Bi-tridiag

Results

Conclusions

GMINRES or **GLSQR**?

Michael Saunders Systems Optimization Laboratory, Stanford University

Symposium on Gene Golub's Legacy: Matrix Computations – Foundation and Future Stanford University, March 1, 2008

Bi-tridiag

Outline

1 Iterative matrix reductions

SOL, Stanford University

Bi-tridiag

Results

Conclusions

Outline

2 CG-type iterative solvers

Bi-tridiag

Result

Conclusions

Outline

- 2 CG-type iterative solvers
- 3 Bi-tridiagonalization of general A

Bi-tridiag

Result

Conclusions

Outline

- 2 CG-type iterative solvers
- 3 Bi-tridiagonalization of general A
- 4 Numerical results

Bi-tridiag

Results

Conclusions

Outline

- 2 CG-type iterative solvers
- 3 Bi-tridiagonalization of general A
- 4 Numerical results

Bi-tridia

Conclusions

Abstract

Given a general matrix A and starting vectors (b, c), we can construct orthonormal matrices U_k and V_k that reduce A to tridiagonal form: $AV_k \approx U_k T_k$ and $A^T U_k \approx V_k T_k^T$. Saunders, Simon, and Yip (1988) proposed methods for solving square systems Ax = b and $A^T y = c$ simultaneously. The solver USYMQR becomes equivalent to MINRES in the symmetric case with b = c.

The method was rediscovered by Reichel and Ye (2006) with emphasis on rectangular systems. For implementation reasons it was regarded as a generalization of LSQR (although it does not reduce to LSQR in any special case). The method has now been applied to two square systems by Golub, Stoll, and Wathen (2007) with focus on estimating $c^T x$ and $y^T b$.

Bi-tridiag

Iterative matrix reductions

• Lanczos	1950	Symmetric
• Arnoldi	1951	Square
• Golub-Kahan	1965	Rectangular
• "New" tridiagonalization	1981–1988, 2006	Rectangular

We call them *processes*

• Need starting vector $v_1 = b$ (Assume ||b|| = 1)

- Need starting vector $v_1 = b$ (Assume ||b|| = 1)
- Use matrix-vector products Av_k and perhaps $A^T u_k$

- Need starting vector $v_1 = b$ (Assume ||b|| = 1)
- Use matrix-vector products Av_k and perhaps $A^T u_k$
- Generate $V_k = \begin{pmatrix} v_1 & v_2 & \dots & v_k \end{pmatrix}$ and H_k or B_k

Matrix reductions

Lanczos-type processes

- Need starting vector $v_1 = b$ (Assume ||b|| = 1)
- Use matrix-vector products Av_k and perhaps $A^T u_k$
- Generate $V_k = \begin{pmatrix} v_1 & v_2 & \dots & v_k \end{pmatrix}$ and H_k or B_k

$$AV_{k} = V_{k+1}H_{k}, \qquad H_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & \\ & * & * & * \\ & & \beta_{k} & \alpha_{k} \\ & & & \beta_{k+1} \end{pmatrix}$$

- Need starting vector $v_1 = b$ (Assume ||b|| = 1)
- Use matrix-vector products Av_k and perhaps $A^T u_k$
- Generate $V_k = \begin{pmatrix} v_1 & v_2 & \dots & v_k \end{pmatrix}$ and H_k or B_k

$$AV_{k} = V_{k+1}H_{k}, \qquad H_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & \\ & * & * & * \\ & & \beta_{k} & \alpha_{k} \\ & & & \beta_{k+1} \end{pmatrix}$$

 $V_k^T V_k = I$ in theory, but at least $||v_k|| = 1$

SOL, Stanford University

Mar 1, 2008

Bi-tridiag

CG-type iterative solvers for Ax = b

MINRES	Lanczos	$AV_k = V_{k+1}H_k$
• GMRES	Arnoldi	$AV_k = V_{k+1}H_k$

• LSQR Golub-Kahan bidiagonalization $AV_k = U_{k+1}B_k$ $A^T U_{k+1} = V_k B_k^T + \cdots$

• GMINRES? S-Simon-Yip GLSQR? bi-tridiagonalization

 $AV_k = U_{k+1}H_k$ $A^T U_k = V_{k+1}\bar{H}_k$

Bi-tridiag

CG-type iterative solvers for Ax = b

 MINRES 	Lanczos	$AV_k = V_{k+1}H_k$
• GMRES	Arnoldi	$AV_k = V_{k+1}H_k$

• LSQR Golub-Kahan bidiagonalization $AV_k = U_{k+1}B_k$ $A^T U_{k+1} = V_k B_k^T + \cdots$

• GMINRES? S-Simon-Yip A GLSQR? bi-tridiagonalization A

 $AV_k = U_{k+1}H_k$ $A^T U_k = V_{k+1}\bar{H}_k$

They all solve min $||Xw_k - e_1||$ and define $x_k = V_k w_k$

 $(X = H_k \text{ or } B_k)$

Matrix reductions	CG solvers	Bi-tridiag	Results	Conclusions
		MINRES		

$$AV_{k} = V_{k+1}H_{k}, \quad v_{1} = b, \quad H_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & \\ & * & * & * \\ & & \beta_{k} & \alpha_{k} \\ & & & \beta_{k+1} \end{pmatrix}$$

$$AV_{k} = V_{k+1}H_{k}, \quad v_{1} = b, \quad H_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & \\ & * & * & * \\ & & \beta_{k} & \alpha_{k} \\ & & & \beta_{k+1} \end{pmatrix}$$

•
$$Ax_k - b = V_{k+1}(H_kw_k - e_1)$$

Matrix reductions	CG solvers	Bi-tridiag	Results	Conclusions
		MINRES		

$$AV_{k} = V_{k+1}H_{k}, \quad v_{1} = b, \quad H_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & \\ & * & * & * \\ & & \beta_{k} & \alpha_{k} \\ & & & \beta_{k+1} \end{pmatrix}$$

•
$$Ax_k - b = V_{k+1}(H_k w_k - e_1)$$

• Will be small if
$$H_k w_k \approx e_1$$

$$AV_{k} = V_{k+1}H_{k}, \quad v_{1} = b, \quad H_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & \\ & * & * & * \\ & & \beta_{k} & \alpha_{k} \\ & & & \beta_{k+1} \end{pmatrix}$$

- $Ax_k b = V_{k+1}(H_kw_k e_1)$
- Will be small if $H_k w_k \approx e_1$
- 3 subprobs make $H_k w_k \approx e_1 \rightarrow CG$, SYMMLQ, MINRES

Matrix reductions	CG solvers	Bi-tridiag	Results	Conclusions
		MINRES		

$$AV_{k} = V_{k+1}H_{k}, \quad v_{1} = b, \quad H_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & \\ & * & * & * \\ & & \beta_{k} & \alpha_{k} \\ & & & \beta_{k+1} \end{pmatrix}$$

- $Ax_k b = V_{k+1}(H_kw_k e_1)$
- Will be small if $H_k w_k \approx e_1$
- 3 subprobs make $H_k w_k \approx e_1 \rightarrow CG$, SYMMLQ, MINRES
- $v_1 = b \Rightarrow$ no need to assume V_k has orthogonal columns

Symmetric \rightarrow Unsymmetric $Ax \approx b$

Lanczos on
$$\begin{pmatrix} I & A \\ A^T & -\delta^2 I \end{pmatrix} \begin{pmatrix} r \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$
 (general A) with CG-type subproblem gives Golub-Kahan and LSQR

Lanczos on
$$\begin{pmatrix} A \\ A^T \end{pmatrix} \begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix}$$
 (square A) is not equivalent to bi-tridiagonalization (but seems worth trying!)

Matrix reductions

CG solvers

Bi-tridiag

Result

Conclusions

Tridiagonalization of general *A* **using orthogonal matrices**

Bi-tridiagonalization

 1988 Saunders, Simon, and Yip, SINUM 25 "Two CG-type methods for unsymmetric linear equations" Focus on square A USYMLQ and USYMQR (GSYMMLQ and GMINRES)

Bi-tridiagonalization

• 1988 Saunders, Simon, and Yip, SINUM 25

"Two CG-type methods for unsymmetric linear equations"

Focus on square A

USYMLQ and USYMQR (GSYMMLQ and GMINRES)

2006 Reichel and Ye

"A generalized LSQR algorithm"

Focus on rectangular A

GLSQR

Bi-tridiagonalization

• 1988 Saunders, Simon, and Yip, SINUM 25

"Two CG-type methods for unsymmetric linear equations"

Focus on square A

USYMLQ and USYMQR (GSYMMLQ and GMINRES)

2006 Reichel and Ye

"A generalized LSQR algorithm" Focus on rectangular A

GLSQR

• 2007 Golub, Stoll, and Wathen

"Approximation of the scattering amplitude" Focus on Ax = b, $A^Ty = c$ and estimation of c^Tx , b^Ty (without x, y)

• CG, SYMMLQ, MINRES work well for symmetric Ax = b

Bi-tridiag

Original motivation (1981)

- CG, SYMMLQ, MINRES work well for symmetric Ax = b
- Bi-tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration

Bi-tridiag

Original motivation (1981)

- CG, SYMMLQ, MINRES work well for symmetric Ax = b
- Bi-tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration
- If A is symmetric, we get Lanczos and MINRES etc

Bi-tridiag

Original motivation (1981)

- CG, SYMMLQ, MINRES work well for symmetric Ax = b
- Bi-tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration
- If A is symmetric, we get Lanczos and MINRES etc
- If A is nearly symmetric, total itns should be not much more

Elizabeth Yip's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

Elizabeth Yip's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

However, ... the condition number for our tridiagonalization is the square root of that for the bidiagonalization.

Elizabeth Yip's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

However, ... the condition number for our tridiagonalization is the square root of that for the bidiagonalization.

We apply a preconditioned version (Fast Poisson) to the difference equation of unsteady transonic flow with small disturbances. (Compared with ORTHOMIN(5))

Bi-tridiag process starting with (b, c)

$$AV_k = U_{k+1}H_k$$
$$A^T U_k = V_{k+1}\bar{H}_k$$

Bi-tridiag process starting with (b, c)

$$AV_k = U_{k+1}H_k$$
$$A^T U_k = V_{k+1}\bar{H}_k$$

Suppose $x_k = V_k w_k$ for some w_k

Bi-tridiag process starting with (b, c)

$$\begin{array}{rcl} AV_k &=& U_{k+1}H_k \\ \mathsf{A}^\mathsf{T}U_k &=& V_{k+1}\bar{H}_k \end{array}$$

Suppose $x_k = V_k w_k$ for some w_k Three subproblems make $H_k w_k \approx e_1 \implies$ UCG, USYMLQ, USYMQR

Bi-tridiag process starting with (b, c)

$$\begin{array}{rcl} AV_k &=& U_{k+1}H_k \\ \mathsf{A}^\mathsf{T}U_k &=& V_{k+1}\bar{H}_k \end{array}$$

Suppose $x_k = V_k w_k$ for some w_k Three subproblems make $H_k w_k \approx e_1 \implies$ UCG, USYMLQ, USYMQR

Similarly, let $y_k = U_k \bar{w}_k$ to solve $A^T y = c$ Three subproblems make $\bar{H}_k \bar{w}_k \approx e_1$

Unsymmetric Ax = b, $A^Ty = c$

Bi-tridiag process starting with (b, c)

$$\begin{array}{rcl} AV_k &=& U_{k+1}H_k \\ \mathsf{A}^\mathsf{T}U_k &=& V_{k+1}\bar{H}_k \end{array}$$

Suppose $x_k = V_k w_k$ for some w_k Three subproblems make $H_k w_k \approx e_1 \implies$ UCG, USYMLQ, USYMQR

Similarly, let $y_k = U_k \bar{w}_k$ to solve $A^T y = c$ Three subproblems make $\bar{H}_k \bar{w}_k \approx e_1$

Not much extra effort to get both x_k and y_k

SOL, Stanford University

Matrix reductions

CG solvers

Bi-tridiag

Results

Conclusions

Numerical results with unsymmetric tridiagonalization

4 $-1+\delta$)

Numerical results (SSY 1988)

$$A = \begin{pmatrix} B & -I & & \\ -I & B & -I & \\ & \ddots & \ddots & \ddots & \\ & & -I & B & -I \\ & & & -I & B \end{pmatrix} \qquad B = \text{tridiag} \left(-1 - \delta\right)$$

$$400 \times 400 \qquad \qquad 20 \times 20$$

Numerical results (SSY 1988)

$$A = \begin{pmatrix} B & -I & & \\ -I & B & -I & & \\ & \ddots & \ddots & \ddots & \\ & & -I & B & -I \\ & & & -I & B \end{pmatrix}$$

$$B = \text{tridiag} \begin{pmatrix} -1 - \delta & 4 & -1 + \delta \end{pmatrix}$$

$$400 \times 400$$

$$20 \times 20$$

Megaflops to reach $||r|| \leq 10^{-6} ||b||$:

δ	0.0	0.01	0.1	1.0	10.0	100.0
ORTHOMIN(5)	0.31	0.57	0.75	0.83	2.55	2.11
LSQR	0.28	1.38	1.48	0.80	0.57	0.27
USYMQR	0.30	1.88	1.98	1.41	0.99	0.64

Numerical results (SSY 1988)

$$A = \begin{pmatrix} B & -I & & \\ -I & B & -I & & \\ & \ddots & \ddots & \ddots & \\ & & -I & B & -I \\ & & & -I & B \end{pmatrix} \qquad B = \text{tridiag} \begin{pmatrix} -1 - \delta & 4 & -1 + \delta \end{pmatrix}$$

$$400 \times 400 \qquad \qquad 20 \times 20$$

Megaflops to reach $||r|| \leq 10^{-6} ||b||$:

δ	0.0	0.01	0.1	1.0	10.0	100.0
ORTHOMIN(5)	0.31	0.57	0.75	0.83	2.55	2.11
LSQR	0.28	1.38	1.48	0.80	0.57	0.27
USYMQR	0.30	1.88	1.98	1.41	0.99	0.64

Bottom line:

ORTHOMIN sometimes good, can fail. LSQR always better than USYMQR

SOL, Stanford University

Mar 1, 2008

 Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR — hence GLSQR)

- Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR — hence GLSQR)
- Three numerical examples (all square!)

- Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR — hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_1 \propto c$

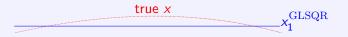
- Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR — hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_1 \propto c$
- Focused on choice of c

stopping early looking at $x_k = \begin{pmatrix} x_{k1} & x_{k2} & \dots & x_{kn} \end{pmatrix}$

- Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR — hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_1 \propto c$
- Focused on choice of c

stopping early looking at $x_k = \begin{pmatrix} x_{k1} & x_{k2} & \dots & x_{kn} \end{pmatrix}$

Example 1: We know $x \approx \text{constant.}$ Choose $c = \begin{pmatrix} 1 & 1 & \dots & 1 \end{pmatrix}^T$

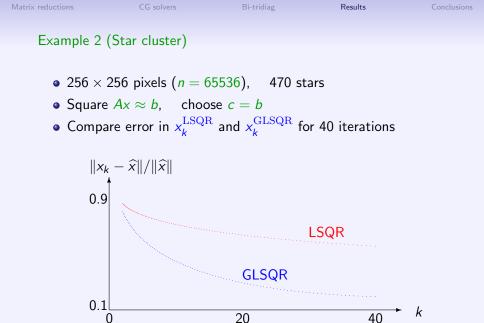


Example 2 (Star cluster)

• 256×256 pixels (n = 65536), 470 stars

- 256×256 pixels (n = 65536), 470 stars
- Square $Ax \approx b$, choose c = b

- Example 2 (Star cluster)
 - 256×256 pixels (n = 65536), 470 stars
 - Square $Ax \approx b$, choose c = b
 - Compare error in x_{k}^{LSQR} and x_{k}^{GLSQR} for 40 iterations



Matrix reductions

CG solvers

Bi-tridiag

Results

Conclusions

Conclusions

SOL, Stanford University

Subspaces

• Unsymmetric Lanczos generates two Krylov subspaces:

$$U_k \in \operatorname{span} \{ b \ Ab \ A^2b \ \dots \ A^{k-1}b \}$$

$$V_k \in \operatorname{span} \{ c \ A^{\mathsf{T}}c \ (A^{\mathsf{T}})^2c \ \dots \ (A^{\mathsf{T}})^{k-1}c \}$$

• Unsymmetric Lanczos generates two Krylov subspaces:

$$U_k \in \operatorname{span} \{ b \ Ab \ A^2b \ \dots \ A^{k-1}b \}$$

$$V_k \in \operatorname{span} \{ c \ A^Tc \ (A^T)^2c \ \dots \ (A^T)^{k-1}c \}$$

- Bi-tridiagonalization generates
 - $U_{2k} \in \operatorname{span} \{ b \ AA^{T}b \ \dots \ (AA^{T})^{k-1}b \ Ac \ (AA^{T})Ac \ \dots \}$ $V_{2k} \in \operatorname{span} \{ c \ A^{T}Ac \ \dots \ (A^{T}A)^{k-1}c \ A^{T}b \ (A^{T}A)A^{T}b \ \dots \}$

• Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve Ax = b and $A^Ty = c$ simultaneously and to estimate c^Tx and b^Ty at a superconvergent rate:

$$|c^{\mathsf{T}}x_{k}-c^{\mathsf{T}}x|\approx|b^{\mathsf{T}}y_{k}-b^{\mathsf{T}}y|\approx\frac{\|b-Ax_{k}\|\|c-A^{\mathsf{T}}y_{k}\|}{\sigma_{\min}(A)}$$

• Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve Ax = b and $A^Ty = c$ simultaneously and to estimate c^Tx and b^Ty at a superconvergent rate:

$$|c^{\mathsf{T}}x_k - c^{\mathsf{T}}x| \approx |b^{\mathsf{T}}y_k - b^{\mathsf{T}}y| \approx \frac{\|b - Ax_k\|\|c - A^{\mathsf{T}}y_k\|}{\sigma_{\min}(A)}$$

• Golub, Stoll and Wathen (2007) use bi-triagonalization with GLSQR to do likewise

• Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve Ax = b and $A^Ty = c$ simultaneously and to estimate c^Tx and b^Ty at a superconvergent rate:

$$|c^{\mathsf{T}}x_k - c^{\mathsf{T}}x| \approx |b^{\mathsf{T}}y_k - b^{\mathsf{T}}y| \approx \frac{\|b - Ax_k\|\|c - A^{\mathsf{T}}y_k\|}{\sigma_{\min}(A)}$$

- Golub, Stoll and Wathen (2007) use bi-triagonalization with GLSQR to do likewise
 - Matrices, moments, and quadrature

• Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve Ax = b and $A^Ty = c$ simultaneously and to estimate c^Tx and b^Ty at a superconvergent rate:

$$|c^{\mathsf{T}}x_k - c^{\mathsf{T}}x| \approx |b^{\mathsf{T}}y_k - b^{\mathsf{T}}y| \approx \frac{\|b - Ax_k\|\|c - A^{\mathsf{T}}y_k\|}{\sigma_{\min}(A)}$$

- Golub, Stoll and Wathen (2007) use bi-triagonalization with GLSQR to do likewise
 - Matrices, moments, and quadrature
 - Golub, Minerbo, and Saylor
 Nine ways to compute the scattering cross-section
 (1): Estimating c^Tx iteratively

The Bi-tridiagonalization process is equivalent to

• Block Lanczos on $A^T A$ with starting block $(c A^T b)$ Parlett 1987

The Bi-tridiagonalization process is equivalent to

- Block Lanczos on $A^T A$ with starting block $(c A^T b)$ Parlett 1987
- Block Lanczos on $\begin{pmatrix} A \\ A^T \end{pmatrix}$ with starting block $\begin{pmatrix} b \\ c \end{pmatrix}$ Golub, Stoll, and Wathen 2007

The Bi-tridiagonalization process is equivalent to

- Block Lanczos on $A^T A$ with starting block $(c A^T b)$ Parlett 1987
- Block Lanczos on $\begin{pmatrix} A \\ A^T \end{pmatrix}$ with starting block $\begin{pmatrix} b \\ c \end{pmatrix}$ Golub, Stoll, and Wathen 2007

There are two ways of spreading light. To be the candle or the mirror that reflects it.

- Edith Wharton

The Bi-tridiagonalization process is equivalent to

- Block Lanczos on $A^T A$ with starting block $(c A^T b)$ Parlett 1987
- Block Lanczos on $\begin{pmatrix} A \\ A^T \end{pmatrix}$ with starting block $\begin{pmatrix} b \\ c \end{pmatrix}$ Golub, Stoll, and Wathen 2007

There are two ways of spreading light. To be the candle or the mirror that reflects it.

- Edith Wharton

The Bi-tridiagonalization process is equivalent to

- Block Lanczos on $A^T A$ with starting block $(c A^T b)$ Parlett 1987
- Block Lanczos on $\begin{pmatrix} A \\ A^T \end{pmatrix}$ with starting block $\begin{pmatrix} b \\ c \end{pmatrix}$ Golub, Stoll, and Wathen 2007

There are two ways of spreading light. To be the candle or the mirror that reflects it.

- Edith Wharton

Messages from Marcus Grote (Switzerland) and Yong Sun (China)

SOL, Stanford University