

=
�

r1
r2

�

K0 =
Hk ATk

Ak
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QPBLU

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 9/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

QPBLU (Thesis of Hanh Huynh 2008)

F90 convex QP solver based on block-LU updates of K

K0 =
�

Hk ATk
Ak 0

�

= L0D0LT0 or L0U0

Uses black-box factorizer on K0
(LUSOL, MA57, PARDISO, SuperLU, UMFPACK)

Active-set method keeps K0 nonsingular in theory
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QPBLU block-LU updates

K0 =
�

Hk ATk
Ak 0

�

= L0U0

To change active set (add/delete cols of Ak),
work with bordered system:

K0 V

VT E

=









L0

ZT 

















U0 Y

C









Y, Z sparse, C small
Quasi-Newton updates to Hk handled same way
Singular K0 is a difficulty in practice
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QPBLUR: Large-scale QP with
Regularization
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QPBLUR (Thesis of Chris Maes 2010)

min
,y

cT+ 1
2

TH+ 1
2δ‖‖

2
2
+ 1
2μ‖y‖

2
2

A+ μy = b,  ≤  ≤ 

δ and μ small

�

−(Hk + δ) ATk
Ak μ

� �

Δk
Δy

�

=
�

gk − ATky
0

�

Nonsingular for any active set (any active cols Ak)
Always feasible (no Phase 1)

Can use LUSOL, MA57, UMFPACK, . . . without change

Can use Hanh’s block-LU updates without change

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 13/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

QPBLUR (Thesis of Chris Maes 2010)

min
,y

cT+ 1
2

TH+ 1
2δ‖‖

2
2
+ 1
2μ‖y‖

2
2

A+ μy = b,  ≤  ≤ 

δ and μ small

�

−(Hk + δ) ATk
Ak μ

� �

Δk
Δy

�

=
�

gk − ATky
0

�

Nonsingular for any active set (any active cols Ak)
Always feasible (no Phase 1)

Can use LUSOL, MA57, UMFPACK, . . . without change

Can use Hanh’s block-LU updates without change

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 13/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

QPBLUR (Thesis of Chris Maes 2010)

min
,y

cT+ 1
2

TH+ 1
2δ‖‖

2
2
+ 1
2μ‖y‖

2
2

A+ μy = b,  ≤  ≤ 

δ and μ small

�

−(Hk + δ) ATk
Ak μ

� �

Δk
Δy

�

=
�

gk − ATky
0

�

Nonsingular for any active set (any active cols Ak)

Always feasible (no Phase 1)

Can use LUSOL, MA57, UMFPACK, . . . without change

Can use Hanh’s block-LU updates without change

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 13/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

QPBLUR (Thesis of Chris Maes 2010)

min
,y

cT+ 1
2

TH+ 1
2δ‖‖

2
2
+ 1
2μ‖y‖

2
2

A+ μy = b,  ≤  ≤ 

δ and μ small

�

−(Hk + δ) ATk
Ak μ

� �

Δk
Δy

�

=
�

gk − ATky
0

�

Nonsingular for any active set (any active cols Ak)
Always feasible (no Phase 1)

Can use LUSOL, MA57, UMFPACK, . . . without change

Can use Hanh’s block-LU updates without change

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 13/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

QPBLUR (Thesis of Chris Maes 2010)

min
,y

cT+ 1
2

TH+ 1
2δ‖‖

2
2
+ 1
2μ‖y‖

2
2

A+ μy = b,  ≤  ≤ 

δ and μ small

�

−(Hk + δ) ATk
Ak μ

� �

Δk
Δy

�

=
�

gk − ATky
0

�

Nonsingular for any active set (any active cols Ak)
Always feasible (no Phase 1)

Can use LUSOL, MA57, UMFPACK, . . . without change

Can use Hanh’s block-LU updates without change

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 13/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

QPBLUR (Thesis of Chris Maes 2010)

min
,y

cT+ 1
2

TH+ 1
2δ‖‖

2
2
+ 1
2μ‖y‖

2
2

A+ μy = b,  ≤  ≤ 

δ and μ small

�

−(Hk + δ) ATk
Ak μ

� �

Δk
Δy

�

=
�

gk − ATky
0

�

Nonsingular for any active set (any active cols Ak)
Always feasible (no Phase 1)

Can use LUSOL, MA57, UMFPACK, . . . without change

Can use Hanh’s block-LU updates without change

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 13/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

QPBLUR strategy

min
,y

cT+ 1
2

TH+ 1
2δ‖‖

2
2
+ 1
2μ‖y‖

2
2

A+ μy = b,  ≤  ≤ 

Matlab implementation

Scale problem

Solve with δ, μ = 10−6,10−8,10−10,10−12 opttol =
p
δ

Unscale

Solve with δ, μ = 10−8,10−10,10−12 opttol =
p
δ

Exit if small relative change in obj
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Numerical Results
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Accuracy of solutions
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KKT factorizations
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QPBLUR pros and cons

min
,y

cT+ 1
2

TH+ 1
2δ

T+ 1
2μy

Ty A+ μy = b,  ≤  ≤ 

Advantages

Warm starts (any 0, any working set)

Any black-box LU or LDLT solver
(preferably separate L/U solves and no refinement)

LU should never report singularity (no KKT repair)

Simple algorithm (strict convexity, always feasible,
no primal degeneracy)

Disadvantages

Large regularization: many itns from cold start

Tiny regularization: risks ill-conditioned KKT
(but so far so good)
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no primal degeneracy)

Disadvantages

Large regularization: many itns from cold start

Tiny regularization: risks ill-conditioned KKT
(but so far so good)
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Penalty vs Augmented
Lagrangian
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Rethink QPBLUR

QP objective: ϕ() = cT+ 1
2

TH+ 1
2δ‖‖

2
2

We’ve been doing regularized QP:

min
,y

ϕ() + 1
2μ‖y‖

2
2

A+ μy = b,  ≤  ≤ 

≡ Penalty function:

min
ℓ≤≤

ϕ() + 1
2ρ‖b− A‖

2
2

(ρ = 1/μ)

Why not Augmented Lagrangian?:

min
ℓ≤≤

ϕ()− ŷT(b− A) + 1
2ρ‖b− A‖

2
2
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BCL method as in LANCELOT
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BCL Method (LANCELOT)

min ϕ() st c() = 0, ℓ ≤  ≤ 

Bound-constrained augmented Lagrangian method

L(, ŷ, ρ) = ϕ()− ŷTc() + 1
2ρ‖c()‖

2

Subproblem: min L(, ŷ, ρ) st ℓ ≤  ≤ 
Solve to get ̂ (optimality tol ω→ 0)

If ‖c(̂)‖ < η, update ŷ (feasibility tol η→ 0)

Otherwise, increase ρ
Repeat

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 22/30



Abstract Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results

BCL Method (LANCELOT)

min ϕ() st c() = 0, ℓ ≤  ≤ 

Bound-constrained augmented Lagrangian method
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BCL Method for QP

min


ϕ() st A = b, ℓ ≤  ≤ 

BCL subproblem

min
, r

L(, ŷ, ρ) = ϕ() + ŷTr + 1
2ρ‖r‖

2

A+ r = b, ℓ ≤  ≤ 

Solve subproblem to get ̂, r̂ (optimality tol ω→ 0)

If ‖r̂‖ < η, update ŷ (feasibility tol η→ 0)

Otherwise, increase ρ
Repeat
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QPBCL
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QPBCL: Active-set method for convex QP

AP =
�

Ak Nk
�

�

−(Hk + δ) ATk
Ak

1
ρ 

�

�

Δk
Δy

�

=

�

gk − ATky
1
ρ (ŷ− y) + r

�

Δr = 1
ρ (y+ Δy− ŷ)− r

Same system as QPBLUR – just different rhs

Still single phase

Still use LUSOL, MA57, UMFPACK, . . .

Still use Hanh’s block-LU updates
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Numerical Results
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Penalty and Regularization parameter
QPBCL allows for smaller ρ (hence larger μ ≡ 1/ρ)
compared to QPBLUR

0 10 20 30 40 50 60 70 80 90
10

−12

10
−11

10
−10

10
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10
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10
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10
−6

Regularization parameter for 90 problems
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QPBCL vs SQOPT

Compare QPBCL iterations and SQOPT minor iterations

There are 3 kinds of people: Those who can count,
and those who cannot.

— George Carlin
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Augmented Lagrangian methods for QP
Conn, Gould, and Toint (1992)
LANCELOT: A Fortran Package for Large-Scale Nonlinear
Optimization (Release A), Springer-Verlag

Nocedal and Wright (2006)
Chapter 17 of Numerical Optimization, Springer

Z. Dostál, A. Friedlander, and S. A. Santos (2003)
Augmented Lagrangians with adaptive precision control for
QP with simple bounds and equality constraints, SIOPT 13

M. P. Friedlander and S. Leyffer (2008)
Global and finite termination of a two-phase augmented
Lagrangian filter method for general QP, SISC 30

Philip Gill and Elizabeth Wong (2009–· · · )
Continuing Hanh’s f90 QPBLU for use in SNOPT
BCL approach for indefinite QP (2nd derivatives in SNOPT)
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