Numerical Optimization at SOL

ICME Seminar (CME 500) Stanford University, October 23, 2006

Michael Saunders
with help from
David Saunders and Holly Jin

Systems Optimization Laboratory (SOL)
Dept of Management Science \& Engineering
Stanford, CA 94305-4026
saunders@stanford.edu
dsaunders@mail.arc.nasa.gov hollyjin@stanford.edu

Abstract

Some well known software packages have been developed at SOL during the last 30 years. They include algorithms for sparse linear equations (SYMMLQ, MINRES, LSQR, LUSOL) and various optimization solvers (MINOS, NPSOL, QPOPT, SQOPT, SNOPT, PDCO, SpaseLoc). We give a personal history of these codes and some of their scientific applications, including optimal trajectories for aircraft, spacecraft, and autonomous vehicles.

Nonlinear Optimization

$$
\begin{array}{ll}
\underset{x \in R^{n}}{\operatorname{minimize}} & \phi(x) \\
\text { subject to } & \ell \leq\left(\begin{array}{c}
x \\
c(x) \\
A x
\end{array}\right) \leq u
\end{array}
$$

$\phi(x)$ nonlinear objective function
$c_{i}(x)$ nonlinear constraint functions
A sparse matrix
ℓ, u bounds
Assume functions are smooth with known gradients

Iterative Solvers for $A x=b$

Symmetric $A x=b$

A may be a sparse matrix or an operator for forming products $A v$

Solver	A		
CG	positive definite	Hestenes \& Stiefel 1952	
SYMMLQ	indefinite	Paige \& Saunders 1975 " " " " "	
MINRES	indefinite	Sou-Cheng Choi's thesis 2006	
MINRES-QLP	indefinite or singular	min \\|Ax-b\| ${ }^{2}$	

All based on the Lanczos process for reducing A to tridiagonal form

The Lanczos process for A, b

$$
\beta_{1}=\|b\| \quad v_{1}=b / \beta_{1} \quad \beta_{1} v_{1}=b
$$

The Lanczos process for A, b

$$
\begin{array}{lll}
\beta_{1}=\|b\| & v_{1}=b / \beta_{1} & \beta_{1} v_{1}=b \\
p_{1}=A v_{1} & \alpha_{1}=p_{1}^{T} v_{1} & \beta_{2} v_{2}=p_{1}-\alpha_{1} v_{1}
\end{array}
$$

The Lanczos process for A, b

$$
\begin{array}{lll}
\beta_{1}=\|b\| & v_{1}=b / \beta_{1} & \beta_{1} v_{1}=b \\
p_{1}=A v_{1} & \alpha_{1}=p_{1}^{T} v_{1} & \beta_{2} v_{2}=p_{1}-\alpha_{1} v_{1} \\
p_{2}=A v_{2} & \alpha_{2}=p_{2}^{T} v_{2} & \beta_{3} v_{3}=p_{2}-\alpha_{2} v_{2}-\beta_{2} v_{1}
\end{array}
$$

The Lanczos process for A, b

$$
\begin{array}{lll}
\beta_{1}=\|b\| & v_{1}=b / \beta_{1} & \beta_{1} v_{1}=b \\
p_{1}=A v_{1} & \alpha_{1}=p_{1}^{T} v_{1} & \beta_{2} v_{2}=p_{1}-\alpha_{1} v_{1} \\
p_{2}=A v_{2} & \alpha_{2}=p_{2}^{T} v_{2} & \beta_{3} v_{3}=p_{2}-\alpha_{2} v_{2}-\beta_{2} v_{1}
\end{array}
$$

Generates

$$
V_{k}=\left[\begin{array}{lll}
& & \\
v_{1} & \ldots & v_{k} \\
& & \\
& & \\
& & \\
& & \\
\alpha_{1} & \beta_{2} & \\
\beta_{2} & \alpha_{2} & \beta_{3} \\
& \ddots & \ddots \\
& & \beta_{k} \\
& & \\
& & \\
& & \beta_{k+1}
\end{array}\right], \quad \begin{gathered}
\\
\\
\end{gathered}
$$

The Lanczos process for A, b

$\beta_{1}=\|b\|$
$v_{1}=b / \beta_{1}$
$\beta_{1} v_{1}=b$
$p_{1}=A v_{1}$
$\alpha_{1}=p_{1}^{T} v_{1}$
$\beta_{2} v_{2}=p_{1}-\alpha_{1} v_{1}$
$p_{2}=A v_{2}$
$\alpha_{2}=p_{2}^{T} v_{2}$
$\beta_{3} v_{3}=p_{2}-\alpha_{2} v_{2}-\beta_{2} v_{1}$

Generates

$$
V_{k}=\left[\begin{array}{lll}
& & \\
v_{1} & \ldots & v_{k} \\
& & \\
& & \\
& & \\
& & \\
\alpha_{1} & \beta_{2} & \\
\beta_{2} & \alpha_{2} & \beta_{3} \\
& \ddots & \ddots \\
& & \beta_{k}
\end{array}\right], \alpha_{k} .
$$

such that

$$
A V_{k}=V_{k+1} H_{k}
$$

Using Lanczos for $A x=b$

$$
A V_{k}=V_{k+1} H_{k}
$$

Using Lanczos for $A x=b$

$$
A V_{k}=V_{k+1} H_{k}
$$

Let $x_{k}=V_{k} y_{k}$ for some $y_{k} \quad$ (we want $A x_{k} \approx b$)

$$
A x_{k}=V_{k+1} H_{k} y_{k}
$$

Using Lanczos for $A x=b$

$$
\begin{gathered}
A V_{k}=V_{k+1} H_{k} \\
\text { Let } x_{k}=V_{k} y_{k} \text { for some } y_{k} \quad\left(\text { we want } A x_{k} \approx b\right) \\
A x_{k}=V_{k+1} H_{k} y_{k}
\end{gathered}
$$

Remember that v_{1} is a multiple of b

Using Lanczos for $A x=b$

$$
A V_{k}=V_{k+1} H_{k}
$$

Let $x_{k}=V_{k} y_{k}$ for some $y_{k} \quad$ (we want $A x_{k} \approx b$)

$$
A x_{k}=V_{k+1} H_{k} y_{k}
$$

Remember that v_{1} is a multiple of b
CG, SYMMLQ, MINRES, MINRES-QLP make $H_{k} y_{k} \approx\left[\begin{array}{c}\times \\ 0 \\ \vdots \\ 0\end{array}\right]$
in various ways (Cholesky, LQ, QR, QLP on H_{k})

Applications

CG
$\min \phi(x)$

$$
H \Delta x=-g(x)
$$

SYMMLQ KKT systems $\quad\left(\begin{array}{cc}H & A^{T} \\ A & \end{array}\right)\binom{\Delta x}{\Delta y}=\binom{-g}{0}$

MINRES
KKT systems for those who like $\left\|r_{k}\right\|$ decreasing

MINRES-QLP

indefinite
singular

added reliability
$\min \|A x-b\|$

Unsymmetric or rectangular $A x \approx b$

Lanczos on

$$
\left(\begin{array}{cc}
\gamma I & A \\
A^{T} & \delta I
\end{array}\right), \quad\binom{b}{0}
$$

Unsymmetric or rectangular $A x \approx b$

Lanczos on

$$
\left(\begin{array}{cc}
\gamma I & A \\
A^{T} & \delta I
\end{array}\right), \quad\binom{b}{0}
$$

gives the Golub-Kahan process for reducing A to bidiagonal form:

Unsymmetric or rectangular $A x \approx b$

Lanczos on

$$
\left(\begin{array}{cc}
\gamma I & A \\
A^{T} & \delta I
\end{array}\right), \quad\binom{b}{0}
$$

gives the Golub-Kahan process for reducing A to bidiagonal form:

$$
\left.B_{k}=\left[\begin{array}{cccc}
\alpha_{1} & & & \\
\beta_{2} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right] \quad \text { (for all } \gamma, \delta\right)
$$

Used in LSQR for min $\|A x-b\|^{2} \quad$ (Paige \& Saunders 1982)

Unsymmetric or rectangular $A x \approx b$

Lanczos on

$$
\left(\begin{array}{cc}
\gamma I & A \\
A^{T} & \delta I
\end{array}\right), \quad\binom{b}{0}
$$

gives the Golub-Kahan process for reducing A to bidiagonal form:

$$
\left.B_{k}=\left[\begin{array}{cccc}
\alpha_{1} & & & \\
\beta_{2} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right] \quad \text { (for all } \gamma, \delta\right)
$$

Used in LSQR for min $\|A x-b\|^{2} \quad$ (Paige \& Saunders 1982)
QR factorization to solve $\min \left\|B_{k} y_{k}-\beta_{1} e_{1}\right\|^{2}$

Features

Estimates of $\left\|r_{k}\right\|,\left\|x_{k}\right\|,\|A\|, \operatorname{cond}(A)$

Stopping rules

$$
\frac{\left\|r_{k}\right\|}{\|A\|\left\|x_{k}\right\|+\|b\|} \leq \text { tol } \quad \text { or } \quad \frac{\left\|A^{T} r_{k}\right\|}{\|A\|\left\|r_{k}\right\|} \leq \text { tol }
$$

Not just

$$
\left\|r_{k}\right\| /\|b\| \leq \text { tol }
$$

$$
\left(r_{k}=b-A x_{k}\right)
$$

LSQR Applications

$\min \|A x-b\|$

Oil exploration (Schlumberger), $A \approx 20 \mathrm{M} \times 1 \mathrm{M}$, complex LSQR could keep all the world's computers busy

LSQR Applications

$\min \|A x-b\|$
Oil exploration (Schlumberger), $A \approx 20 \mathrm{M} \times 1 \mathrm{M}$, complex
LSQR could keep all the world's computers busy

$\min \|A x-b\|^{2}+\lambda\|x\|_{1}$
MRI (Stanford), geophysics (UBC), $A \approx 1 \mathrm{M} \times 20 \mathrm{M}$

LSQR Applications

$\min \|A x-b\|$
Oil exploration (Schlumberger), $A \approx 20 \mathrm{M} \times 1 \mathrm{M}$, complex LSQR could keep all the world's computers busy
$\min \|A x-b\|^{2}+\lambda\|x\|_{1}$
MRI (Stanford), geophysics (UBC), $A \approx 1 \mathrm{M} \times 20 \mathrm{M}$

Inside PDCO

Constraint matrix A may be an operator

LUSOL: Sparse direct solver

LUSOL

Maintaining LU factors of a general sparse matrix A Gill, Murray, Saunders \& Wright 1987

Features

Square or rectangular A for basis selection, preconditioning
Rank-revealing LU for "basis repair"
Stable updates
Bartels-Golub-Reid style

Code contributors

Saunders (1986-present)
following Duff, Reid, Zlatev, Suhl and Suhl
Matlab Fmex
C (for Ip_solve)
Matlab Cmex

Kjell Eikland (2004-present)
Yin Zhang (2005-present)

LUSOL

$$
A=\square \text { or } \square \text { or } \square=L U
$$

$\operatorname{FACTOR} \quad[L, U, \mathrm{p}, \mathrm{q}]=\operatorname{luSOL}(A)$
$L(\mathrm{p}, \mathrm{p})=乌$
L well-conditioned

UPDATE Add, replace, delete a column $L \leftarrow L M_{1} M_{2} \ldots$ Add, replace, delete a row $\quad M_{j}$ well-conditioned Add a rank-one matrix

SOLVE

$$
L x=y, L^{T} x=y, U x=y, U^{T} x=y, \quad A x=y, A^{T} x=y
$$

MULTIPLY

$$
x=L y, x=L^{T} y, x=U y, x=U^{T} y, x=A y, x=A^{T} y
$$

LuSOL's Bartels-Golub updates

à la Reid 1976, 1982, 2004 LA05, LA15

$$
U^{\prime \prime} \equiv P^{T} U^{\prime} P=
$$

- Avoid Hessenberg matrix
- Use cyclic permutation P
- Eliminate \times using $M_{j}=\left(\begin{array}{ll}1 & \\ \mu & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & \\ \mu & 1\end{array}\right)\left(\begin{array}{ll} & 1 \\ 1 & \end{array}\right)$

LP and QP

LSSOL

Dense Constrained Least Squares

$$
\min \|X x-b\|^{2} \quad \text { st } \quad l \leq\binom{ x}{A x} \leq u
$$

- 1971: Josef Stoer
- 1986: LSSOL: Gill, Hammarling, Murray, Saunders \& Wright
- Orthogonal factors

- The only method that avoids forming $X^{T} X$
- We don't know how for sparse X

QPOPT

Dense LP, QP (Gill, Murray, Saunders, Wright 1978, 1984, 1995)

$$
\min c^{T} x+\frac{1}{2} x^{T} H x \quad \text { st } \quad l \leq\binom{ x}{A x} \leq u
$$

- User routine computes $H x$ for given $x \quad H$ may be indefinite
- Orthogonal factors $A_{k} Q=\left(\begin{array}{ll}L & 0\end{array}\right), \quad Q=\left(\begin{array}{ll}Y & Z\end{array}\right)$
- Dense reduced Hessian $Z^{T} H Z=R^{T} R$

- Only \otimes needs care when Z, R get bigger

SQOPT

Sparse LP, QP (G, m, \& s 1997)

$$
\min c^{T} x+\frac{1}{2}\left(x-x_{0}\right)^{T} H\left(x-x_{0}\right) \quad \text { st } \quad l \leq\binom{ x}{A x} \leq u
$$

- User routine computes $H x \quad H$ semidefinite
- Allows elastic bounds on variables and constraints

SQOPT

Sparse LP, QP (G, M, \& S 1997)

$$
\min c^{T} x+\frac{1}{2}\left(x-x_{0}\right)^{T} H\left(x-x_{0}\right) \quad \text { st } \quad l \leq\binom{ x}{A x} \leq u
$$

- User routine computes $H x \quad H$ semidefinite
- Allows elastic bounds on variables and constraints

Applications

In SNOPT $H=D+\sum v_{j} v_{j}^{T}-w_{j} w_{j}^{T} \quad$ (Limited-memory quasi-Newton)

SQOPT

Sparse LP, QP (G, m, \& s 1997)

$$
\min c^{T} x+\frac{1}{2}\left(x-x_{0}\right)^{T} H\left(x-x_{0}\right) \quad \text { st } \quad l \leq\binom{ x}{A x} \leq u
$$

- User routine computes $H x \quad H$ semidefinite
- Allows elastic bounds on variables and constraints

Applications

In SNOPT $H=D+\sum v_{j} v_{j}^{T}-w_{j} w_{j}^{T} \quad$ (Limited-memory quasi-Newton)
In Fused Lasso (Tibshirani, S et al 2004) $\quad H x=X^{T}(X x) \quad$ (not ideal)

$$
\min _{\beta}\|X \beta-y\|^{2} \text { st } \sum\left|\beta_{j}\right| \leq s_{1} \quad \text { and } \quad \sum\left|\beta_{j}-\beta_{j-1}\right| \leq s_{2}
$$

Constraints on $\|\beta\|_{1}$ and $\|L \beta\|_{1} \Rightarrow$ many $\beta_{j}=0$ and $\beta_{j}=\beta_{j-1}$

PDCO

Primal-Dual IPM for (Separable) Convex Opt MATLAB (Saunders 1997-2006, Kim, Tenenblat)

- Nominal problem

$$
\begin{array}{ll}
\min & \phi(x) \\
\text { st } \quad A x=b, \quad \ell \leq x \leq u
\end{array}
$$

- Regularized problem

$$
\begin{array}{ll}
\min & \phi(x)+\frac{1}{2}\left\|D_{1} x\right\|^{2}+\frac{1}{2}\|r\|^{2} \\
\text { st } \quad A x+D_{2} r=b, \quad \ell \leq x \leq u
\end{array}
$$

$\nabla^{2} \phi(x), \quad D_{1} \succeq 0, D_{2} \succ 0$, all diagonal

PDCO Applications

- Basis Pursuit (Chen, Donoho, \& S 2001)

$$
\min \lambda\|x\|_{1}+\frac{1}{2}\|A x-b\|^{2}
$$

cf LARS (Hastie et al), Homotopy (Osborne et al 1999, Donoho \& Tsaig 2006)

- Image reconstruction (Kim thesis, 2002)

$$
\text { Non-negative least squares: } \quad \min \|A x-b\|^{2} \quad \text { st } x \geq 0
$$

- Maximum entropy (s \& Tomlin, 2003)

$$
\min \sum x_{j} \log x_{j} \text { st } A x=b, x \geq 0
$$

- Zoom strategy for warm-starting interior methods (S \& Tenenblat, 2006)

PDCO on Web Traffic entropy problem

A is a 51000×662000 network matrix, $\mathrm{nnz}(A)=2$ million

Itn	mu	step	Pinf	Dinf	Cinf	Objective	center	atol	LSQR Inexact	
0			2.5	1.1	-6.7	$-1.3403720 \mathrm{e}+01$	1.0			
1	-5.0	0.267	2.4	1.1	-5.1	$-1.3321172 \mathrm{e}+01$	242.0	-3.0	5	0.001
2	-5.1	0.195	2.3	1.0	-5.3	$-1.3220658 \mathrm{e}+01$	36.9	-3.0	5	0.001
3	-5.2	0.431	2.1	0.9	-5.2	$-1.2942743 \mathrm{e}+01$	122.9	-3.0	5	0.001
4	-5.5	0.466	1.9	0.7	-5.3	$-1.2711643 \mathrm{e}+01$	41.8	-3.0	6	0.001
5	-5.7	0.671	1.4	0.2	-5.5	$-1.2492935 \mathrm{e}+01$	71.8	-3.0	9	0.001
6	-6.0	1.000	-0.0	-0.8	-5.8	$-1.2367004 \mathrm{e}+01$	2.7	-3.0	10	0.001
7	-6.0	1.000	-0.1	-2.3	-6.0	$-1.2368200 \mathrm{e}+01$	1.1	-3.0	9	0.002
8	-6.0	1.000	-1.1	-4.7	-6.0	$-1.2367636 \mathrm{e}+01$	1.0	-3.0	2	0.009
9	-6.0	1.000	-1.3	-5.7	-6.0	$-1.2367655 \mathrm{e}+01$	1.0	-3.0	7	0.015
10	-6.0	1.000	-2.5	-7.6	-6.0	$-1.2367607 e+01$	1.0	-3.0	2	0.004
11	-6.0	1.000	-3.7	-8.6	-6.0	$-1.2367609 \mathrm{e}+01$	1.0	-3.5	8	0.004
12	-6.0	1.000	-5.9	-11.0	-6.0	$-1.2367609 \mathrm{e}+01$	1.0	-4.7	11	0.000

PDitns =
12 LSQRitns $=79$ time $\quad 101.4$
(MATLAB) 22.4 (C++)

Nonlinear constraints

Lagrangians

$$
\begin{array}{ll}
\mathrm{NP} \quad & \min \phi(x) \\
& \text { st } \quad c(x)=0
\end{array}
$$

Penalty Function

$$
\min \phi(x) \quad+\frac{1}{2} \rho_{k}\|c(x)\|^{2}
$$

Augmented Lagrangian

$$
\min \phi(x)-y_{k}^{T} c(x)+\frac{1}{2} \rho_{k}\|c(x)\|^{2}
$$

Lagrangian in a Subspace

$$
\min \phi(x)-y_{k}^{T} c(x)+\frac{1}{2} \rho_{k}\|c(x)\|^{2}
$$

st linearized constraints

NPSOL

Dense NLP (G, m, s \& w 1986)

- Dense SQP method

QP subproblems solved by LSSOL

- Search direction $(\Delta x, \Delta y)$
QP_{k} min quadratic approx' n to Lagrangian st linearized constraints
- Merit function

Linesearch on augmented Lagrangian:

$$
\min _{\alpha} L\left(x_{k}+\alpha \Delta x, \quad y_{k}+\alpha \Delta y, \quad \rho_{k}\right)
$$

Aerospace Applications

NPSOL

- Philip Gill (UCSD)

Rocky Nelson (McDonnell-Douglas and Boeing)

- F-4 Phantom minimum time-to-climb
- DC-X minimum-fuel landing maneuver

NPSOL, SNOPT

- David Saunders (Eloret at NASA Ames Research Center)
- HSCT supersonic airliner
- Future shuttle no-ditch trajectory optimization
- Shape of Crew Exploration Vehicle heat shield

MINOS

General sparse NLP

- 1975: Bruce Murtagh and MS NZ and SOL
- Sparse linear constraints, nonlinear objective

Reduced-gradient method (an active-set method)
LP + unconstrained optimization (simplex + quasi-Newton)

- 1983: Sparse nonlinear constraints

Sydney and SOL, extended Robinson's method 1972

- Assume functions and gradients are cheap
- Still widely used in GAMS and AMPL

SNOPT

Sparse NLP (G, m, \& S 2003; SIAM Review SIGESt 2005)

- Sparse SQP method QP subproblems solved by SQOPT
- Search direction $(\Delta x, \Delta y)$
QP_{k} min limited-memory approx'n to Lagrangian st linearized constraints
- Merit function

Linesearch on augmented Lagrangian:

$$
\min _{\alpha} L\left(x_{k}+\alpha \Delta x, \quad y_{k}+\alpha \Delta y, \quad \rho_{k}\right)
$$

Infeasible Problems

or infeasible subproblems

SNOPT's solution - modify the original problem:

$$
\min \phi(x)+\sigma\|c(x)\|_{1}
$$

$$
\begin{aligned}
& \mathrm{NP}(\sigma) \quad \min \phi(x)+\sigma e^{T}(v+w) \\
& \quad \text { st } \quad c(x)+v-w=0, \quad v, w \geq 0
\end{aligned}
$$

Implemented by elastic bounds on QP slacks

SNOPT paper

revised for SIAM Review 2005

- LUSOL: Threshold Rook Pivoting for Basis Repair
- SYMMLQ on $Z^{T} H Z d=-Z^{T} g_{\mathrm{QP}}$ when many superbasics
- 1000 CUTEr and COPS 3.0 test problems
- Up to 40,000 constraints and variables
- Up to 20,000 superbasics (degrees of freedom)
- 900 problems solved successfully

SpaseLoc

Localization of Wireless Sensor Networks

MATLAB (Holly Jin's thesis 2005, SIAM J. Opt 2006)
minimize some norm of $\alpha_{i j}$

$$
\begin{aligned}
\left\|x_{i}-x_{j}\right\|^{2}+\alpha_{i j} & =d_{i j}^{2} \quad(\text { some } i, j) \\
\left\|x_{i}-x_{j}\right\|^{2} & \geq r_{i j}^{2} \quad(\text { most } i, j) \\
x_{k} & =a_{k} \quad(\text { a few } k) \text { anchors }
\end{aligned}
$$

$d_{i j}$ noisy distance data $\quad a_{k}$ known positions of anchors
$r_{i j}$ radio ranges
x_{i} sensors' positions (to be estimated)
$x_{i} \in R^{2}$ or R^{3}

Localization of Wireless Sensor Networks

- Biswas and Ye (2003a): SDP relaxation

DSDP 2.0
50 nodes: a few seconds 200 nodes: too much time and storage

- Biswas and Ye (2003b): Parallel SDP subproblems

DSDP 2.0 4000 nodes: 2 mins

- SpaseLoc (2004): Sequential SDP subproblems DSDP 5.0 4000 nodes: 25 secs
- SpaseLoc (2006):

10000 nodes: 2 mins
(DSDP $=$ SDP solver of Benson and Ye)

Full SDP vs. SpaseLoc

Localization errors for full SDP model and SpaseLoc

Two demos by Holly Jin

SpaseLoc Wireless sensor localization

SNOPT CurveSmoother for the Stanford Racing Team

Summary

Key concepts for Nonlinear Optimization

- Stable dense and sparse matrix factorizations
- Minimize augmented Lagrangian in (relaxed) subspace

Key concepts for Nonlinear Optimization

- Stable dense and sparse matrix factorizations
- Minimize augmented Lagrangian in (relaxed) subspace

Software

- SYMMLQ, MINRES, MINRES-QLP, LSQR (F77, MATLAB)
- LUSOL (F77) engine for MINOS, SNOPT
- LUSOL (C version) now in open source system Ip_solve
- MINOS, SNOPT in GAMS, AMPL, NEOS
- TOMLAB/SOL (Holmström) for Matlab users
- SNOPT has its own Matlab interface
- PDCO (Matlab) min $\phi(x)$ st $A x=b+$ bounds (A an operator)
- SpaseLoc (Matlab) Scalable sensor localization

Other SOL Research

- Uday Shanbhag (with Walter Murray)

Stochastic nonlinear programming, equilibrium programming, nonlinear facility location problems (Tucker Prize 2006)

- Che-Lin Su (with Dick Cottle)

MPEC, EPEC (math programs with equilibrium constraints)

- Samantha Infeld (with Walter Murray)

Trajectory optimization for spacecraft

- Yinyu Ye

Large-scale (dual) SDP
Wireless sensor network localization
Other graph realization problems
...!!

- http://www.stanford.edu/group/SOL/dissertations.html

The Lighter Side of Optimization

In New Zealand, the equivalent of the TV guide is called The Listener. Every week a Life in New Zealand column publishes clippings describing local events. The first sender receives a $\$ 5$ Lotto Lucky Dip. The following clippings illustrate some characteristics of optimization problems in the real(?) world.

The Lighter Side of Optimization

In New Zealand, the equivalent of the TV guide is called The Listener. Every week a Life in New Zealand column publishes clippings describing local events. The first sender receives a $\$ 5$ Lotto Lucky Dip. The following clippings illustrate some characteristics of optimization problems in the real(?) world.

Robust solutions
RECOVERY CARE gives you financial protection from specified sudden illness. You get cash if you live ... and cash if you don't.

No objective function
People have been marrying and bringing up children for centuries now. Nothing has ever come of it. (Evening Post, 1977)

Multiple objectives
"I had the choice of running over my team-mate or going onto the grass, so I ran over my team-mate then ran onto the grass", Rymer recalled later.

Obvious objective
He said the fee was increased from $\$ 5$ to $\$ 20$ because some people had complained it was not worth writing a cheque for \$5.

Equilibrium condition

"The pedestrian count was not considered high enough to justify an overbridge", Helen Ritchie said. "And if there continues to be people knocked down on the crossing, the number of pedestrians will dwindle."

Constraints
ENTERTAINERS, DANCE BAND, etc. Vocalist wanted for New Wave rock band, must be able to sing.

DRIVING INSTRUCTOR Part-time position. No experience necessary.

HOUSE FOR REMOVAL in excellent order, $\$ 800$. Do not disturb tenant.

Exactly one feasible solution
MATTHEWS RESTAURANT, open 365 nights. Including Mondays.

Buying your own business might mean working 24 hours a day. But at least when you're self-employed you can decide which 24.

Peters: Oh, it's not that I don't want to be helpful. But in this case the answer is that I don't want to be helpful. (Listener, 1990)

Sergeant J Johnston said when Hall was stopped by a police patrol the defendant denied being the driver, but after it was pointed out he was the only person in the car he admitted to being the driver.

His companion was in fact a transvestite, X , known variously as X or X.

Bound your variables
By the way, have you ever seen a bird transported without the use of a cage? If you don't use a cage it will fly away and maybe the same could happen to your cat. Mark my words, we have seen it happen.

Redundant constraints
If you are decorating before the baby is born, keep in mind that you may have a boy or a girl.

EAR PIERCING while you wait.

Infeasible constraints
I chose to cook myself to be quite sure what was going into the meals.

We apologize to Wellington listeners who may not be receiving this broadcast.

The model 200 is British all the way from its stylish roofline to its French-made Michelin tyres.
(NZ Car Magazine)
BALD, 36 yr old, handsome male seeking social times and fun with bald 22 years and upwards female

Napier Courier, 28/2/02
\geq or \leq ?
BUY NOW! At $\$ 29.95$ these jeans will not last long!
NOT TOO GOOD TO BE TRUE! We can sell your home for much less than you'd expect!

The BA 146's landing at Hamilton airport was barely audible above airport background noise, which admittedly included a Boeing 737 idling in the foreground.

Yesterday Mr Palmer said "The Australian reports are not correct that I've seen, although I can't say that I've seen them".

It will be a chance for all women of this parish to get rid of anything that is not worth keeping but is too good to throw away. Don't forget to bring your husbands.
\geq or \leq ?
The French were often more blatant and more active, particularly prop X and number eight Y , but at least one All Black was seen getting his retaliation in first.

WHAT EVERY TEENAGER SHOULD KNOW - PARENTS ONLY

"Love Under 17" Persons under 18 not admitted.
"Keeping young people in the dark would not stop them having sex-in fact it usually had the opposite effect," she said.

NELSON, approximately 5 minutes from airport. Golf course adjacent. Sleeps seven all in single beds. Ideal for honeymoons.

Hard or soft constraints
The two have run their farm as equal partners for 10 years, with Jan in charge of grass management, Lindsay looking after fertilizer, and both working in the milk shed. "We used to have our staff meetings in bed. That got more difficult when we employed staff!"

Elastic constraints
The Stationary Engine Drivers Union is planning rolling stoppages.

When this happens there are set procedures to be followed and they are established procedures, provided they are followed.

APATHY RAMPANT? Not in Albany-the closing of the electoral rolls saw fully 103.49 percent of the area's eligible voters signed up.

Auckland City ratepayers are to be reminded that they can pay their rates after they die.

He was remanded in custody to appear again on Tuesday if he is still in the country.

Convergence

"There is a trend to open libraries when people can use them", he says.

Mayor for 15 years, Sir Dove-Myer wants a final three years at the helm "to restore sanity and stability in the affairs of the city".

Applications

(Yachting) It is not particularly dangerous, as it only causes vomiting, hot and cold flushes, diarrhoea, muscle cramping, paralysis, and sometimes death ... (Boating New Zealand, 1990)
(Ecological models) CAR POLLUTION SOARS IN CHRISTCHURCH—BUT CAUSE REMAINS MYSTERY

Nappies wanted for window cleaning. Must be used.
(Optimal control) Almost half the women seeking fertility investigations at the clinic knew what to do to get pregnant

Applications

(Yachting) It is not particularly dangerous, as it only causes vomiting, hot and cold flushes, diarrhoea, muscle cramping, paralysis, and sometimes death ... (Boating New Zealand, 1990
(Ecological models) CAR POLLUTION SOARS IN CHRISTCHURCH—BUT CAUSE REMAINS MYSTERY

Nappies wanted for window cleaning. Must be used.
(Optimal control) Almost half the women seeking fertility investigations at the clinic knew what to do to get pregnant, but not when to do it.

Integer variables 0 or 1 or $2 \ldots$

Integer variables

0 or 1 is sometimes not optimal
When Taupo police arrested a Bay of Plenty man for driving over the limit, they discovered he was a bigamist.

Nelson Mail, 5/04

Always room for improvement
The owner Craig Andrew said the three main qualities for the job were speed, agility and driving skills. "Actually, Merv has none of those, but he's still the best delivery boy we've had", he said.

