Generalized MINRES and LSQR
 Orthogonal tridiagonalization of general matrices

Michael Saunders
Systems Optimization Laboratory
Dept of Management Science and Engineering Stanford University

CME 510 Linear Algebra and Optimization Seminar Stanford University, October 3, 2007

Outline

(1) History

Outline

(1) History
(2) Tridiagonalization of symmetric A

Outline

(1) History
(2) Tridiagonalization of symmetric A
(3) Bidiagonalization of rectangular A

Outline

(1) History
(2) Tridiagonalization of symmetric A
(3) Bidiagonalization of rectangular A
(4) Tridiagonalization of unsymmetric A

Outline

(1) History
(2) Tridiagonalization of symmetric A
(3) Bidiagonalization of rectangular A
(4) Tridiagonalization of unsymmetric A
(5) Original motivation

Outline

(1) History
(2) Tridiagonalization of symmetric A
(3) Bidiagonalization of rectangular A
(4) Tridiagonalization of unsymmetric A
(5) Original motivation
(6) Symmetric $A x=b$

Outline

(1) History
(2) Tridiagonalization of symmetric A
(3) Bidiagonalization of rectangular A
(4) Tridiagonalization of unsymmetric A
(5) Original motivation
(6) Symmetric $A x=b$
(7) Unsymmetric $A x=b$

Outline

(1) History
(2) Tridiagonalization of symmetric A
(3) Bidiagonalization of rectangular A
(4) Tridiagonalization of unsymmetric A
(5) Original motivation
(6) Symmetric $A x=b$
(7) Unsymmetric $A x=b$
(8) Elizabeth Yip's aim

Outline

(1) History
(2) Tridiagonalization of symmetric A
(3) Bidiagonalization of rectangular A
(4) Tridiagonalization of unsymmetric A
(5) Original motivation
(6) Symmetric $A x=b$
(7) Unsymmetric $A x=b$
(8) Elizabeth Yip's aim
(9) Numerical results

Outline

(1) History
(2) Tridiagonalization of symmetric A
(3) Bidiagonalization of rectangular A
(4) Tridiagonalization of unsymmetric A
(5) Original motivation
(6) Symmetric $A x=b$
(7) Unsymmetric $A x=b$
(8) Elizabeth Yip's aim
(9) Numerical results
(10) Conclusions

History of iterative solvers

History

- 1950 Lanczos tridiagonalization of symmetric A for eigenvalues. Products $A v$ plus a few vectors

History

- 1950 Lanczos tridiagonalization of symmetric A for eigenvalues. Products $A v$ plus a few vectors
- 1952 Lanczos method of "minimized iterations" for posdef $A x=b$

History

- 1950 Lanczos tridiagonalization of symmetric A for eigenvalues. Products $A v$ plus a few vectors
- 1952 Lanczos method of "minimized iterations" for posdef $A x=b$
- 1952 Hestenes and Stiefel CG method for posdef $A x=b$

History

- 1950 Lanczos tridiagonalization of symmetric A for eigenvalues. Products $A v$ plus a few vectors
- 1952 Lanczos method of "minimized iterations" for posdef $A x=b$
- 1952 Hestenes and Stiefel CG method for posdef $A x=b$
- 1965 Golub-Kahan bidiagonalization of general A for SVD

History

- 1950 Lanczos tridiagonalization of symmetric A for eigenvalues. Products $A v$ plus a few vectors
- 1952 Lanczos method of "minimized iterations" for posdef $A x=b$
- 1952 Hestenes and Stiefel CG method for posdef $A x=b$
- 1965 Golub-Kahan bidiagonalization of general A for SVD
- 1971 Paige thesis on Lanczos tridiagonalization for eigenvalues

History

- 1950 Lanczos tridiagonalization of symmetric A for eigenvalues. Products $A v$ plus a few vectors
- 1952 Lanczos method of "minimized iterations" for posdef $A x=b$
- 1952 Hestenes and Stiefel CG method for posdef $A x=b$
- 1965 Golub-Kahan bidiagonalization of general A for SVD
- 1971 Paige thesis on Lanczos tridiagonalization for eigenvalues
- 1975 Paige-Saunders SYMMLQ and MINRES

Lanczos tridiagonalization for indefinite $A x=b$

History

- 1950 Lanczos tridiagonalization of symmetric A for eigenvalues. Products $A v$ plus a few vectors
- 1952 Lanczos method of "minimized iterations" for posdef $A x=b$
- 1952 Hestenes and Stiefel CG method for posdef $A x=b$
- 1965 Golub-Kahan bidiagonalization of general A for SVD
- 1971 Paige thesis on Lanczos tridiagonalization for eigenvalues
- 1975 Paige-Saunders SYMMLQ and MINRES

Lanczos tridiagonalization for indefinite $A x=b$

- 1982 Paige-Saunders LSQR

Golub-Kahan bidiagonalization for general $A x=b, \min \|A x-b\|$

History (contd)

- 1981 Saunders, 2 months in Sweden

Tridiagonalization for unsymmetric $A x=b$
Coded and tested USYMLQ

History (contd)

- 1981 Saunders, 2 months in Sweden

Tridiagonalization for unsymmetric $A x=b$
Coded and tested USYMLQ

- 1982 (July) Yip, SIAM meeting at Stanford "CG method for unsymmetric matrices applied to PDE problems"

History (contd)

- 1981 Saunders, 2 months in Sweden

Tridiagonalization for unsymmetric $A x=b$
Coded and tested USYMLQ

- 1982 (July) Yip, SIAM meeting at Stanford "CG method for unsymmetric matrices applied to PDE problems"
- 1982 (Oct) Simon, Sparse Matrix Symposium
"The Lanczos algorithm for ... nonsymmetric linear systems"
(?? Seems to be LSQR with partial reorthogonalization)

History (contd)

- 1981 Saunders, 2 months in Sweden

Tridiagonalization for unsymmetric $A x=b$
Coded and tested USYMLQ

- 1982 (July) Yip, SIAM meeting at Stanford "CG method for unsymmetric matrices applied to PDE problems"
- 1982 (Oct) Simon, Sparse Matrix Symposium
"The Lanczos algorithm for ... nonsymmetric linear systems"
(?? Seems to be LSQR with partial reorthogonalization)
- 1988 Saunders, Simon, and Yip, SINUM 25
"Two CG-type methods for unsymmetric linear equations" (USYMLQ and USYMQR \equiv GMINRES)

History (contd)

- 2006 Reichel and Ye
"A generalized LSQR algorithm" (GLSQR)
Unsymmetric tridiagonalization, focused on rectangular A

History (contd)

- 2006 Reichel and Ye
"A generalized LSQR algorithm" (GLSQR)
Unsymmetric tridiagonalization, focused on rectangular A
- 2007 Golub, Stoll, and Wathen (draft)
"Approximation of outputs"
Unsymmetric tridiagonalization, focused on $A x=b, A^{T} y=c$ and estimation of $c^{T} x$ and $b^{T} y$

Tridiagonalization of symmetric A using orthogonal matrices

Symmetric A

- Tridiagonalization for dense EVD (eigenvalues)

$$
\begin{gathered}
V_{1}^{\top} A=\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
& * & * & * \\
& * & * & *
\end{array}\right), \quad V_{1}^{\top} A V_{1}=\left(\begin{array}{llll}
* & * & & \\
* & * & * & * \\
& * & * & * \\
& * & * & *
\end{array}\right) \quad \cdots \rightarrow\left(\begin{array}{llll}
* & * & & \\
* & * & * & \\
& * & * & * \\
& & * & *
\end{array}\right) \\
V^{\top} A V=T \Rightarrow \quad A V=V T
\end{gathered}
$$

Symmetric A

- Tridiagonalization for dense EVD (eigenvalues)

$$
\begin{gathered}
V_{1}^{\top} A=\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
& * & * & * \\
& * & * & *
\end{array}\right), \quad V_{1}^{T} A V_{1}=\left(\begin{array}{cccc}
* & * & & \\
* & * & * & * \\
& * & * & * \\
& * & * & *
\end{array}\right) \quad \cdots \rightarrow\left(\begin{array}{llll}
* & * & & \\
* & * & * & \\
& * & * & * \\
& & & *
\end{array}\right) \\
V^{T} A V=T \Rightarrow A V=V T
\end{gathered}
$$

- Symmetric Lanczos process on A, b

$$
\begin{array}{ll}
\beta_{1} v_{1}=b \\
& T_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{1}=A v_{1} & \alpha_{2} & \beta_{3} & \\
& \alpha_{1}=v_{1}^{T} p_{1} & \\
\beta_{2} v_{2}=p_{1}-\alpha_{1} v_{1} & * & * \\
& & \beta_{k} & \alpha_{k}
\end{array}\right) \\
\begin{array}{ll}
p_{2}=A v_{2} & \alpha_{2}=v_{2}^{T} p_{2} \\
\beta_{3} v_{3}=p_{2}-\alpha_{2} v_{2}-\beta_{1} v_{1} & v_{k}=\left(\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{k}
\end{array}\right) \\
& A V_{k}=V_{k} T_{k}+\beta_{k+1} v_{k+1} e_{k}^{T}
\end{array} \\
&
\end{array}
$$

Bidiagonalization of rectangular A

Rectangular A

- Bidiagonalization for dense SVD (Golub and Kahan 1965)

$$
\begin{aligned}
& U_{1}^{T} A=\left(\begin{array}{cccc}
* & * & * & * \\
& * & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right), \quad U_{1}^{T} A V_{1}=\left(\begin{array}{cccc}
* & * & & \\
& * & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \quad \cdots \rightarrow\left(\begin{array}{llll}
* & * & & \\
& * & * & \\
& & * & * \\
& & & * \\
& U^{\top} A V=B \quad \Rightarrow \quad A V=U B, \quad A^{T} U=V B^{T}
\end{array}\right. \\
& \\
& \\
&
\end{aligned}
$$

Rectangular A

- Bidiagonalization for dense SVD (Golub and Kahan 1965)

$$
\begin{aligned}
& U_{1}^{T} A=\left(\begin{array}{cccc}
* & * & * & * \\
& * & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right), \quad U_{1}^{T} A V_{1}=\left(\begin{array}{cccc}
* & * & & \\
& * & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \quad \cdots \rightarrow\left(\begin{array}{llll}
* & * & & \\
& * & * & \\
& & * & * \\
& & & * \\
& U^{T} A V=B \quad \Rightarrow \quad A V=U B, \quad A^{T} U=V B^{T}
\end{array}\right. \\
& \\
& \\
&
\end{aligned}
$$

- Golub-Kahan process on A, b

$$
\begin{aligned}
& \beta_{1} u_{1}=b, \quad \alpha_{1} v_{1}=A^{T} u_{1} \\
& \beta_{2} u_{2}=A v_{1}-\alpha_{1} v_{1} \\
& \alpha_{2} v_{2}=A^{T} u_{2}-\beta_{2} v_{1}
\end{aligned}
$$

$$
\begin{aligned}
& B_{k}=\left(\begin{array}{cccc}
\alpha_{1} & & & \\
\beta_{2} & \alpha_{2} & & \\
& * & * & \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right) \\
& U_{k}=\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{k}
\end{array}\right) \\
& V_{k}
\end{aligned}=\left(\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{k}
\end{array}\right) .
$$

$$
A V_{k}=U_{k+1} B_{k}, \quad A^{T} U_{k}=V_{k} L_{k}^{T}
$$

Upper or lower bidiagonal?

- Dense A

$$
A V=U B=U\left(\begin{array}{cccc}
* & * & & \\
& * & * & \\
& & * & * \\
& & & *
\end{array}\right)
$$

Upper or lower bidiagonal?

- Dense A

$$
A V=U B=U\left(\begin{array}{llll}
* & * & & \\
& * & * & \\
& & * & * \\
& & & *
\end{array}\right)
$$

- Sparse A with $b=\beta_{1} u_{1}$

$$
\begin{aligned}
A V_{k}=U_{k+1} B_{k} \quad \Rightarrow \quad\left(\begin{array}{ll}
b & A V_{k}
\end{array}\right) & =U_{k+1}\left(\begin{array}{lll}
\beta_{1} e_{1} & B_{k}
\end{array}\right) \\
\Rightarrow \quad\left(\begin{array}{ll}
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V_{k}
\end{array}\right) & =U_{k+1}\left(\begin{array}{llll}
* & * & & \\
& * & * & \\
& * & * \\
& & & *
\end{array}\right)
\end{aligned}
$$

Tridiagonalization of unsymmetric or rectangular A (the "new method")

Rectangular A

- Tridiagonalization for dense EVD (eigenvalues)

$$
\begin{gathered}
U_{1}^{\top} A=\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
& * & * & * \\
& * & * & *
\end{array}\right), \quad U_{1}^{\top} A V_{1}=\left(\begin{array}{llll}
* & * & & \\
* & * & * & * \\
& * & * & * \\
& * & * & *
\end{array}\right) \quad \cdots \rightarrow\left(\begin{array}{llll}
* & * & & \\
* & * & * & \\
& * & * & * \\
& & * & *
\end{array}\right) \\
U^{\top} A V=T \Rightarrow \quad A V=U T,
\end{gathered} A^{\top} U=V T^{\top} .
$$

Rectangular A

- Tridiagonalization for dense EVD (eigenvalues)

$$
\begin{gathered}
U_{1}^{\top} A=\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
& * & * & * \\
& * & * & *
\end{array}\right), \quad U_{1}^{\top} A V_{1}=\left(\begin{array}{llll}
* & * & & \\
* & * & * & * \\
& * & * & * \\
& * & * & *
\end{array}\right) \quad \ldots \\
U^{\top} A V=T \quad \Rightarrow \quad A V=U T, \\
A^{\top} U=V T^{\top}
\end{gathered}
$$

- Bi-tridiagonalization process on A, b, c

$$
\begin{array}{ll}
\beta_{1} u_{1}=b & \gamma_{1} v_{1}=c \\
p_{1}=A v_{1} & \alpha_{1}=u_{1}^{T} p_{1} \\
\beta_{2} u_{2}=p_{1}-\alpha_{1} u_{1}-\gamma_{1} u_{0} \\
q_{1}=A^{T} u_{2} \\
\gamma_{2} v_{2}=q_{1}-\alpha_{1} v_{1}-\beta_{1} v_{0}
\end{array}
$$

$$
T_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \gamma_{2} & & \\
\beta_{2} & \alpha_{2} & \gamma_{3} & \\
& * & * & * \\
& & \beta_{k} & \alpha_{k}
\end{array}\right)
$$

$$
U_{k}=\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{k}
\end{array}\right)
$$

$$
V_{k}=\left(\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{k}
\end{array}\right)
$$

$$
\begin{aligned}
A V_{k} & =U_{k} T_{k}+\beta_{k+1} u_{k+1} e_{k}^{T} \\
A^{T} U_{k} & =V_{k} T_{k}^{T}+\gamma_{k+1} v_{k+1} e_{k}^{T}
\end{aligned}
$$

Original motivation (1981)

Original motivation (1981)

- CG, SYMMLQ, MINRES work well for symmetric $A x=b$

Original motivation (1981)

- CG, SYMMLQ, MINRES work well for symmetric $A x=b$
- Bi-tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration

Original motivation (1981)

- CG, SYMMLQ, MINRES work well for symmetric $A x=b$
- Bi-tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration
- If A is symmetric, we get Lanczos

Original motivation (1981)

- CG, SYMMLQ, MINRES work well for symmetric $A x=b$
- Bi-tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration
- If A is symmetric, we get Lanczos
- If A is nearly symmetric, total itns should be not much more

Solving symmetric $A x=b$ via Lanczos

Symmetric $A x=b$

Lanzcos process:

$$
A V_{k}=V_{k+1} H_{k}, \quad H_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & \\
& * & * & * \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right)
$$

Symmetric $A x=b$

Lanzcos process:

$$
A V_{k}=V_{k+1} H_{k}, \quad H_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & \\
& * & * & * \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right)
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}

Symmetric $A x=b$

Lanzcos process:

$$
A V_{k}=V_{k+1} H_{k}, \quad H_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & \\
& * & * & * \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right)
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}

- $r_{k}=b-A x_{k}$

Symmetric $A x=b$

Lanzcos process:

$$
A V_{k}=V_{k+1} H_{k}, \quad H_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & \\
& * & * & * \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right)
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}

- $r_{k}=b-A x_{k}$
- $r_{k}=V_{k+1}\left(\beta_{1} e_{1}-H_{k} w_{k}\right)$

Symmetric $A x=b$

Lanzcos process:

$$
A V_{k}=V_{k+1} H_{k}, \quad H_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & \\
& * & * & * \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right)
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}

- $r_{k}=b-A x_{k}$
- $r_{k}=V_{k+1}\left(\beta_{1} e_{1}-H_{k} w_{k}\right)$
- $\left\|r_{k}\right\|$ will be small if $H_{k} w_{k} \approx \beta_{1} e_{1}$

Symmetric $A x=b$

Lanzcos process:

$$
A V_{k}=V_{k+1} H_{k}, \quad H_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & \\
& * & * & * \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right)
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}

- $r_{k}=b-A x_{k}$
- $r_{k}=V_{k+1}\left(\beta_{1} e_{1}-H_{k} w_{k}\right)$
- $\left\|r_{k}\right\|$ will be small if $H_{k} w_{k} \approx \beta_{1} e_{1}$

Three subproblems make $H_{k} w_{k} \approx \beta_{1} e_{1} \quad \Rightarrow \quad$ CG, SYMMLQ, MINRES

Symmetric $A x=b$

Lanzcos process:

$$
A V_{k}=V_{k+1} H_{k}, \quad H_{k}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & \\
& * & * & * \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right)
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}

- $r_{k}=b-A x_{k}$
- $r_{k}=V_{k+1}\left(\beta_{1} e_{1}-H_{k} w_{k}\right)$
- $\left\|r_{k}\right\|$ will be small if $H_{k} w_{k} \approx \beta_{1} e_{1}$

Three subproblems make $H_{k} w_{k} \approx \beta_{1} e_{1} \Rightarrow$ CG, SYMMLQ, MINRES

$$
\text { (e.g. } T_{k} w_{k}=\beta_{1} e_{1} \text { for CG) }
$$

Symmetric \rightarrow Unsymmetric

$$
\text { Lanczos on }\left(\begin{array}{cc}
1 & A \\
A^{T} &
\end{array}\right)\binom{r}{x}=\binom{b}{0}
$$

leads to Golub-Kahan and LSQR

Symmetric \rightarrow Unsymmetric

Lanczos on $\left(\begin{array}{cc}I & A \\ A^{T} & \end{array}\right)\binom{r}{x}=\binom{b}{0}$
(general A)
leads to Golub-Kahan and LSQR

Lanczos on $\left(\begin{array}{ll}A^{T} & A\end{array}\right)\binom{y}{x}=\binom{b}{c}$
(square A)
is not equivalent to bi-tridiagonalization (but seems worth trying!)

Symmetric \rightarrow Unsymmetric

Lanczos on $\left(\begin{array}{cc}I & A \\ A^{T} & \end{array}\right)\binom{r}{x}=\binom{b}{0}$
(general A)
leads to Golub-Kahan and LSQR

Lanczos on $\left(\begin{array}{ll}A^{T} & A\end{array}\right)\binom{y}{x}=\binom{b}{c} \quad($ square $A)$ is not equivalent to bi-tridiagonalization (but seems worth trying!)

Lanczos on $\left(\begin{array}{cc}I & A \\ A^{T} & \end{array}\right)\binom{r}{x}=\binom{b}{c}$
is not equivalent either
(general A)
(Who would like to try?)

Solving unsymmetric $A x=b$ via bi-tridiagonalization

Unsymmetric $A x=b$

Bi-tridiag process:

$$
\begin{aligned}
A V_{k} & =U_{k} T_{k}+\beta_{k+1} u_{k+1} e_{k}^{T} \equiv U_{k+1} H_{k}^{\beta} \\
A^{T} U_{k} & =V_{k} T_{k}^{T}+\gamma_{k+1} v_{k+1} e_{k}^{T} \equiv V_{k+1} H_{k}^{\gamma}
\end{aligned}
$$

Unsymmetric $A x=b$

Bi-tridiag process:

$$
\begin{aligned}
A V_{k} & =U_{k} T_{k}+\beta_{k+1} u_{k+1} e_{k}^{T} \equiv U_{k+1} H_{k}^{\beta} \\
A^{T} U_{k} & =V_{k} T_{k}^{T}+\gamma_{k+1} v_{k+1} e_{k}^{T} \equiv V_{k+1} H_{k}^{\gamma}
\end{aligned}
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}

Unsymmetric $A x=b$

Bi-tridiag process:

$$
\begin{aligned}
A V_{k} & =U_{k} T_{k}+\beta_{k+1} u_{k+1} e_{k}^{T} \equiv U_{k+1} H_{k}^{\beta} \\
A^{T} U_{k} & =V_{k} T_{k}^{T}+\gamma_{k+1} v_{k+1} e_{k}^{T} \equiv V_{k+1} H_{k}^{\gamma}
\end{aligned}
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}
Three subproblems make $H_{k}^{\beta} w_{k} \approx \beta_{1} e_{1} \Rightarrow$ UCG, USYMLQ, USYMQR

Unsymmetric $A x=b$

Bi-tridiag process:

$$
\begin{aligned}
A V_{k} & =U_{k} T_{k}+\beta_{k+1} u_{k+1} e_{k}^{T} \equiv U_{k+1} H_{k}^{\beta} \\
A^{T} U_{k} & =V_{k} T_{k}^{T}+\gamma_{k+1} v_{k+1} e_{k}^{T} \equiv V_{k+1} H_{k}^{\gamma}
\end{aligned}
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}
Three subproblems make $H_{k}^{\beta} w_{k} \approx \beta_{1} e_{1} \Rightarrow$ UCG, USYMLQ, USYMQR

Similarly, let $y_{k}=U_{k} \bar{w}_{k}$ to solve $A^{T} y=c$
Three subproblems make $H_{k}^{\gamma} y_{k} \approx \gamma_{1} e_{1}$

Unsymmetric $A x=b$

Bi-tridiag process:

$$
\begin{aligned}
A V_{k} & =U_{k} T_{k}+\beta_{k+1} u_{k+1} e_{k}^{T} \equiv U_{k+1} H_{k}^{\beta} \\
A^{T} U_{k} & =V_{k} T_{k}^{T}+\gamma_{k+1} v_{k+1} e_{k}^{T} \equiv V_{k+1} H_{k}^{\gamma}
\end{aligned}
$$

Suppose $x_{k}=V_{k} w_{k}$ for some w_{k}
Three subproblems make $H_{k}^{\beta} w_{k} \approx \beta_{1} e_{1} \Rightarrow$ UCG, USYMLQ, USYMQR

Similarly, let $y_{k}=U_{k} \bar{w}_{k}$ to solve $A^{T} y=c$
Three subproblems make $H_{k}^{\gamma} y_{k} \approx \gamma_{1} e_{1}$

Not much extra effort to get both x_{k} and y_{k}

Elizabeth Yip's motivation (1982)
 (Boeing Computer Services Co.)

Elizabeth's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve $A x=b$, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Elizabeth's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve $A x=b$, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

Elizabeth's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve $A x=b$, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

However, ... the condition number for our tridiagonalization is the square root of that for the bidiagonalization.

Elizabeth's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve $A x=b$, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

However, ... the condition number for our tridiagonalization is the square root of that for the bidiagonalization.

We apply a preconditioned version (Fast Poisson) to the difference equation of unsteady transonic flow with small disturbances. (Compared with ORTHOMIN(5))

Numerical results with unsymmetric tridiagonalization

Numerical results (SSY 1988)

$$
A=\left(\begin{array}{ccccc}
B & -l & & & \\
-I & B & -l & & \\
& \ddots & \ddots & \ddots & \\
& & -I & B & -I \\
& & -l & B
\end{array}\right) \quad B=\operatorname{tridiag}\left(\begin{array}{lll}
-1-\delta & 4 & -1+\delta) \\
& 400 \times 400 &
\end{array}\right.
$$

Numerical results (SSY 1988)

$$
A=\left(\begin{array}{ccccc}
B & -l & & & \\
-I & B & -l & & \\
& \ddots & \ddots & \ddots & \\
& & -I & B & -I \\
& & -l & B
\end{array}\right) \quad B=\operatorname{tridiag}\left(\begin{array}{lll}
-1-\delta & 4 & -1+\delta) \\
& 400 \times 400 &
\end{array}\right.
$$

Megaflops to reach $\|r\| \leq 10^{-6}\|b\|$:

δ	0.0	0.01	0.1	1.0	10.0	100.0
ORTHOMIN(5)	0.31	0.57	0.75	0.83	2.55	2.11
LSQR	0.28	1.38	1.48	0.80	0.57	0.27
USYMQR	0.30	1.88	1.98	1.41	0.99	0.64

Numerical results (SSY 1988)

$$
A=\left(\begin{array}{ccccc}
B & -I & & & \\
-I & B & -I & & \\
& \ddots & \ddots & \ddots & \\
& & -I & B & -I \\
& & -I & B
\end{array}\right) \quad B=\operatorname{tridiag}\left(\begin{array}{lll}
-1-\delta & 4 & -1+\delta) \\
& 400 \times 400 &
\end{array}\right.
$$

Megaflops to reach $\|r\| \leq 10^{-6}\|b\|$:

δ	0.0	0.01	0.1	1.0	10.0	100.0
ORTHOMIN(5)	0.31	0.57	0.75	0.83	2.55	2.11
LSQR	0.28	1.38	1.48	0.80	0.57	0.27
USYMQR	0.30	1.88	1.98	1.41	0.99	0.64

Bottom line:
ORTHOMIN sometimes good, can fail. LSQR always better than USYMQR

Numerical results (Reichel and Ye 2006)

- Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR - hence GLSQR)

Numerical results (Reichel and Ye 2006)

- Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR - hence GLSQR)
- Three numerical examples (all square!)

Numerical results (Reichel and Ye 2006)

- Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR - hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_{1} \propto c$

Numerical results (Reichel and Ye 2006)

- Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR - hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_{1} \propto c$
- Focused on choice of c stopping early looking at $x_{k}=\left(\begin{array}{llll}x_{k 1} & x_{k 2} & \ldots & x_{k n}\end{array}\right)$

Numerical results (Reichel and Ye 2006)

- Focused on rectangular A and least-squares (Forgot about SSY88 and USYMQR - hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_{1} \propto c$
- Focused on choice of c stopping early looking at $x_{k}=\left(\begin{array}{llll}x_{k 1} & x_{k 2} & \ldots & x_{k n}\end{array}\right)$

Example 1: We know $x \approx$ constant. Choose $c=\left(\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right)^{T}$

Example 2 (Star cluster)

- 256×256 pixels $(n=65536), \quad 470$ stars

Example 2 (Star cluster)

- 256×256 pixels $(n=65536), 470$ stars
- Square $A x \approx b, \quad$ choose $c=b$

Example 2 (Star cluster)

- 256×256 pixels $(n=65536), \quad 470$ stars
- Square $A x \approx b$, choose $c=b$
- Compare error in $x_{k}^{\text {LSQR }}$ and $x_{k}^{\text {GLSQR }}$ for 40 iterations

Example 2 (Star cluster)

- 256×256 pixels $(n=65536), 470$ stars
- Square $A x \approx b, \quad$ choose $c=b$
- Compare error in $x_{k}^{\text {LSQR }}$ and $x_{k}^{\text {GLSQR }}$ for 40 iterations

Conclusions

Subspaces

- Unsymmetric Lanczos generates two Krylov subspaces:

$$
\begin{aligned}
& U_{k} \in \operatorname{span}\left\{b \quad A b \quad A^{2} b\right. \\
& V_{k} \in \operatorname{span}\left\{\begin{array}{llll}
c & A^{T} c & \left(A^{T}\right)^{2} c & \ldots
\end{array} A^{k-1} b\right\} \\
& \left.\left.V^{T}\right)^{k-1} c\right\}
\end{aligned}
$$

Subspaces

- Unsymmetric Lanczos generates two Krylov subspaces:

$$
\begin{aligned}
& U_{k} \in \operatorname{span}\left\{b \quad A b \quad A^{2} b\right. \\
& V_{k} \in \operatorname{span}\left\{\begin{array}{llll}
c & A^{T} c & \left(A^{T}\right)^{2} c & \ldots
\end{array} A^{k-1} b\right\} \\
& \left.\left(A^{T}\right)^{k-1} c\right\}
\end{aligned}
$$

- Bi-tridiagonalization generates

$$
\begin{aligned}
& U_{2 k} \in \operatorname{span}\left\{\begin{array}{lllllll}
b & A A^{T} b & \ldots & \left(A A^{T}\right)^{k-1} b & A c & \left(A A^{T}\right) A c & \ldots
\end{array}\right\} \\
& V_{2 k} \in \operatorname{span}\left\{\begin{array}{llllll}
c & A^{T} A c & \ldots & \left(A^{T} A\right)^{k-1} c & A^{T} b & \left(A^{T} A\right) A^{T} b
\end{array} \ldots\right.
\end{aligned}
$$

Functionals $c^{T} x, b^{T} y$

- Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve $A x=b$ and $A^{T} y=c$ simultaneously and to estimate $c^{\top} x$ and $b^{\top} y$ at a superconvergent rate:

$$
\left|c^{T} x_{k}-c^{T} x\right| \approx\left|b^{T} y_{k}-b^{T} y\right| \approx \frac{\left\|b-A x_{k}\right\|\left\|c-A^{T} y_{k}\right\|}{\sigma_{\min }(A)}
$$

Functionals $c^{T} x, b^{T} y$

- Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve $A x=b$ and $A^{\top} y=c$ simultaneously and to estimate $c^{T} x$ and $b^{T} y$ at a superconvergent rate:

$$
\left|c^{T} x_{k}-c^{T} x\right| \approx\left|b^{T} y_{k}-b^{T} y\right| \approx \frac{\left\|b-A x_{k}\right\|\left\|c-A^{T} y_{k}\right\|}{\sigma_{\min }(A)}
$$

- Golub, Stoll and Wathen (draft 2007) plan to use bi-triagonalization with GLSQR to do likewise

Functionals $c^{\top} x, b^{T} y$

- Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve $A x=b$ and $A^{\top} y=c$ simultaneously and to estimate $c^{T} x$ and $b^{T} y$ at a superconvergent rate:

$$
\left|c^{T} x_{k}-c^{T} x\right| \approx\left|b^{T} y_{k}-b^{T} y\right| \approx \frac{\left\|b-A x_{k}\right\|\left\|c-A^{T} y_{k}\right\|}{\sigma_{\min }(A)}
$$

- Golub, Stoll and Wathen (draft 2007) plan to use bi-triagonalization with GLSQR to do likewise

Thanks for your patience!!

