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Abstract

Some well known software packages have been developed at

SOL during the last 30 years. They include algorithms for

sparse linear equations (SYMMLQ, MINRES, LSQR, LUSOL)

and various optimization solvers (MINOS, NPSOL, QPOPT,

SQOPT, SNOPT, PDCO, SpaseLoc). We give a personal

history of these codes and some of their scientific applications,

including optimal trajectories for aircraft, spacecraft, and

autonomous vehicles.
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Nonlinear Optimization

minimize
x∈Rn

φ(x)

subject to ` ≤









x

c(x)

Ax









≤ u

φ(x) nonlinear objective function

ci(x) nonlinear constraint functions

A sparse matrix

`, u bounds

Assume functions are smooth with known gradients
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Iterative Solvers for Ax = b
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Symmetric Ax = b
A may be a sparse matrix

or an operator for forming products Av

Solver A

CG positive definite Hestenes & Stiefel 1952

SYMMLQ indefinite Paige & Saunders 1975

MINRES indefinite ” ” ” ”

MINRES-QLP indefinite or singular Sou-Cheng Choi’s thesis 2006

min ‖Ax− b‖2

All based on the Lanczos process
for reducing A to tridiagonal form
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The Lanczos process for A, b
β1 = ‖b‖ v1 = b/β1 β1v1 = b

p1 = Av1 α1 = pT1v1 β2v2 = p1 − α1v1

p2 = Av2 α2 = pT2v2 β3v3 = p2 − α2v2 − β2v1

Generates

Vk =























v1 . . . vk























, Hk =























α1 β2

β2 α2 β3

. . .
. . .

. . .

βk αk

βk+1























such that AVk = Vk+1Hk
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Using Lanczos for Ax = b

AVk = Vk+1Hk

Let xk = Vkyk for some yk (we want Axk ≈ b)

Axk = Vk+1Hkyk

Remember that v1 is a multiple of b

CG, SYMMLQ, MINRES, MINRES-QLP make Hkyk ≈













×

0
...

0













in various ways (Cholesky, LQ, QR, QLP on Hk)
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Applications

CG minφ(x) H∆x = −g(x)

SYMMLQ KKT systems

(

H AT

A

)(

∆x

∆y

)

=

(

−g

0

)

MINRES KKT systems for those who like ‖rk‖ decreasing

MINRES-QLP indefinite added reliability

singular min ‖Ax− b‖
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Unsymmetric or rectangular Ax ≈ b
Lanczos on

(

γI A

AT δI

)

,

(

b

0

)

gives the Golub-Kahan process for reducing A to bidiagonal form:

AVk = Uk+1Bk Bk =























α1

β2 α2

. . .
. . .

βk αk

βk+1























(for all γ, δ)

Used in LSQR for min ‖Ax− b‖2 (Paige & Saunders 1982)

QR factorization to solve min ‖Bkyk − β1e1‖
2
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Features

Estimates of ‖rk‖, ‖xk‖, ‖A‖, cond(A)

Stopping rules

‖rk‖

‖A‖‖xk‖+ ‖b‖
≤ tol or

‖ATrk‖

‖A‖‖rk‖
≤ tol

Not just ‖rk‖/‖b‖ ≤ tol (rk = b− Axk)
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LSQR Applications

min ‖Ax− b‖
Oil exploration (Schlumberger), A ≈ 20M× 1M, complex
LSQR could keep all the world’s computers busy

min ‖Ax− b‖2 + λ‖x‖1
MRI (Stanford), geophysics (UBC), A ≈ 1M× 20M

Inside PDCO

Constraint matrix A may be an operator
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LUSOL: Sparse direct solver
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LUSOL

Maintaining LU factors of a general sparse matrix A
Gill, Murray, Saunders & Wright 1987

Features
Square or rectangular A for basis selection, preconditioning

Rank-revealing LU for“basis repair”

Stable updates Bartels-Golub-Reid style

Code contributors
F77 Saunders (1986–present)

following Duff, Reid, Zlatev, Suhl and Suhl

Matlab Fmex Michael O’Sullivan (1999–present)

C (for lp solve) Kjell Eikland (2004–present)

Matlab Cmex Yin Zhang (2005–present)
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LUSOL

A = or or = LU

FACTOR [L,U,p,q] = luSOL(A) L(p,p) = @
@@

L well-conditioned

UPDATE Add, replace, delete a column L← LM1M2 . . .
Add, replace, delete a row Mj well-conditioned
Add a rank-one matrix

SOLVE Lx = y, LTx = y, Ux = y, UTx = y, Ax = y, ATx = y

MULTIPLY x = Ly, x = LTy, x = Uy, x = UTy, x = Ay, x = ATy
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LUSOL’s Bartels-Golub updates

à la Reid 1976, 1982, 2004 LA05, LA15

U ′ =

@
@
@
@
@
@@

c
c

c
← p

← `

x x
U ′′ ≡ P TU ′P =

@
@
@
@
@
@@

x x

• Avoid Hessenberg matrix

• Use cyclic permutation P

• Eliminate x using Mj =

(

1

µ 1

)

or

(

1

µ 1

)(

1

1

)
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LP and QP
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LSSOL

Dense Constrained Least Squares

min ‖Xx− b‖2 st l ≤

(

x

Ax

)

≤ u

• 1971: Josef Stoer

• 1986: LSSOL: Gill, Hammarling, Murray, Saunders & Wright

• Orthogonal factors
PXQ =

AkQ =

@
@

@
@@

• The only method that avoids forming XTX

• We don’t know how for sparse X
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QPOPT

Dense LP, QP (Gill, Murray, Saunders, Wright 1978, 1984, 1995)

min cTx+ 1
2x

THx st l ≤

(

x

Ax

)

≤ u

• User routine computes Hx for given x H may be indefinite

• Orthogonal factors AkQ = (L 0), Q = (Y Z)

• Dense reduced Hessian ZTHZ = RTR

Z = R = @
@
@⊗

• Only ⊗ needs care when Z, R get bigger
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SQOPT

Sparse LP, QP (G, M, & S 1997)

min cTx+ 1
2(x− x0)

TH(x− x0) st l ≤

(

x

Ax

)

≤ u

• User routine computes Hx H semidefinite

• Allows elastic bounds on variables and constraints @ ¡
`j uj

Applications

In SNOPT H = D +
∑

vjv
T
j − wjw

T
j (Limited-memory quasi-Newton)

In Fused Lasso (Tibshirani, S et al 2004) Hx = XT (Xx) (not ideal)

min
β
‖Xβ − y‖2 st

∑

|βj | ≤ s1 and
∑

|βj − βj−1| ≤ s2

Constraints on ‖β‖1 and ‖Lβ‖1 ⇒ many βj = 0 and βj = βj−1
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PDCO

Primal-Dual IPM for (Separable) Convex Opt
Matlab (Saunders 1997–2006, Kim, Tenenblat)

• Nominal problem

min φ(x)

st Ax = b, ` ≤ x ≤ u

• Regularized problem

min φ(x) + 1
2‖D1x‖

2 + 1
2‖r‖

2

st Ax+D2r = b, ` ≤ x ≤ u

∇2φ(x), D1 º 0, D2 Â 0, all diagonal A can be an operator
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PDCO Applications

• Basis Pursuit (Chen, Donoho, & S 2001)

minλ‖x‖1 +
1
2‖Ax− b‖2

cf LARS (Hastie et al), Homotopy (Osborne et al 1999, Donoho & Tsaig 2006)

• Image reconstruction (Kim thesis, 2002)

Non-negative least squares: min ‖Ax− b‖2 st x ≥ 0

• Maximum entropy (S & Tomlin, 2003)

min
∑

xj log xj st Ax = b, x ≥ 0

• Zoom strategy for warm-starting interior methods
(S & Tenenblat, 2006)
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PDCO on Web Traffic entropy problem

A is a 51000× 662000 network matrix, nnz(A) = 2 million

Itn mu step Pinf Dinf Cinf Objective center atol LSQR Inexact

0 2.5 1.1 -6.7 -1.3403720e+01 1.0

1 -5.0 0.267 2.4 1.1 -5.1 -1.3321172e+01 242.0 -3.0 5 0.001

2 -5.1 0.195 2.3 1.0 -5.3 -1.3220658e+01 36.9 -3.0 5 0.001

3 -5.2 0.431 2.1 0.9 -5.2 -1.2942743e+01 122.9 -3.0 5 0.001

4 -5.5 0.466 1.9 0.7 -5.3 -1.2711643e+01 41.8 -3.0 6 0.001

5 -5.7 0.671 1.4 0.2 -5.5 -1.2492935e+01 71.8 -3.0 9 0.001

6 -6.0 1.000 -0.0 -0.8 -5.8 -1.2367004e+01 2.7 -3.0 10 0.001

7 -6.0 1.000 -0.1 -2.3 -6.0 -1.2368200e+01 1.1 -3.0 9 0.002

8 -6.0 1.000 -1.1 -4.7 -6.0 -1.2367636e+01 1.0 -3.0 2 0.009

9 -6.0 1.000 -1.3 -5.7 -6.0 -1.2367655e+01 1.0 -3.0 7 0.015

10 -6.0 1.000 -2.5 -7.6 -6.0 -1.2367607e+01 1.0 -3.0 2 0.004

11 -6.0 1.000 -3.7 -8.6 -6.0 -1.2367609e+01 1.0 -3.5 8 0.004

12 -6.0 1.000 -5.9 -11.0 -6.0 -1.2367609e+01 1.0 -4.7 11 0.000

PDitns = 12 LSQRitns = 79 time = 101.4 (MATLAB)

22.4 (C++)
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Nonlinear constraints
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Lagrangians

NP min φ(x)

st c(x) = 0

Penalty Function

min φ(x) + 1
2ρk‖c(x)‖

2

Augmented Lagrangian

min φ(x)− yk
Tc(x) + 1

2ρk‖c(x)‖
2

Lagrangian in a Subspace

min φ(x)− yk
Tc(x) + 1

2ρk‖c(x)‖
2

st linearized constraints
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NPSOL

Dense NLP (G, M, S & W 1986)

• Dense SQP method
QP subproblems solved by LSSOL

• Search direction (∆x,∆y)

QPk min quadratic approx’n to Lagrangian

st linearized constraints

• Merit function
Linesearch on augmented Lagrangian:

min
α

L(xk + α∆x, yk + α∆y, ρk)
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Aerospace Applications

NPSOL

• Philip Gill (UCSD)
Rocky Nelson (McDonnell-Douglas and Boeing)

• F-4 Phantom minimum time-to-climb

• DC-X minimum-fuel landing maneuver

NPSOL, SNOPT

• David Saunders (Eloret at NASA Ames Research Center)

• HSCT supersonic airliner

• Future shuttle no-ditch trajectory optimization

• Shape of Crew Exploration Vehicle heat shield
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MINOS

General sparse NLP

• 1975: Bruce Murtagh and MS
NZ and SOL

• Sparse linear constraints, nonlinear objective
Reduced-gradient method (an active-set method)

LP + unconstrained optimization (simplex + quasi-Newton)

• 1983: Sparse nonlinear constraints
Sydney and SOL, extended Robinson’s method 1972

• Assume functions and gradients are cheap

• Still widely used in GAMS and AMPL
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SNOPT

Sparse NLP (G, M, & S 2003; SIAM Review SIGEST 2005)

• Sparse SQP method
QP subproblems solved by SQOPT

• Search direction (∆x,∆y)

QPk min limited-memory approx’n to Lagrangian

st linearized constraints

• Merit function
Linesearch on augmented Lagrangian:

min
α

L(xk + α∆x, yk + α∆y, ρk)
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Infeasible Problems
or infeasible subproblems

SNOPT’s solution – modify the original problem:

min φ(x) + σ‖c(x)‖1

NP(σ) min φ(x) + σeT(v + w)

st c(x) + v − w = 0, v, w ≥ 0

Implemented by elastic bounds on QP slacks
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SNOPT paper
revised for SIAM Review 2005

• LUSOL: Threshold Rook Pivoting for Basis Repair

• SYMMLQ on ZTHZd = −ZTgQP when many superbasics

• 1000 CUTEr and COPS 3.0 test problems

• Up to 40,000 constraints and variables

• Up to 20,000 superbasics (degrees of freedom)

• 900 problems solved successfully

Numerical Optimization at SOL – p. 30/52



SpaseLoc

Localization of Wireless Sensor Networks
Matlab (Holly Jin’s thesis 2005, SIAM J. Opt 2006)

minimize some norm of αij

‖xi − xj‖
2 + αij = d2

ij (some i, j)

‖xi − xj‖
2 ≥ r2

ij (most i, j)

xk = ak (a few k) anchors

dij noisy distance data ak known positions of anchors
rij radio ranges xi sensors’ positions (to be estimated)

xi ∈ R
2 or R3
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Localization of Wireless Sensor Networks

• Biswas and Ye (2003a): SDP relaxation DSDP 2.0

50 nodes: a few seconds
200 nodes: too much time and storage

• Biswas and Ye (2003b): Parallel SDP subproblems DSDP 2.0

4000 nodes: 2 mins

• SpaseLoc (2004): Sequential SDP subproblems DSDP 5.0

4000 nodes: 25 secs

• SpaseLoc (2006):
10000 nodes: 2 mins

(DSDP = SDP solver of Benson and Ye)
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Full SDP vs. SpaseLoc
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Localization errors for full SDP model and SpaseLoc
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Two demos by Holly Jin

SpaseLoc Wireless sensor localization

SNOPT CurveSmoother for the Stanford Racing Team
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Summary
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Key concepts for Nonlinear Optimization

• Stable dense and sparse matrix factorizations

• Minimize augmented Lagrangian in (relaxed) subspace

Software

• SYMMLQ, MINRES, MINRES-QLP, LSQR (F77, Matlab)

• LUSOL (F77) engine for MINOS, SNOPT

• LUSOL (C version) now in open source system lp solve

• MINOS, SNOPT in GAMS, AMPL, NEOS

• TOMLAB/SOL (Holmström) for Matlab users

• SNOPT has its own Matlab interface

• PDCO (Matlab) min φ(x) st Ax = b + bounds (A an operator)

• SpaseLoc (Matlab) Scalable sensor localization
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Other SOL Research

• Uday Shanbhag (with Walter Murray)
Stochastic nonlinear programming, equilibrium programming,
nonlinear facility location problems (Tucker Prize 2006)

• Che-Lin Su (with Dick Cottle)
MPEC, EPEC (math programs with equilibrium constraints)

• Samantha Infeld (with Walter Murray)
Trajectory optimization for spacecraft

• Yinyu Ye
Large-scale (dual) SDP
Wireless sensor network localization
Other graph realization problems
. . . !!

• http://www.stanford.edu/group/SOL/dissertations.html
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The Lighter Side of Optimization

In New Zealand, the equivalent of the TV guide is called The
Listener. Every week a Life in New Zealand column publishes
clippings describing local events. The first sender receives a $5
Lotto Lucky Dip. The following clippings illustrate some
characteristics of optimization problems in the real(?) world.

Robust solutions

RECOVERY CARE gives you financial protection from
specified sudden illness. You get cash if you live . . . and cash
if you don’t.

No objective function

People have been marrying and bringing up children for
centuries now. Nothing has ever come of it. (Evening Post, 1977)
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Multiple objectives

“I had the choice of running over my team-mate or going onto
the grass, so I ran over my team-mate then ran onto the
grass”, Rymer recalled later.

Obvious objective

He said the fee was increased from $5 to $20 because some
people had complained it was not worth writing a cheque for
$5.
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Equilibrium condition

“The pedestrian count was not considered high enough to
justify an overbridge”, Helen Ritchie said. “And if there
continues to be people knocked down on the crossing, the
number of pedestrians will dwindle.”

Constraints

ENTERTAINERS, DANCE BAND, etc. Vocalist wanted for
New Wave rock band, must be able to sing.

DRIVING INSTRUCTOR Part-time position. No experience
necessary.

HOUSE FOR REMOVAL in excellent order, $800. Do not
disturb tenant.
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Exactly one feasible solution

MATTHEWS RESTAURANT, open 365 nights. Including
Mondays.

Buying your own business might mean working 24 hours a day.
But at least when you’re self-employed you can decidewhich 24.

Peters: Oh, it’s not that I don’t want to be helpful. But in this
case the answer is that I don’t want to be helpful. (Listener, 1990)

Sergeant J Johnston said when Hall was stopped by a police
patrol the defendant denied being the driver, but after it was
pointed out he was the only person in the car he admitted to
being the driver.

His companion was in fact a transvestite, X, known variously
as X or X.
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Bound your variables

By the way, have you ever seen a bird transported without the
use of a cage? If you don’t use a cage it will fly away and
maybe the same could happen to your cat. Mark my words,
we have seen it happen.

Redundant constraints

If you are decorating before the baby is born, keep in mind
that you may have a boy or a girl.

EAR PIERCING while you wait.

CONCURRENT TERM FOR BIGAMY (NZ Herald, 1990)
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Infeasible constraints

I chose to cook myself to be quite sure what was going into
the meals.

We apologize to Wellington listeners who may not be
receiving this broadcast.

The model 200 is British all the way from its stylish roofline to
its French-made Michelin tyres. (NZ Car Magazine)

BALD, 36 yr old, handsome male seeking social times and fun
with bald 22 years and upwards female Napier Courier, 28/2/02
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≥ or ≤?

BUY NOW! At $29.95 these jeans will not last long!

NOT TOO GOOD TO BE TRUE! We can sell your home for
much less than you’d expect! (NZ Property Weekly)

The BA 146’s landing at Hamilton airport was barely audible
above airport background noise, which admittedly included a
Boeing 737 idling in the foreground.

Yesterday Mr Palmer said“The Australian reports are not
correct that I’ve seen, although I can’t say that I’ve seen
them”.

It will be a chance for all women of this parish to get rid of
anything that is not worth keeping but is too good to throw
away. Don’t forget to bring your husbands.
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≥ or ≤?

The French were often more blatant and more active,
particularly prop X and number eight Y, but at least one
All Black was seen getting his retaliation in first.

WHAT EVERY TEENAGER SHOULD KNOW — PARENTS
ONLY

“Love Under 17” Persons under 18 not admitted.

“Keeping young people in the dark would not stop them having
sex—in fact it usually had the opposite effect,” she said.

NELSON, approximately 5 minutes from airport. Golf course
adjacent. Sleeps seven all in single beds. Ideal for
honeymoons. (Air NZ News, 1978)
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Hard or soft constraints

The two have run their farm as equal partners for 10 years,
with Jan in charge of grass management, Lindsay looking after
fertilizer, and both working in the milk shed. “We used to
have our staff meetings in bed. That got more difficult when
we employed staff!” (NZ country paper)
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Elastic constraints

The Stationary Engine Drivers Union is planning rolling
stoppages.

When this happens there are set procedures to be followed and
they are established procedures, provided they are followed.

APATHY RAMPANT? Not in Albany—the closing of the
electoral rolls saw fully 103.49 percent of the area’s eligible
voters signed up.

Auckland City ratepayers are to be reminded that they can
pay their rates after they die. (Auckland Herald, 1990)

He was remanded in custody to appear again on Tuesday if he
is still in the country.
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Convergence

“There is a trend to open libraries when people can use them”,
he says.

Mayor for 15 years, Sir Dove-Myer wants a final three years
at the helm“to restore sanity and stability in the affairs of
the city”.
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Applications

(Yachting) It is not particularly dangerous, as it only causes
vomiting, hot and cold flushes, diarrhoea, muscle cramping,
paralysis, and sometimes death . . . (Boating New Zealand, 1990)

(Ecological models) CAR POLLUTION SOARS IN
CHRISTCHURCH—BUT CAUSE REMAINS MYSTERY

Nappies wanted for window cleaning. Must be used.

(Optimal control) Almost half the women seeking fertility
investigations at the clinic knew what to do to get pregnant

,
but not when to do it.
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Integer variables

0 or 1 or 2 . . .
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Integer variables

0 or 1 is sometimes not optimal

When Taupo police arrested a Bay of Plenty man
for driving over the limit,
they discovered he was a bigamist. Nelson Mail, 5/04
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Always room for improvement

The owner Craig Andrew said the three main qualities for the
job were speed, agility and driving skills. “Actually, Merv has
none of those, but he’s still the best delivery boy we’ve had”,
he said.
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