
LUSOL: A basis package
for constrained optimization

Linear Algebra and Optimization Seminar
SCCM, Stanford University

Feb 8, 2006

Michael Saunders

Systems Optimization Laboratory (SOL)

Dept of Management Science & Engineering

Stanford University

saunders@stanford.edu

LUSOL – p. 1/44



Abstract

A basis package allows linear systems Ax = b to be solved when

columns of the matrix A are replaced one by one. Stability and

efficiency must be balanced when the matrices are large.

LUSOL maintains LU factors of sparse matrices of any shape

(square or rectangular). Threshold Rook Pivoting is an

important feature for revealing rank (and recovering from

singularity). Updates are stabilized by the Bartels-Golub

approach.

We review the open-source Fortran and C implementations and

their use within the optimization packages MINOS, SNOPT,

PATH, ZIP, and lp solve.

LUSOL – p. 2/44



LUSOL
Maintaining LU factors of a general sparse matrix A

Gill, Murray, Saunders, and Wright (1987)

Code contributors
F77 Saunders (1986–present)

following Duff, Reid, Zlatev, Suhl and Suhl

Matlab Fmex Michael O’Sullivan (1999–present)

C (for lp solve) Kjell Eikland (2004–present)

Matlab Cmex Yin Zhang (2005–present)

Features
Square or rectangular A

Rank-revealing LU for“basis repair”

Stable updates Bartels-Golub style

LUSOL – p. 3/44



LUSOL

A = or or = LU

FACTOR [L,U,p,q] = luSOL(A)

SOLVE Lx = y, LTx = y, Ux = y, UTx = y, Ax = y, ATx = y

UPDATE Add, replace, delete a column

Add, replace, delete a row

Add a rank-one matrix

MULTIPLY x = Ly, x = LTy, x = Uy, x = UTy, x = Ay, x = ATy

LUSOL – p. 4/44



LU Factorization

LUSOL – p. 5/44



LU factors of a vector
(

a

b

)

=

(

a

b 1

)(

1

0

)











a

b

c

d











=











a

b 1

c 1

d 1





















1

0

0

0











=











1

b/a 1

c/a 1

d/a 1





















a

0

0

0











We choose to keep L well-conditioned
⇒ |a| not too small

LUSOL – p. 6/44



LU factors of two vectors











a e

b f

c g

d h











=











1

b/a 1

c/a 1

d/a 1





















a e

0 f−(b/a)e

0 g−(c/a)e

0 h−(d/a)e











A = L U

Forward substitution: “Lx = b”

Forward sub gives 2nd col of U : LU2 = A2

Permute rows and/or columns to preserve stability

LUSOL – p. 7/44



a not too small, µ = b/a

Gaussian elimination
(

1

−µ 1

)(

a c e

b d f

)

=

(

a c e

d−µc f−µe

)

LU factorization (forward substitution)

(

a c e

b d f

)

=

(

1

µ 1

)(

a c e

d−µc f−µe

)

LUSOL – p. 8/44



L =

(

1

100 1

)

cond(L) ≈ 100 ??

LUSOL – p. 9/44



L =

(

1

100 1

)

cond(L) ≈ 10000

LUSOL – p. 10/44



L =

(

1

100 1

)

cond(L) ≈ 10000

Fortunately, triangular solves

(

1

µ 1

)(

x

y

)

=

(

b

e

)

behave as if cond(L) ≤ 100 (Wilkinson, 1963)

LUSOL – p. 11/44



RANK-REVEALING LU

LUSOL – p. 12/44



FACTOR

[L,U,p,q] = luSOL(A) L(p,p) =
@

@
@

U(p,q) =
@

@
@

• Well defined for any square or rectangular A

• Permutations p, q balance sparsity and stability

• Markowitz strategy for suggesting sparse pivots

• Stability options:
TPP Threshold Partial Pivoting
TRP Threshold Rook Pivoting
TCP Threshold Complete Pivoting

LUSOL – p. 13/44



Partial Pivoting

. . . . . . . . . . . . . . . . .
. . .

...
. . .

...

4.0 × × ×

2.0 × × ×

1.0 × × ×

4.0 × × ×

0.1 × × ×

LUSOL – p. 14/44



Rook Pivoting

. . . . . . . . . . . . . . . . .
. . .

...
. . .

...

6.0 1.0 0.1 6.0

2.0 × × ×

1.0 × × ×

4.0 × × ×

0.1 × × ×

LUSOL – p. 15/44



Complete Pivoting

. . . . . . . . . . . . . . . . .
. . .

...
. . .

...

9.0 1.0 0.1 6.0

2.0 × × ×

1.0 × × ×

4.0 × × 9.0

0.1 × 0.1 ×

LUSOL – p. 16/44



TPP: Threshold Partial Pivoting

. . . . . . . . . . . . . . . . .
. . .

...
. . .

...

2.0 × ×

2.0 ×

× ×

4.0 × × ×

× ×

Require |Lij | ≤ 2.0 (not 1.0)

LUSOL – p. 17/44



TRP: Threshold Rook Pivoting

. . . . . . . . . . . . . . . . .
. . .

...
. . .

...

4.0 1.0 7.0

2.0 ×

× ×

4.0 × × ×

× ×

LUSOL – p. 18/44



TCP: Threshold Complete Pivoting

. . . . . . . . . . . . . . . . .
. . .

...
. . .

...

5.0 1.0 7.0

2.0 ×

× ×

4.0 × × 9.0

× ×

LUSOL – p. 19/44



Rank-Revealing Factors

A = XDY T =

X, Y well-conditioned
cond(A) ≈ cond(D)

• SVD UDV T

• QR with column interchanges QDR

• LU with Rook Pivoting LDU

• LU with Complete Pivoting LDU

• QLP A = QR = QLP T

LUSOL – p. 20/44



Stability tolerance τ

PAQ = LDU

Threshold pivoting bounds elements of L and/or U :

TPP

}

|Lij | ≤ τ ≈ 100 or 10 or 5

TRP

TCP

}

|Lij |, |U ij | ≤ τ ≈ 3 or 2 or 1.1

TRP, TCP are more Rank-Revealing with low τ :

cond(L), cond(U) < (1 + τ )n

cond(D) ≈ cond(A)

LUSOL – p. 21/44



The need for rank-revealing LU

A =











δ 1 1 1

δ 1 1

δ 1

δ











= LDU δ small

TPP would give L = I, D = δI, rank(A) = 4 or 0 (!)

TRP or TCP would give











1 1 1 δ

δ 1 1

δ 1

δ











≈ L











1 1 1 δ

1 1−δ2

1 δ3

−δ4











rank(A) ≈ 3

LUSOL – p. 22/44



Implementing TRP

At each stage of Gaussian elimination:

A ← A− luT

αj = biggest element in col j







αj

x

x







βi = biggest element in row i [ βi x x ]

LUSOL – p. 23/44



Implementing TCP

At each stage of Gaussian elimination:

A ← A− luT

αj = biggest element in col j







αj

x

x







Amax = biggest element in A (= max αj = max βi)

LUSOL – p. 24/44



TCP: Store αj in a Heap

Thanks to John Gilbert

#
#

#
#

#

c
c
c
c
c

¡
¡

¡

@
@
@

¡
¡

¡

@
@
@

­
­

­­

J
J
JJ

~µ´
¶³
9

~µ´
¶³
6 ~µ´

¶³
8

~µ´
¶³
4 ~µ´

¶³
3 ~µ´
¶³
2 ~µ´

¶³
7

~µ´
¶³
2 ~µ´
¶³
1

Amax→ = Ha(1)

αj = Ha(k) 9.0 6.0 8.0 . . .

j = Hj(k) 2 17 1 . . .

k = Hk(j) 3 1 15 . . . (location of j in heap)

LUSOL – p. 25/44



FACTOR RESULTS

LUSOL – p. 26/44



Problem memplus from Harwell-Boeing collection
A = 18000 × 18000, 126000 nonzeros, Scaled

τ nnz(L+U) Time

TCP 100.0 140000 2

10.0 579000 30

RR 3.99 2460000 475

RR 2.5 2890000 6610

RR 1.5 7080000 27875

TRP 100.0 142000 5

10.0 141000 5

RR 3.99 142000 5

RR 2.50 146000 6

RR 1.99 166000 7

RR 1.58 172000 7

RR 1.26 174000 8

PP (SuperLU, colamd) 1.0 4470000 ≈ 250

LUSOL – p. 27/44



TCP Profile

Harwell-Boeing Problem memplus
A = 18000× 18000, 126000 nonzeros
TCP, τ = 10.0, LU = 578000 nonzeros

Markowitz Find stable pivot 65.0%

Dense CP 600× 600 18.5%

Elimination The algebra 7.4%

Update αj for modified cols 4.7%

Update heap 0.1% (!)

Tracking max |Aij | is easy!

LUSOL – p. 28/44



TRP Profile

CUTE Problem BRATU2D
A = 4900× 4900, 24000 nonzeros
TRP, τ = 1.26, LU = 206000 nonzeros

Update βi for modified rows 57.7%

Markowitz Find stable pivot 31.4%

Elimination The algebra 4.0%

Dense CP 228× 228 2.0%

Update αj for modified cols 1.6%

LUSOL – p. 29/44



SOLVE

LUSOL – p. 30/44



SOLVE

Dense rhs

• Currently, Lx = y, LTx = y, . . . assume rhs y is dense

Sparse rhs (future)

• Gilbert and Peierls (1988), CPLEX 7.1 (2001)

• Lx = y requires L column-wise

• LTx = y needs second copy of L (row-wise)

• Similarly for U , UT (not good when updates modify U)

• Product-form update would be ok: Bk = L0U0E1E2 . . . Ek

• Prefer Block-LU updates

LUSOL – p. 31/44



Bartels-Golub updates
à la Reid 1976, 1982, 2004 LA05, LA15

U ′ =

@
@
@
@
@
@@

c
c
c

← p

← `

x x
U ′′ ≡ P TU ′P =

@
@
@
@
@
@@

x x

• Avoid Hessenberg matrix

• Use cyclic permutation

• Eliminate x using

(

1

µ 1

)

or

(

1

µ 1

)(

1

1

)

LUSOL – p. 32/44



Block-LU updates
(part of Hanh Huynh’s thesis)

Replacing columns, rows, etc is equivalent to solving with a
bordered system:

(

B0 V

W T D

)

=

(

L0

ZT I

)(

U0 Y

C

)

B0 = L0U0, L0Y = V, U0
TZ = W

Y and Z are likely to be sparse

C is small and dense
LUMOD maintains LC = U (L = U = @

@ )

LUSOL – p. 33/44



APPLICATIONS

LUSOL – p. 34/44



LUSOL in MINOS and SQOPT

BR factorization rank detection for square B

B = = LU , PLP T =





L1

L2 L3



 , PUQ =





U1 U2

. . .





TRP or TCP, τ ≤ 2.5, keep only diag(PUQ)

BS factorization basis detection for rectangular W = (B S)

W T = = LU , PLP T =





L1

L2 I



 , PUQ =





U1

0





TPP, TRP, or TCP τ ≤ 2.5, keep only P

New B = first m columns of WP T

LUSOL – p. 35/44



Deficient-basis simplex methods

Ping-Qi Pan:

• A revised dual projective pivot algorithm for linear programming,

SIOPT, to appear 2005

• A revised primal deficient-basis simplex algorithm for linear programming,

SIOPT, submitted June 2005

Take advantage of degeneracy:

A = B N , BxB = b

Thm: cond(B) ≤ cond(B a) Apply LUSOL to rectangular B

LUSOL – p. 36/44



Symmetric indefinite systems

A = LDLT , D =





























. . .





























(1 × 1, 2 × 2)

• Bunch-Parlett, Bunch-Kaufman strategies don’t bound |Lij |

• Duff and Reid, Harwell Subroutine Library:

MA27, MA57 do bound |Lij |

Equivalent to Threshold Rook Pivoting

Hence: MA27 and MA57 are rank-revealing

LUSOL – p. 37/44



lp solve
An open-source Linear and Mixed Integer Programming solver

http://groups.yahoo.com/group/lp solve/

• GNU LGPL, implemented in C, runs on most platforms

• Repository for a C implementation of LUSOL created by
Kjell Eikland (F77 → Pascal → C)
Factor includes dynamic reallocation of storage
http://groups.yahoo.com/group/lp solve/files/LUSOL/

• Choice of BFPs
LUSOL is now the default

LUSOL – p. 38/44



Yin Zhang (Rice Univ, Houston, TX)

29 Nov 2005 BUG REPORT (not all bad)

In lp solve@yahoogroups.com, Kjell Eikland wrote:

Thank you for submitting this, and I will pass it on to Michael Saunders.

What you are reporting is not a typical scenario in linear programming

(although lp solve’s presolve can possibly face it), but I guess you are

using LUSOL for LU decomposition and straight equation-solving?

Yin Zhang:

Yes, I’m using LUSOL for LU decomposition. For one of my research

projects, I need a rank-revealing LU decomposition method that can

handle large matrices of size 1,000,000 by 50,000 (with ≈5M nonzeros).

The lu() in matlab/umfpack is not rank-revealing. So I wrote a mex

wrapper for LUSOL. But then I found the above bug.

LUSOL – p. 39/44



MAS:

On such large systems, you should be using TRP – it’s much more

efficient than TCP and essentially as reliable for rank-detection (as long as

the factor tolerance is pretty close to 1).

Yin Zhang:

For some reason, even TCP seems to be pretty fast on my matrices. TRP

with 1.1 factor also works very well. This may be due to the structure of

my matrices (am working on large-scale network inference, in particular,

inferring link delay from end-to-end path delay measurements, so my

matrices are“routing matrices”, which are highly sparse and most nonzero

entries are 1.)

P.S. I’m a big fan of many of your packages. A couple of years back I did

some work with Dave Donoho on traffic matrix estimation and used the

PDSCO package. It worked really well, and we acknowledged you in the

paper.

LUSOL – p. 40/44



SUMMARY

LUSOL – p. 41/44



LUSOL features

Square or rectangular A

Normal sparse LU Threshold Partial Pivoting

Rank-revealing LU for“basis repair”

Threshold Rook Pivoting

Threshold Complete Pivoting

Stable updates add, replace, delete, rank-one

Bartels-Golub style

LUSOL – p. 42/44



Future Tasks

FACTOR Improve βi (max element in each row)

Special handling of dense columns

SOLVE Sparse rhs’s

UPDATE Block-LU with new black-box FACTORs

(F90, Hanh’s thesis)

Language F77 → C always possible via f2c

F77 → Pascal → C (Kjell Eikland, lp solve)

F90 → C? (NAG F95 compiler?)

Fmex (Mike O’Sullivan), Cmex (Yin Zhang)

COIN-OR project

LUSOL – p. 43/44



Future Tasks

FACTOR Improve βi (max element in each row)

Special handling of dense columns

SOLVE Sparse rhs’s

UPDATE Block-LU with new black-box FACTORs

(F90, Hanh’s thesis)

Language F77 → C always possible via f2c

F77 → Pascal → C (Kjell Eikland, lp solve)

F90 → C? (NAG F95 compiler?)

Fmex (Mike O’Sullivan), Cmex (Yin Zhang)

COIN-OR project

Documentation
LUSOL – p. 44/44


	
ed {LUSOL}
	
ed {LUSOL}
	 
	LU factors of a vector
	LU factors of two vectors
	 
	�lue {FACTOR}
	
 Partial Pivoting
	
 Rook Pivoting
	
 Complete Pivoting
	
 TPP : Threshold Partial Pivoting
	
 TRP : Threshold Rook Pivoting
	
 TCP : Threshold Complete Pivoting
	
 Rank-Revealing Factors
	
 Stability tolerance Fmax 
	
 The need for rank-revealing LU
	
 Implementing TRP 
	
 Implementing TCP 
	
 TCP : Store alphaj  in a Heap
	 
	
 
ed {TCP} Profile
	
 �lue {TRP} Profile
	 
	�lue {SOLVE}
	green {Bartels-Golub updates}
	�lue {Block-LU updates}
	 
	
 LUSOL {} in MINOS {} and SQOPT {}
	
 Deficient-basis simplex methods
	green {Symmetric indefinite systems}
	green {lp_solve}
	green {Yin Zhang} �ootnotesize (Rice Univ, Houston, TX)
	 
	
ed {LUSOL} features
	Future Tasks
	Future Tasks

