LUSOL: A basis package for constrained optimization

Linear Algebra and Optimization Seminar SCCM, Stanford University Feb 8, 2006

Michael Saunders

Systems Optimization Laboratory (SOL) Dept of Management Science & Engineering Stanford University saunders@stanford.edu

LUSOL - p. 1/4

Abstract

A basis package allows linear systems Ax = b to be solved when columns of the matrix A are replaced one by one. Stability and efficiency must be balanced when the matrices are large.

LUSOL maintains LU factors of sparse matrices of any shape (square or rectangular). Threshold Rook Pivoting is an important feature for revealing rank (and recovering from singularity). Updates are stabilized by the Bartels-Golub approach.

We review the open-source Fortran and C implementations and their use within the optimization packages MINOS, SNOPT, PATH, ZIP, and Ip_solve.

LUSOL

Maintaining LU factors of a general sparse matrix A Gill, Murray, Saunders, and Wright (1987)

Code contributors

MATLAB Fmex C (for lp_solve) MATLAB Cmex

Saunders (1986–present) following Duff, Reid, Zlatev, Suhl and Suhl Michael O'Sullivan (1999–present) Kjell Eikland (2004–present) Yin Zhang (2005–present)

Features

F77

Square or rectangular ARank-revealing LUfoStable updatesBa

for "basis repair" Bartels-Golub style

LUSOL

FACTOR [L,U,p,q] = IuSOL(A)

SOLVE
$$Lx = y, L^Tx = y, Ux = y, U^Tx = y, A^Tx = y$$

UPDATE Add, replace, delete a column Add, replace, delete a row Add a rank-one matrix

 $\textbf{MULTIPLY} \quad x = Ly, \ x = L^Ty, \ x = Uy, \ x = U^Ty, \ x = Ay, \ x = A^Ty$

LUSOL - p. 4/4

LU Factorization

LU factors of a vector

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

We choose to keep *L* well-conditioned $\Rightarrow |a|$ not too small

LUSOL - p. 6/4

LU factors of two vectors

$$\begin{pmatrix} a & e \\ b & f \\ c & g \\ d & h \end{pmatrix} = \begin{pmatrix} 1 & & \\ b/a & 1 & \\ c/a & & 1 \\ d/a & & 1 \end{pmatrix} \begin{pmatrix} a & e \\ 0 & f - (b/a)e \\ 0 & g - (c/a)e \\ 0 & h - (d/a)e \end{pmatrix}$$

$$A = L \qquad U$$

Forward substitution: L = b''

Forward sub gives 2nd col of U: $LU_2 = A_2$

Permute rows and/or columns to preserve stability

a not too small, $\mu = b/a$

Gaussian elimination

$$\begin{pmatrix} 1 \\ -\mu & 1 \end{pmatrix} \begin{pmatrix} a & c & e \\ b & d & f \end{pmatrix} = \begin{pmatrix} a & c & e \\ & d - \mu c & f - \mu e \end{pmatrix}$$

LU factorization (forward substitution)

$$\begin{pmatrix} a & \mathbf{c} & e \\ b & \mathbf{d} & f \end{pmatrix} = \begin{pmatrix} 1 \\ \mu & 1 \end{pmatrix} \begin{pmatrix} a & \mathbf{c} & e \\ \mathbf{d} - \mu \mathbf{c} & f - \mu e \end{pmatrix}$$

$$L = \begin{pmatrix} 1 \\ 100 & 1 \end{pmatrix}$$

 $\operatorname{cond}(L) \approx 100??$

$$L = \begin{pmatrix} 1 \\ 100 & 1 \end{pmatrix}$$

$$\operatorname{cond}(L) \approx 10000$$

$$L = \begin{pmatrix} 1 \\ 100 & 1 \end{pmatrix}$$

 $\operatorname{cond}(L) \approx 10000$

Fortunately, triangular solves

$$\begin{pmatrix} 1 \\ \mu & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b \\ e \end{pmatrix}$$

behave as if $cond(L) \le 100$ (Wilkinson, 1963)

RANK-REVEALING LU

FACTOR

$$[L,U,p,q] = IuSOL(A) \qquad L(p,p) = \bigcup \qquad U(p,q) = \bigcup$$

- Well defined for any square or rectangular A
- Permutations p, q balance **sparsity** and **stability**
- Markowitz strategy for suggesting sparse pivots
- **Stability** options:
 - **TPP** Threshold Partial Pivoting
 - TRP Threshold Rook Pivoting
 - **TCP** Threshold Complete Pivoting

Partial Pivoting

•

.

••	• • •	• • •	• • •	• • •	•
•					÷
	••.				÷
		4.0	X	×	×
		2.0	X	×	×
		1.0	Х	×	×
		4.0	×	×	×
		0.1	×	\times	×

Rook Pivoting

٠

• •

• .

•	• • •	• • •	• • •	• • •	•
•					÷
	•••				÷
		6.0	1.0	0.1	6.0
		2.0	X	Х	×
		1.0	Х	Х	X
		4.0	×	X	×
		0.1	×	X	×

Complete Pivoting

٠

• •

•

•	• • •	• • •	•••	• • •	•
•					÷
	•••				÷
		9.0	1.0	0.1	6.0
		2.0	X	×	X
		1.0	×	×	×
		4.0	×	×	9.0
		0.1	×	0.1	×

TPP: Threshold Partial Pivoting

Require $|L_{ij}| \le 2.0$ (not 1.0)

TRP: Threshold Rook Pivoting

TCP: Threshold Complete Pivoting

Rank-Revealing Factors

X, Y well-conditioned $\operatorname{cond}(A) \approx \operatorname{cond}(D)$

SVD	UDV^T
QR with column interchanges	$Q\mathbf{D}R$
LU with Rook Pivoting	L D U
LU with Complete Pivoting	LDU
	SVD QR with column interchanges LU with Rook Pivoting LU with Complete Pivoting

• QLP

 $A = Q\mathbf{R} = Q\mathbf{L}P^T$

Stability tolerance τ

PAQ = LDU

Threshold pivoting bounds elements of L and/or U:

TRP, TCP are more **Rank-Revealing** with low τ :

 $\operatorname{cond}(L), \operatorname{cond}(U) < (1+\tau)^n$ $\operatorname{cond}(D) \approx \operatorname{cond}(A)$

The need for rank-revealing LU

$$A = \begin{pmatrix} \delta & 1 & 1 & 1 \\ & \delta & 1 & 1 \\ & & \delta & 1 \\ & & & \delta \end{pmatrix} = LDU \qquad \delta \text{ small}$$

TPP would give L = I, $D = \delta I$, rank(A) = 4 or 0 (!)

TRP or TCP would give

$$\begin{pmatrix} 1 & 1 & 1 & \delta \\ \delta & 1 & 1 \\ & \delta & 1 \\ & & \delta \end{pmatrix} \approx L \begin{pmatrix} 1 & 1 & 1 & \delta \\ & 1 & 1 - \delta^2 \\ & & 1 & \delta^3 \\ & & & -\delta^4 \end{pmatrix}$$
 rank(A) ≈ 3

Implementing TRP

At each stage of Gaussian elimination:

$$A \leftarrow A - lu^T$$

 $\alpha_j = \text{biggest element in col } j$

$$\left[\begin{array}{c} \alpha_j \\ \mathbf{x} \\ \mathbf{x} \end{array}\right]$$

$$\beta_i$$
 = biggest element in row *i* [β_i x x]

Implementing **TCP**

At each stage of Gaussian elimination:

$$A \leftarrow A - lu^T$$

 $\alpha_j = \text{biggest element in col } j$

$$\left[\begin{array}{c} \alpha_j \\ \mathbf{x} \\ \mathbf{x} \end{array}\right]$$

Amax = biggest element in A (= max α_j = max β_i)

TCP: Store α_j in a Heap

Thanks to John Gilbert

FACTOR RESULTS

Problem memplus from Harwell-Boeing collection $A = 18000 \times 18000$, 126000 nonzeros, Scaled

		au	nnz(L+U)	Time
ТСР		100.0	140000	2
		10.0	579000	30
	RR	3.99	2460000	475
	RR	2.5	2890000	6610
	RR	1.5	7080000	27875
TRP		100.0	142000	5
		10.0	141000	5
	RR	3.99	142000	5
	RR	2.50	146000	6
	RR	1.99	166000	7
	RR	1.58	172000	7
	RR	1.26	174000	8
PP (SuperLU, colamd)		1.0	4470000	≈ 250

TCP Profile

 $\begin{array}{ll} \mbox{Harwell-Boeing Problem memplus}\\ A=18000\times 18000, & 126000 \mbox{ nonzeros}\\ \mbox{TCP, } \tau=10.0, & \mbox{LU}=578000 \mbox{ nonzeros} \end{array}$

Markowitz	Find stable pivot	65.0%
Dense CP	600×600	18.5%
Elimination	The algebra	7.4%
Update α_j	for modified cols	4.7%
Update heap		0.1% (!)

Tracking $\max |A_{ij}|$ is easy!

TRP Profile

 $\begin{array}{ll} \mbox{CUTE Problem BRATU2D} \\ A = 4900 \times 4900, & 24000 \mbox{ nonzeros} \\ \mbox{TRP, } \tau = 1.26, & \mbox{LU} = 206000 \mbox{ nonzeros} \end{array}$

Update β_i	for modified rows	57.7%
Markowitz	Find stable pivot	31.4%
Elimination	The algebra	4.0%
Dense CP	228×228	2.0%
Update α_j	for modified cols	1.6%

SOLVE

Dense rhs

• Currently, Lx = y, $L^Tx = y$, ... assume the y is dense

Sparse rhs (future)

- Gilbert and Peierls (1988), CPLEX 7.1 (2001)
- Lx = y requires L **column-wise**
- $L^T x = y$ needs second copy of L (row-wise)
- Similarly for U, U^T (not good when updates modify U)
- Product-form update would be ok: $B_k = L_0 U_0 E_1 E_2 \dots E_k$
- Prefer Block-LU updates

Bartels-Golub updates

à la Reid 1976, 1982, 2004 LA05, LA15

- Avoid Hessenberg matrix
- Use cyclic permutation

• Eliminate x using
$$\begin{pmatrix} 1 \\ \mu & 1 \end{pmatrix}$$
 or $\begin{pmatrix} 1 \\ \mu & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Block-LU updates

(part of Hanh Huynh's thesis)

Replacing columns, rows, etc is equivalent to solving with a bordered system:

$$\begin{pmatrix} B_0 & V \\ W^T & D \end{pmatrix} = \begin{pmatrix} L_0 \\ Z^T & I \end{pmatrix} \begin{pmatrix} U_0 & Y \\ & C \end{pmatrix}$$
$$B_0 = L_0 U_0, \qquad L_0 Y = V, \qquad U_0^T Z = W$$
$$Y \text{ and } Z \text{ are likely to be sparse}$$

C is small and dense LUMOD maintains LC = U (L =)

APPLICATIONS

LUSOL in MINOS and SQOPT

BR factorization rank detection for square B

$$B = \Box = LU, \quad PLP^{T} = \begin{pmatrix} L_{1} \\ L_{2} & L_{3} \end{pmatrix}, \quad PUQ = \begin{pmatrix} U_{1} & U_{2} \\ & \ddots \end{pmatrix}$$

TRP or TCP, $\tau \le 2.5$, keep only diag(PUQ)

BS factorization basis detection for rectangular W = (B S)

New B =first m columns of WP^T

Deficient-basis simplex methods

Ping-Qi Pan:

- A revised dual projective pivot algorithm for linear programming, SIOPT, to appear 2005
- A revised primal deficient-basis simplex algorithm for linear programming, SIOPT, submitted June 2005
- Take advantage of degeneracy:

$$Bx_B = b$$

Thm: $cond(B) \le cond(B \ a)$ Apply LUSOL to rectangular B

- Bunch-Parlett, Bunch-Kaufman strategies don't bound $|L_{ij}|$
- Duff and Reid, Harwell Subroutine Library:

MA27, MA57do bound $|L_{ij}|$ Equivalent toThreshold Rook PivotingHence:MA27 and MA57 are rank-revealing

lp_solve

An open-source Linear and Mixed Integer Programming solver http://groups.yahoo.com/group/lp_solve/

- GNU LGPL, implemented in C, runs on most platforms
- Repository for a C implementation of LUSOL created by Kjell Eikland (F77 → Pascal → C)
 Factor includes dynamic reallocation of storage http://groups.yahoo.com/group/lp_solve/files/LUSOL/
- Choice of BFPs
 LUSOL is now the default

Yin Zhang (Rice Univ, Houston, TX)

29 Nov 2005 BUG REPORT (not all bad)

In lp_solve@yahoogroups.com, Kjell Eikland wrote:

Thank you for submitting this, and I will pass it on to Michael Saunders. What you are reporting is not a typical scenario in linear programming (although Ip_solve's presolve can possibly face it), but I guess you are using LUSOL for LU decomposition and straight equation-solving?

Yin Zhang:

Yes, I'm using LUSOL for LU decomposition. For one of my research projects, I need a rank-revealing LU decomposition method that can handle large matrices of size 1,000,000 by 50,000 (with \approx 5M nonzeros). The lu() in matlab/umfpack is not rank-revealing. So I wrote a mex wrapper for LUSOL. But then I found the above bug.

MAS:

On such large systems, you should be using TRP - it's much more efficient than TCP and essentially as reliable for rank-detection (as long as the factor tolerance is pretty close to 1).

Yin Zhang:

For some reason, even TCP seems to be pretty fast on my matrices. TRP with 1.1 factor also works very well. This may be due to the structure of my matrices (am working on large-scale network inference, in particular, inferring link delay from end-to-end path delay measurements, so my matrices are "routing matrices", which are highly sparse and most nonzero entries are 1.)

P.S. I'm a big fan of many of your packages. A couple of years back I did some work with Dave Donoho on traffic matrix estimation and used the PDSCO package. It worked really well, and we acknowledged you in the paper.

SUMMARY

LUSOL features

Square or rectangular A

Normal sparse LU

Rank-revealing LU

Stable updates

Threshold Partial Pivoting

for "basis repair" Threshold Rook Pivoting Threshold Complete Pivoting

add, replace, delete, rank-one Bartels-Golub style

Future Tasks

FACTORImprove β_i (max element in each row)Special handling of dense columns

SOLVE Sparse rhs's

UPDATE Block-LU with new black-box FACTORs (F90, Hanh's thesis)

Language $F77 \rightarrow C$ always possible via f2c $F77 \rightarrow Pascal \rightarrow C$ (Kjell Eikland, Ip_solve) $F90 \rightarrow C$? (NAG F95 compiler?) Fmex (Mike O'Sullivan), Cmex (Yin Zhang)

COIN-OR project

Future Tasks

FACTORImprove β_i (max element in each row)Special handling of dense columns

SOLVE Sparse rhs's

UPDATE Block-LU with new black-box FACTORs (F90, Hanh's thesis)

Language $F77 \rightarrow C$ always possible via f2c $F77 \rightarrow Pascal \rightarrow C$ (Kjell Eikland, Ip_solve) $F90 \rightarrow C$? (NAG F95 compiler?) Fmex (Mike O'Sullivan), Cmex (Yin Zhang)

COIN-OR project

Documentation