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Abstract

Given a general matrix A and starting vectors (b, c), we can
construct orthonormal matrices Uk and Vk that reduce A to
tridiagonal form: AVk ≈ UkTk and ATUk ≈ VkT

T
k . Saunders,

Simon, and Yip (1988) proposed methods for solving square
systems Ax = b and AT y = c simultaneously. The solver USYMQR
becomes equivalent to MINRES in the symmetric case with b = c.

The method was rediscovered by Reichel and Ye (2006) with
emphasis on rectangular systems. For implementation reasons it
was regarded as a generalization of LSQR (although it does not
reduce to LSQR in any special case). The method has now been
applied to two square systems by Golub, Stoll, and Wathen (2007)
with focus on estimating cT x and yTb.
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Iterative matrix reductions

Lanczos 1950 Symmetric

Arnoldi 1951 Square

Golub-Kahan 1965 Rectangular

“New” tridiagonalization 1981–1988, 2006 Rectangular

We call them processes
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Lanczos-type processes

Need starting vector v1 = b (Assume ‖b‖ = 1)

Use matrix-vector products Avk and perhaps ATuk

Generate Vk =
(
v1 v2 . . . vk

)
and Hk or Bk

AVk = Vk+1Hk , Hk =



α1 β2

β2 α2 β3

∗ ∗ ∗
βk αk

βk+1



V T
k Vk = I in theory, but at least ‖vk‖ = 1
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CG-type iterative solvers
for Ax = b

MINRES Lanczos AVk = Vk+1Hk

GMRES Arnoldi AVk = Vk+1Hk

LSQR Golub-Kahan AVk = Uk+1Bk

bidiagonalization ATUk+1 = VkBT
k + · · ·

GMINRES? S-Simon-Yip AVk = Uk+1Hk

GLSQR? bi-tridiagonalization ATUk = Vk+1H̄k

They all solve min ‖Xwk − e1‖ and define xk = Vkwk

(X = Hk or Bk)
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MINRES

AVk = Vk+1Hk , v1 = b, Hk =



α1 β2

β2 α2 β3

∗ ∗ ∗
βk αk

βk+1


Let xk = Vkwk , where we solve min ‖Hkwk − e1‖

Axk − b = Vk+1(Hkwk − e1)

Will be small if Hkwk ≈ e1

3 subprobs make Hkwk ≈ e1 → CG, SYMMLQ, MINRES

v1 = b ⇒ no need to assume Vk has orthogonal columns
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Symmetric → Unsymmetric Ax ≈ b

Lanczos on

(
I A

AT −δ2I

) (
r
x

)
=

(
b
0

)
(general A)

with CG-type subproblem gives Golub-Kahan and LSQR

Lanczos on

(
A

AT

) (
y
x

)
=

(
b
c

)
(square A)

is not equivalent to bi-tridiagonalization (but seems worth trying!)
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Tridiagonalization of general A

using orthogonal matrices
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Bi-tridiagonalization

1988 Saunders, Simon, and Yip, SINUM 25
“Two CG-type methods for unsymmetric linear equations”

Focus on square A

USYMLQ and USYMQR (GSYMMLQ and GMINRES)

2006 Reichel and Ye
“A generalized LSQR algorithm”

Focus on rectangular A

GLSQR

2007 Golub, Stoll, and Wathen
“Approximation of the scattering amplitude”

Focus on Ax = b, ATy = c

and estimation of cTx , bTy (without x , y)
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Original motivation (1981)

CG, SYMMLQ, MINRES work well for symmetric Ax = b

Bi-tridiagonalization of unsymmetric A is no more than twice
the work and storage per iteration

If A is symmetric, we get Lanczos and MINRES etc

If A is nearly symmetric, total itns should be not much more
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Elizabeth Yip’s SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary
nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal
tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed
by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

However, . . . the condition number for our tridiagonalization is the square root
of that for the bidiagonalization.

We apply a preconditioned version (Fast Poisson) to the difference equation of

unsteady transonic flow with small disturbances. (Compared with ORTHOMIN(5))
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Unsymmetric Ax = b, ATy = c

Bi-tridiag process starting with (b, c)

AVk = Uk+1Hk

ATUk = Vk+1H̄k

Suppose xk = Vkwk for some wk

Three subproblems make Hkwk ≈ e1 ⇒ UCG, USYMLQ, USYMQR

Similarly, let yk = Uk w̄k to solve ATy = c
Three subproblems make H̄k w̄k ≈ e1

Not much extra effort to get both xk and yk
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Numerical results
with unsymmetric tridiagonalization
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Numerical results (SSY 1988)

A =


B −I
−I B −I

. . .
. . .

. . .

−I B −I
−I B

 B = tridiag
(
−1−δ 4 −1+δ

)

400× 400 20× 20

Megaflops to reach ‖r‖ ≤ 10−6‖b‖:

δ 0.0 0.01 0.1 1.0 10.0 100.0

ORTHOMIN(5) 0.31 0.57 0.75 0.83 2.55 2.11
LSQR 0.28 1.38 1.48 0.80 0.57 0.27
USYMQR 0.30 1.88 1.98 1.41 0.99 0.64

Bottom line:
ORTHOMIN sometimes good, can fail. LSQR always better than USYMQR
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Numerical results (Reichel and Ye 2006)

Focused on rectangular A and least-squares
(Forgot about SSY88 and USYMQR — hence GLSQR)

Three numerical examples (all square!)

Remember x1 ∝ c

Focused on choice of c
stopping early
looking at xk =

(
xk1 xk2 . . . xkn

)
Example 1: We know x ≈ constant. Choose c =

(
1 1 . . . 1

)T

true x
xGLSQR
1
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Example 2 (Star cluster)

256× 256 pixels (n = 65536), 470 stars

Square Ax ≈ b, choose c = b

Compare error in xLSQR
k and xGLSQR

k for 40 iterations

LSQR

GLSQR

-

6

0 20 40 k0.1

0.9

‖xk − x̂‖/‖x̂‖
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Functionals cTx , bTy

Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with
QMR to solve Ax = b and ATy = c simultaneously and to
estimate cTx and bTy at a superconvergent rate:

|cTxk − cTx | ≈ |bTyk − bTy | ≈ ‖b − Axk‖‖c − ATyk‖
σmin(A)

Golub, Stoll and Wathen (2007) use bi-triagonalization with
GLSQR to do likewise

Matrices, moments, and quadrature
Golub, Minerbo, and Saylor
Nine ways to compute the scattering cross-section

(1): Estimating cTx iteratively
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Block Lanczos

The Bi-tridiagonalization process is equivalent to

Block Lanczos on ATA with starting block
(
c ATb

)
Parlett 1987

Block Lanczos on

(
A

AT

)
with starting block

(
b

c

)
Golub, Stoll, and Wathen 2007

There are two ways of spreading light.
To be the candle

or the mirror that reflects it.

– Edith Wharton

Messages from Marcus Grote (Switzerland) and Yong Sun (China)
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