# LUSOL: A basis package for constrained optimization 

Linear Algebra and Optimization Seminar SCCM, Stanford University Feb 8, 2006

Michael Saunders

Systems Optimization Laboratory (SOL)
Dept of Management Science \& Engineering
Stanford University
saunders@stanford.edu

## Abstract

A basis package allows linear systems $A x=b$ to be solved when columns of the matrix $A$ are replaced one by one. Stability and efficiency must be balanced when the matrices are large.

LUSOL maintains LU factors of sparse matrices of any shape (square or rectangular). Threshold Rook Pivoting is an important feature for revealing rank (and recovering from singularity). Updates are stabilized by the Bartels-Golub approach.

We review the open-source Fortran and C implementations and their use within the optimization packages MINOS, SNOPT, PATH, ZIP, and Ip_solve.

## LUSOL

## Maintaining LU factors of a general sparse matrix $A$

 Gill, Murray, Saunders, and Wright (1987)
## Code contributors

Saunders (1986-present)
following Duff, Reid, Zlatev, Suhl and Suhl
Matlab Fmex
C (for Ip_solve)
Matlab Cmex
Michael O'Sullivan (1999-present)
Kjell Eikland (2004-present)
Yin Zhang (2005-present)

## Features

Square or rectangular $A$
Rank-revealing LU for "basis repair"
Stable updates
Bartels-Golub style

## LUSOL

$$
A=\square \text { or } \square \text { or } \square=L U
$$

FACTOR $\quad[\mathrm{L}, \mathrm{U}, \mathrm{p}, \mathrm{q}]=\mathrm{luSOL}(\mathrm{A})$
SOLVE
$L x=y, L^{T} x=y, U x=y, U^{T} x=y, A x=y, A^{T} x=y$
UPDATE Add, replace, delete a column
Add, replace, delete a row
Add a rank-one matrix

MULTIPLY $x=L y, x=L^{T} y, x=U y, x=U^{T} y, x=A y, x=A^{T} y$

## LU Factorization

## LU factors of a vector

$$
\binom{a}{b}=\left(\begin{array}{ll}
a & \\
b & 1
\end{array}\right)\binom{1}{0}
$$

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{llll}
a & & & \\
b & 1 & & \\
c & & 1 & \\
d & & & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
1 & & & \\
b / a & 1 & & \\
c / a & & 1 & \\
d / a & & & 1
\end{array}\right)\left(\begin{array}{l}
a \\
0 \\
0 \\
0
\end{array}\right)
$$

We choose to keep $L$ well-conditioned
$\Rightarrow|a|$ not too small

## LU factors of two vectors

$$
\begin{array}{rl}
\left(\begin{array}{ll}
a & e \\
b & f \\
c & g \\
d & h
\end{array}\right) & =\left(\begin{array}{cccc}
1 & & & \\
b / a & 1 & & \\
c / a & & 1 & \\
d / a & & & 1
\end{array}\right)\left(\begin{array}{cc}
a & e \\
0 & f-(b / a) e \\
0 & g-(c / a) e \\
0 & h-(d / a) e
\end{array}\right) \\
A & L
\end{array}
$$

Forward substitution:
Forward sub gives 2nd col of $U: \quad L U_{2}=A_{2}$

Permute rows and/or columns to preserve stability
$a$ not too small, $\quad \mu=b / a$
Gaussian elimination

$$
\left(\begin{array}{cc}
1 & \\
-\mu & 1
\end{array}\right)\left(\begin{array}{lll}
a & c & e \\
b & d & f
\end{array}\right)=\left(\begin{array}{ccc}
a & c & e \\
& d-\mu c & f-\mu e
\end{array}\right)
$$

LU factorization (forward substitution)

$$
\left(\begin{array}{lll}
a & c & e \\
b & d & f
\end{array}\right)=\left(\begin{array}{cc}
1 & \\
\mu & 1
\end{array}\right)\left(\begin{array}{ccc}
a & c & e \\
& d-\mu c & f-\mu e
\end{array}\right)
$$

$$
\begin{aligned}
L & =\left(\begin{array}{cc}
1 & \\
100 & 1
\end{array}\right) \\
\operatorname{cond}(L) & \approx 100 ? ?
\end{aligned}
$$

$$
L=\left(\begin{array}{cc}
1 & \\
100 & 1
\end{array}\right)
$$

$$
\operatorname{cond}(L) \approx 10000
$$

$$
\begin{aligned}
L & =\left(\begin{array}{cc}
1 & \\
100 & 1
\end{array}\right) \\
\operatorname{cond}(L) & \approx 10000
\end{aligned}
$$

Fortunately, triangular solves

$$
\left(\begin{array}{ll}
1 & \\
\mu & 1
\end{array}\right)\binom{x}{y}=\binom{b}{e}
$$

behave as if $\operatorname{cond}(L) \leq 100 \quad$ (Wilkinson, 1963)

## RANK-REVEALING LU

## FACTOR

$$
[\mathrm{L}, \mathrm{U}, \mathrm{p}, \mathrm{q}]=\operatorname{luSOL}(\mathrm{A})
$$



$$
U(p, q)=
$$

- Well defined for any square or rectangular $A$
- Permutations p, q balance sparsity and stability
- Markowitz strategy for suggesting sparse pivots
- Stability options:

TPP Threshold Partial Pivoting
TRP Threshold Rook Pivoting
TCP Threshold Complete Pivoting

## Partial Pivoting



## Rook Pivoting

| 6.0 | 1.0 | 0.1 | 6.0 |
| :---: | :---: | :---: | :---: |
| 2.0 | $\times$ | $\times$ | $\times$ |
| 1.0 | $\times$ | $\times$ | $\times$ |
| 4.0 | $\times$ | $\times$ | $\times$ |
| 0.1 | $\times$ | $\times$ | $\times$ |

## Complete Pivoting

$$
\begin{array}{cccc}
9.0 & 1.0 & 0.1 & 6.0 \\
2.0 & \times & \times & \times \\
1.0 & \times & \times & \times \\
4.0 & \times & \times & 9.0 \\
0.1 & \times & 0.1 & \times
\end{array}
$$

## TPP: Threshold Partial Pivoting



Require $\left|L_{i j}\right| \leq 2.0 \quad$ (not 1.0 )

## TRP: Threshold Rook Pivoting



## TCP: Threshold Complete Pivoting



## Rank-Revealing Factors

$$
A=X D Y^{T}=\square \square \square
$$

$X, Y$ well-conditioned $\operatorname{cond}(A) \approx \operatorname{cond}(D)$

- SVD
- QR with column interchanges
- LU with Rook Pivoting
- LU with Complete Pivoting
- QLP

$$
A=Q R=Q L P^{T}
$$

## Stability tolerance $\tau$

$$
P A Q=L D U
$$

Threshold pivoting bounds elements of $L$ and/or $U$ :

$$
\begin{aligned}
& \left.\begin{array}{l}
\operatorname{TPP} \\
\operatorname{TRP} \\
\operatorname{TCP}
\end{array}\right\} \quad\left|L_{i j}\right| \leq \tau \approx 100 \text { or } 10 \text { or } 5 \\
& \left|L_{i j}\right|,\left|U_{i j}\right| \leq \tau \approx 3 \text { or } 2 \text { or } 1.1
\end{aligned}
$$

TRP, TCP are more Rank-Revealing with low $\tau$ :

$$
\begin{aligned}
& \operatorname{cond}(L), \operatorname{cond}(U)<(1+\tau)^{n} \\
& \operatorname{cond}(D) \approx \operatorname{cond}(A)
\end{aligned}
$$

## The need for rank-revealing LU

$$
A=\left(\begin{array}{llll}
\delta & 1 & 1 & 1 \\
& \delta & 1 & 1 \\
& & \delta & 1 \\
& & & \delta
\end{array}\right)=L D U \quad \delta \text { small }
$$

TPP would give $L=I, \quad D=\delta I, \quad \operatorname{rank}(A)=4$ or $0(!)$
TRP or TCP would give

$$
\left(\begin{array}{llll}
1 & 1 & 1 & \delta \\
\delta & 1 & 1 & \\
& \delta & 1 & \\
& & \delta
\end{array}\right) \approx L\left(\begin{array}{cccc}
1 & 1 & 1 & \delta \\
& 1 & 1 & -\delta^{2} \\
& & 1 & \delta^{3} \\
& & & -\delta^{4}
\end{array}\right) \quad \operatorname{rank}(A) \approx 3
$$

## Implementing TRP

At each stage of Gaussian elimination:
$A \leftarrow A-l u^{T}$
$\alpha_{j}=$ biggest element in col $j\left[\begin{array}{c}\alpha_{j} \\ \mathbf{x} \\ \mathrm{x}\end{array}\right]$
$\beta_{i}=$ biggest element in row $i\left[\begin{array}{lll}\beta_{i} & \mathrm{x} & \mathrm{x}\end{array}\right]$

## Implementing TCP

At each stage of Gaussian elimination:

$$
\begin{aligned}
A & \leftarrow A-l u^{T} \\
\alpha_{j} & =\text { biggest element in col } j\left[\begin{array}{c}
\alpha_{j} \\
\mathrm{x} \\
\mathrm{x}
\end{array}\right]
\end{aligned}
$$

$\operatorname{Amax}=$ biggest element in $A \quad\left(=\max \alpha_{j}=\max \beta_{i}\right)$

## TCP: Store $\alpha_{j}$ in a Heap

Thanks to John Gilbert


$$
\begin{array}{rlccccl}
\alpha_{j} & =\operatorname{Ha}(k) & 9.0 & 6.0 & 8.0 & \ldots & \\
j & =\operatorname{Hj}(k) & 2 & 17 & 1 & \ldots & \\
k & =\operatorname{Hk}(j) & 3 & 1 & 15 & \ldots & \text { (location of } j \text { in heap) }
\end{array}
$$

## FACTOR RESULTS

> Problem memplus from Harwell-Boeing collection $A=18000 \times 18000, \quad 126000$ nonzeros, $\quad$ Scaled

|  |  | $\tau$ | $\mathrm{nnz}(\mathrm{L}+\mathrm{U})$ | Time |
| :--- | :---: | :---: | ---: | ---: |
| TCP |  | 100.0 | 140000 | 2 |
|  |  | 10.0 | 579000 | 30 |
|  | RR | 3.99 | 2460000 | 475 |
|  | RR | 2.5 | 2890000 | 6610 |
|  | RR | 1.5 | 7080000 | 27875 |
| TRP |  | 100.0 | 142000 | 5 |
|  |  | 10.0 | 141000 | 5 |
|  | RR | 3.99 | 142000 | 5 |
|  | RR | 2.50 | 146000 | 6 |
|  | RR | 1.99 | 166000 | 7 |
|  | RR | 1.58 | 172000 | 7 |
|  | RR | 1.26 | 174000 | 8 |
|  |  |  |  |  |
|  |  | 1.0 | 4470000 | $\approx 250$ |

## TCP Profile

> Harwell-Boeing Problem memplus $A=18000 \times 18000, \quad 126000$ nonzeros TCP, $\tau=10.0, \quad$ LU $=578000$ nonzeros

| Markowitz | Find stable pivot | $65.0 \%$ |
| :--- | :--- | :---: |
| Dense CP | $600 \times 600$ | $18.5 \%$ |
| Elimination | The algebra | $7.4 \%$ |
| Update $\alpha_{j}$ | for modified cols | $4.7 \%$ |
| Update heap |  | $0.1 \%(!)$ |

$$
\text { Tracking } \max \left|A_{i j}\right| \text { is easy! }
$$

## TRP Profile

CUTE Problem BRATU2D

$$
\begin{aligned}
& A=4900 \times 4900, \quad 24000 \text { nonzeros } \\
& \text { TRP, } \tau=1.26, \quad \text { LU }=206000 \text { nonzeros }
\end{aligned}
$$

Update $\beta_{i}$ for modified rows 57.7\%
Markowitz Find stable pivot 31.4\%
Elimination The algebra 4.0\%
Dense CP $228 \times 228 \quad 2.0 \%$
Update $\alpha_{j}$ for modified cols $1.6 \%$

## SOLVE

## SOLVE

## Dense rhs

- Currently, $L x=y, L^{T} x=y, \ldots$ assume rhs $y$ is dense


## Sparse rhs (future)

- Gilbert and Peierls (1988), CPLEX 7.1 (2001)
- $L x=y$ requires $L$ column-wise
- $L^{T} x=y$ needs second copy of $L$ (row-wise)
- Similarly for $U, U^{T}$ (not good when updates modify $U$ )
- Product-form update would be ok: $B_{k}=L_{0} U_{0} E_{1} E_{2} \ldots E_{k}$
- Prefer Block-LU updates


## Bartels-Golub updates <br> à la Reid 1976, 1982, 2004 <br> LA05, LA15



$$
U^{\prime \prime} \equiv P^{T} U^{\prime} P=
$$



- Avoid Hessenberg matrix
- Use cyclic permutation
- Eliminate $\times$ using $\left(\begin{array}{ll}1 & \\ \mu & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & \\ \mu & 1\end{array}\right)\left(\begin{array}{ll} & 1 \\ 1 & \end{array}\right)$


## Block-LU updates

## (part of Hanh Huynh's thesis)

Replacing columns, rows, etc is equivalent to solving with a bordered system:

$$
\begin{gathered}
\left(\begin{array}{cc}
B_{0} & V \\
W^{T} & D
\end{array}\right)=\left(\begin{array}{cc}
L_{0} & \\
Z^{T} & I
\end{array}\right)\left(\begin{array}{cc}
U_{0} & Y \\
& C
\end{array}\right) \\
B_{0}=L_{0} U_{0}, \quad L_{0} Y=V, \quad U_{0}^{T} Z=W \\
Y \text { and } Z \text { are likely to be sparse }
\end{gathered}
$$

$C$ is small and dense
LUMOD maintains $L C=U$

$$
(L=\square
$$

$$
U=\nabla)
$$

## APPLICATIONS

## LUSOL in MINOS and SQOPT

BR factorization
rank detection for square $B$

$$
B=\square=L U, \quad P L P^{T}=\left(\begin{array}{cc}
L_{1} & \\
L_{2} & L_{3}
\end{array}\right), \quad P U Q=\left(\begin{array}{cc}
U_{1} & U_{2} \\
& \ddots
\end{array}\right)
$$

TRP or TCP, $\quad \tau \leq 2.5, \quad$ keep only $\operatorname{diag}(P U Q)$

BS factorization basis detection for rectangular $W=(B S)$

$$
W^{T}=\square=L U, \quad P L P^{T}=\left(\begin{array}{ll}
L_{1} & \\
L_{2} & I
\end{array}\right), \quad P U Q=\binom{U_{1}}{0}
$$

TPP, TRP, or TCP $\quad \tau \leq 2.5, \quad$ keep only $P$
New $B=$ first $m$ columns of $W P^{T}$

## Deficient-basis simplex methods

Ping-Qi Pan:

- A revised dual projective pivot algorithm for linear programming, SIOPT, to appear 2005
- A revised primal deficient-basis simplex algorithm for linear programming, SIOPT, submitted June 2005

Take advantage of degeneracy:


Thm: $\operatorname{cond}(B) \leq \operatorname{cond}\left(\begin{array}{ll}B & a\end{array}\right)$
Apply LUSOL to rectangular $B$

## Symmetric indefinite systems



$$
(1 \times 1, \quad 2 \times 2)
$$

- Bunch-Parlett, Bunch-Kaufman strategies don't bound $\left|L_{i j}\right|$
- Duff and Reid, Harwell Subroutine Library:

MA27, MA57 do bound $\left|L_{i j}\right|$
Equivalent to Threshold Rook Pivoting
Hence:
MA27 and MA57 are rank-revealing

## lp_solve

An open-source Linear and Mixed Integer Programming solver http://groups.yahoo.com/group/Ip_solve/

- GNU LGPL, implemented in C, runs on most platforms
- Repository for a C implementation of LUSOL created by Kjell Eikland (F77 $\rightarrow$ Pascal $\rightarrow$ C)

Factor includes dynamic reallocation of storage http://groups.yahoo.com/group/Ip_solve/files/LUSOL/

- Choice of BFPs

LUSOL is now the default

# Yin Zhang (Rice Univ, Houston, tx) 29 Nov 2005 BUG REPORT (not all bad) 

In Ip_solve@yahoogroups.com, Kjell Eikland wrote:
Thank you for submitting this, and I will pass it on to Michael Saunders.
What you are reporting is not a typical scenario in linear programming (although lp_solve's presolve can possibly face it), but I guess you are using LUSOL for LU decomposition and straight equation-solving?

## Yin Zhang:

Yes, I'm using LUSOL for LU decomposition. For one of my research projects, I need a rank-revealing LU decomposition method that can handle large matrices of size $1,000,000$ by 50,000 (with $\approx 5 \mathrm{M}$ nonzeros). The lu() in matlab/umfpack is not rank-revealing. So I wrote a mex wrapper for LUSOL. But then I found the above bug.

MAS:
On such large systems, you should be using TRP - it's much more efficient than TCP and essentially as reliable for rank-detection (as long as the factor tolerance is pretty close to 1 ).

## Yin Zhang:

For some reason, even TCP seems to be pretty fast on my matrices. TRP with 1.1 factor also works very well. This may be due to the structure of my matrices (am working on large-scale network inference, in particular, inferring link delay from end-to-end path delay measurements, so my matrices are "routing matrices", which are highly sparse and most nonzero entries are 1.)
P.S. I'm a big fan of many of your packages. A couple of years back I did some work with Dave Donoho on traffic matrix estimation and used the PDSCO package. It worked really well, and we acknowledged you in the paper.

## SUMMARY

## LUSOL features

Square or rectangular $A$

Normal sparse LU
Rank-revealing LU

Stable updates

Threshold Partial Pivoting
for "basis repair"
Threshold Rook Pivoting
Threshold Complete Pivoting
add, replace, delete, rank-one
Bartels-Golub style

## Future Tasks

FACTOR Improve $\beta_{i}$ (max element in each row) Special handling of dense columns

SOLVE Sparse rhs's
UPDATE Block-LU with new black-box FACTORs (F90, Hanh's thesis)

Language $\quad \mathrm{F} 77 \rightarrow \mathrm{C}$ always possible via f 2 c
F77 $\rightarrow$ Pascal $\rightarrow$ C (Kjell Eikland, Ip_solve)
F90 $\rightarrow$ C? (NAG F95 compiler?)
Fmex (Mike O'Sullivan), Cmex (Yin Zhang)
COIN-OR project

## Future Tasks

FACTOR Improve $\beta_{i}$ (max element in each row) Special handling of dense columns

SOLVE Sparse rhs's
UPDATE Block-LU with new black-box FACTORs (F90, Hanh's thesis)

Language $\quad \mathrm{F} 77 \rightarrow \mathrm{C}$ always possible via f 2 c F77 $\rightarrow$ Pascal $\rightarrow$ C (Kjell Eikland, Ip_solve) F90 $\rightarrow$ C? (NAG F95 compiler?)
Fmex (Mike O'Sullivan), Cmex (Yin Zhang)
COIN-OR project
Documentation

