Generalized MINRES or Generalized LSQR?

Michael Saunders
Systems Optimization Laboratory (SOL)
Institute for Computational Mathematics and Engineering (ICME)
Stanford University

New Frontiers in Numerical Analysis and Scientific Computing on the occasion of Lothar Reichel's 60th birthday and the 20th anniversary of ETNA

Department of Mathematical Sciences
Kent State University

Motivation

The Golub-Kahan orthogonal bidiagonalization of $A \in \mathbb{R}^{m \times n}$ gives us freedom to choose 1 starting vector $b \in \mathbb{R}^{m}$ and solve sparse systems $A x \approx b$ (as in LSQR)

But orthogonal tridiagonalization gives us freedom to choose 2 starting vectors $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$ and solve two sparse systems systems $A x \approx b$ and $A^{T} y \approx c$ (as in USYMQR \equiv GMINRES)

Motivation

The Golub-Kahan orthogonal bidiagonalization of $A \in \mathbb{R}^{m \times n}$ gives us freedom to choose 1 starting vector $b \in \mathbb{R}^{m}$ and solve sparse systems $A x \approx b$ (as in LSQR)

But orthogonal tridiagonalization gives us freedom to choose 2 starting vectors $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$ and solve two sparse systems systems $A x \approx b$ and $A^{T} y \approx c$ (as in USYMQR \equiv GMINRES)

Reichel and Ye (2008) chose c to speed up the computation of x
Golub, Stoll and Wathen (2008) wanted $c^{T} x=b^{T} y$

Abstract

Given a general matrix A, we can construct orthogonal matrices U, V that reduce A to tridiagonal form: $U^{T} A V=T$. We can also arrange that the first columns of U and V are proportional to given vectors b and c. For square A, an iterative form of this orthogonal tridiagonalization was given by Saunders, Simon, and Yip (SINUM 1988) and used to solve square systems $A x=b$ and $A^{T} y=c$ simultaneously. (One of the resulting solvers becomes MINRES when A is symmetric and $b=c$.)

The approach was rediscovered by Reichel and Ye (NLAA 2008) with emphasis on rectangular A and least-squares problems $A x \approx b$. The resulting solver was regarded as a generalization of LSQR (although it doesn't become LSQR in any special case). Careful choice of c was shown to improve convergence.

In his last year of life, Gene Golub became interested in "GLSQR" for estimating $c^{T} x=b^{T} y$ without computing x or y (Golub, Stoll, and Wathen (ETNA 2008)). We review the tridiagonalization process and Gene et al.'s insight into its true identity.

Orthogonal matrix reductions

$$
\begin{array}{lll}
\text { Direct: } & V=\text { product of Householder transformations } & n \times n \\
\text { Iterative: } & V_{k}=\left(\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{k}
\end{array}\right) & n \times k
\end{array}
$$

Mostly short-term recurrences

Tridiagonalization of symmetric A

Direct:

$$
\left(\begin{array}{ll}
1 & \\
& V^{T}
\end{array}\right)\left(\begin{array}{ll}
0 & b^{T} \\
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{lllll}
0 & x & & & \\
x & x & x & & \\
& x & x & x & \\
& & x & x & x \\
& & & x & x
\end{array}\right)
$$

Tridiagonalization of symmetric A

Direct:

$$
\left(\begin{array}{ll}
1 & \\
& V^{T}
\end{array}\right)\left(\begin{array}{ll}
0 & b^{T} \\
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{lllll}
0 & x & & & \\
x & x & x & & \\
& x & x & x & \\
& & x & x & x \\
& & & x & x
\end{array}\right)
$$

Iterative: Lanczos process

$$
\left(\begin{array}{ll}
b & A V_{k}
\end{array}\right)=V_{k+1}\left(\beta e_{1} \quad T_{k+1, k}\right)
$$

Bidiagonalization of rectangular A

Direct:

$$
U^{T}\left(\begin{array}{ll}
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{ccccc}
x & x & & & \\
& x & x & & \\
& & x & x & \\
& & & x & x \\
& & & & x \\
& & & &
\end{array}\right)
$$

Bidiagonalization of rectangular A

Direct:

$$
U^{T}\left(\begin{array}{ll}
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{ccccc}
x & x & & & \\
& x & x & & \\
& & x & x & \\
& & & x & x \\
& & & & x \\
& & & &
\end{array}\right)
$$

Iterative: Golub-Kahan process

$$
\left(\begin{array}{ll}
b & A V_{k}
\end{array}\right)=U_{k+1}\left(\begin{array}{ll}
\beta e_{1} & B_{k+1, k}
\end{array}\right)
$$

Tridiagonalization of rectangular A

Direct:

$$
\left(\begin{array}{ll}
1 & \\
& U^{T}
\end{array}\right)\left(\begin{array}{ll}
0 & c^{T} \\
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{lllll}
x & x & x & & \\
& x & x & x & \\
& & x & x & x \\
& & & x & x \\
& & & & x
\end{array}\right)
$$

Tridiagonalization of rectangular A

Direct:

$$
\left(\begin{array}{ll}
1 & \\
& U^{T}
\end{array}\right)\left(\begin{array}{ll}
0 & c^{T} \\
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{lllll}
0 & x & & & \\
x & x & x & & \\
& x & x & x & \\
& & x & x & x \\
& & & x & x \\
& & & & x
\end{array}\right)
$$

Iterative: S-Simon-Yip (1988), Reichel-Ye (2008)

$$
\left.\begin{array}{rl}
(b & A V_{k}
\end{array}\right)=U_{k+1}\left(\begin{array}{ll}
\beta e_{1} & T_{k+1, k}
\end{array}\right)=\left(\begin{array}{ll}
c & A^{T} U_{k}
\end{array}\right)=V_{k+1}\left(\begin{array}{ll}
\gamma e_{1} & T_{k, k+1}^{T}
\end{array}\right)
$$

MINRES-type solvers

based on

Lanczos, Arnoldi, Golub-Kahan, orth-tridiag

MINRES-type solvers for $A x \approx b$

A	Process			Solver
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S 2011	MINRES-QLP	
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
unsymmetric	Arnoldi	Saad-Schultz 1986	GMRES	
unsymmetric	orth-tridiag	S-Simon-Yip 1988	USYMQR	
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

MINRES-type solvers for $A x \approx b$

A	Process			Solver
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S 2011	MINRES-QLP	
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
square	Arnoldi	Saad-Schultz 1986	GMRES	
square	orth-tridiag	S-Simon-Yip 1988	GMINRES	
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

MINRES-type solvers for $A x \approx b$

A	Process		Solver	
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S 2011	MINRES-QLP	
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
square	Arnoldi	Saad-Schultz 1986	GMRES	
square	orth-tridiag	S-Simon-Yip 1988	GMINRES	
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

All these processes produce similar outputs:

Lanczos	$\left(\begin{array}{ll}b & A V_{k}\end{array}\right)=V_{k+1}\left(\beta e_{1}\right.$	$T_{k+1, k}$)
Golub-Kahan	$\left(\begin{array}{ll}b & A V_{k}\end{array}\right)=U_{k+1}\left(\beta e_{1}\right.$	$B_{k+1, k}$)
orth-tridiag	$\left(\begin{array}{ll}b & A V_{k}\end{array}\right)=U_{k+1}\left(\beta e_{1}\right.$	$T_{k+1, k}$)
and	$\left(c \quad A^{T} U_{k}\right)=V_{k+1}\left(\gamma e_{1}\right.$	$\left.T_{k, k+1}^{T}\right)$

MINRES-type solvers for $A x \approx b$

A	Process		Solver	
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S 2011	MINRES-QLP	
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
square	Arnoldi	Saad-Schultz 1986	GMRES	
square	orth-tridiag	S-Simon-Yip 1988	GMINRES	
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

All methods:

$$
\begin{aligned}
& \left(\begin{array}{ll}
b & A V_{k}
\end{array}\right)=U_{k+1}\left(\begin{array}{ll}
\beta e_{1} & H_{k}
\end{array}\right) \\
& b-A V_{k} w_{k}=U_{k+1}\left(\beta e_{1}-H_{k} w_{k}\right) \\
& \left\|b-A V_{k} w_{k}\right\| \leq\left\|U_{k+1}\right\|\left\|\beta e_{1}-H_{k} w_{k}\right\|
\end{aligned}
$$

MINRES-type solvers for $A x \approx b$

A	Process		Solver	
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S 2011	MINRES-QLP	
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
square	Arnoldi	Saad-Schultz 1986	GMRES	
square	orth-tridiag	S-Simon-Yip 1988	GMINRES	
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

All methods:

$$
\begin{aligned}
& \left(\begin{array}{ll}
b & A V_{k}
\end{array}\right)=U_{k+1}\left(\begin{array}{ll}
\beta e_{1} & H_{k}
\end{array}\right) \\
& b-A V_{k} w_{k}=U_{k+1}\left(\beta e_{1}-H_{k} w_{k}\right) \\
& \left\|b-A V_{k} w_{k}\right\| \leq\left\|U_{k+1}\right\|\left\|\beta e_{1}-H_{k} w_{k}\right\|
\end{aligned}
$$

$\Rightarrow x_{k}=V_{k} w_{k}$ where we choose w_{k} from $\min \left\|\beta e_{1}-H_{k} w_{k}\right\|$

Symmetric methods for unsymmetric $A x \approx b$

$$
\begin{gathered}
\text { Lanczos on }\left(\begin{array}{cc}
I & A \\
A^{T} & -\delta^{2} l
\end{array}\right)\binom{r}{x}=\binom{b}{0} \text { gives Golub-Kahan } \\
\text { CG-type subproblem gives LSQR } \\
\text { MINRES-type subproblem gives LSMR }
\end{gathered}
$$

Symmetric methods for unsymmetric $A x \approx b$

Lanczos on $\left(\begin{array}{cc}1 & A \\ A^{T} & -\delta^{2} I\end{array}\right)\binom{r}{x}=\binom{b}{0}$ gives Golub-Kahan
CG-type subproblem gives LSQR
MINRES-type subproblem gives LSMR

Lanczos on $\left(\begin{array}{ll}A^{T} & A\end{array}\right)\binom{y}{x}=\binom{b}{c} \quad($ square $A)$
is not equivalent to orthogonal tridiagonalization
(but seems worth a try!)

Tridiagonalization of general A using orthogonal matrices

Some history

Orthogonal tridiagonalization

- 1988 Saunders, Simon, and Yip, SINUM 25
"Two CG-type methods for unsymmetric linear equations"
Focus on square A
USYMLQ and USYMQR (GSYMMLQ and GMINRES)

Orthogonal tridiagonalization

- 1988 Saunders, Simon, and Yip, SINUM 25
"Two CG-type methods for unsymmetric linear equations"
Focus on square A
USYMLQ and USYMQR (GSYMMLQ and GMINRES)
- 2008 Reichel and Ye
"A generalized LSQR algorithm"
Focus on rectangular A
GLSQR

Orthogonal tridiagonalization

- 1988 Saunders, Simon, and Yip, SINUM 25
"Two CG-type methods for unsymmetric linear equations"
Focus on square A
USYMLQ and USYMQR (GSYMMLQ and GMINRES)
- 2008 Reichel and Ye
"A generalized LSQR algorithm"
Focus on rectangular A
GLSQR
- 2008 Golub, Stoll, and Wathen
"Approximation of the scattering amplitude"
Focus on $A x=b, A^{T} y=c$ and estimation of $c^{T} x=b^{T} y$ without x, y

Orthogonal tridiagonalization

- 1988 Saunders, Simon, and Yip, SINUM 25
"Two CG-type methods for unsymmetric linear equations"
Focus on square A
USYMLQ and USYMQR (GSYMMLQ and GMINRES)
- 2008 Reichel and Ye
"A generalized LSQR algorithm"
Focus on rectangular A
GLSQR
- 2008 Golub, Stoll, and Wathen
"Approximation of the scattering amplitude"
Focus on $A x=b, A^{T} y=c$ and estimation of $c^{\top} x=b^{T} y$ without x, y
- 2012 Patrick Küschner, Max Planck Institute, Magdeburg

Eigenvalues
Need to solve $A x=b$ and $A^{T} y=c$

Original motivation (S 1981)

- CG, SYMMLQ, MINRES work well for symmetric $A x=b$

Original motivation (S 1981)

- CG, SYMMLQ, MINRES work well for symmetric $A x=b$
- Tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration

Original motivation (S 1981)

- CG, SYMMLQ, MINRES work well for symmetric $A x=b$
- Tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration
- If A is symmetric, we get Lanczos and MINRES etc

Original motivation (S 1981)

- CG, SYMMLQ, MINRES work well for symmetric $A x=b$
- Tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration
- If A is symmetric, we get Lanczos and MINRES etc
- If A is nearly symmetric, total itns should be not much more (??)

Elizabeth Yip's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems
We present a CG-type method to solve $A x=b$, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Elizabeth Yip's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems
We present a CG-type method to solve $A x=b$, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

Elizabeth Yip's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems
We present a CG-type method to solve $A x=b$, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

We apply a preconditioned version (Fast Poisson) to the difference equation of unsteady transonic flow with small disturbances. (Compared with ORTHOMIN(5))

Numerical results with orthogonal tridiagonalization

Numerical results (SSY 1988)

$$
A=\left(\begin{array}{ccccc}
B & -1 & & & \\
-1 & B & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & B & -1 \\
& & -1 & B
\end{array}\right) \quad B=\operatorname{tridiag}\left(\begin{array}{lll}
-1-\delta & 4 & -1+\delta
\end{array}\right)
$$

Numerical results (SSY 1988)

$$
A=\left(\begin{array}{ccccc}
B & -I & & & \\
-I & B & -I & & \\
& \ddots & \ddots & \ddots & \\
& & -I & B & -I \\
& & -I & B
\end{array}\right) \quad B=\operatorname{tridiag}\left(\begin{array}{lll}
-1-\delta & 4 & -1+\delta) \\
& 400 \times 400 & \\
20 \times 20
\end{array}\right.
$$

Megaflops to reach $\|r\| \leq 10^{-6}\|b\|$:

δ	0.0	0.01	0.1	1.0	10.0	100.0
ORTHOMIN(5)	0.31	0.57	0.75	0.83	2.55	2.11
LSQR	0.28	1.38	1.48	0.80	0.57	0.27
GMINRES	0.30	1.88	1.98	1.41	0.99	0.64

Numerical results (SSY 1988)

$$
A=\left(\begin{array}{ccccc}
B & -I & & & \\
-I & B & -I & & \\
& \ddots & \ddots & \ddots & \\
& & -I & B & -I \\
& & -I & B
\end{array}\right) \quad B=\operatorname{tridiag}\left(\begin{array}{lll}
-1-\delta & 4 & -1+\delta) \\
& 400 \times 400 & \\
20 \times 20
\end{array}\right.
$$

Megaflops to reach $\|r\| \leq 10^{-6}\|b\|$:

δ	0.0	0.01	0.1	1.0	10.0	100.0
ORTHOMIN(5)	0.31	0.57	0.75	0.83	2.55	2.11
LSQR	0.28	1.38	1.48	0.80	0.57	0.27
GMINRES	0.30	1.88	1.98	1.41	0.99	0.64

Bottom line:
ORTHOMIN sometimes good, can fail. LSQR always better than GMINRES

Numerical results (Reichel and Ye 2008)

- Focused on rectangular A and least-squares
(Forgot about SSY 1988 and USYMQR - hence GLSQR)
- Three numerical examples (all square!)

Numerical results (Reichel and Ye 2008)

- Focused on rectangular A and least-squares
(Forgot about SSY 1988 and USYMQR - hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_{1} \propto v_{1} \propto c\left(\right.$ since $x_{k}=V_{k} w_{k}$ and $\left.c=\gamma v_{1}\right)$

Numerical results (Reichel and Ye 2008)

- Focused on rectangular A and least-squares
(Forgot about SSY 1988 and USYMQR - hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_{1} \propto v_{1} \propto c\left(\right.$ since $x_{k}=V_{k} w_{k}$ and $\left.c=\gamma v_{1}\right)$
- Focused on choice of c stopping early looking at $x_{k}=\left(\begin{array}{llll}x_{k 1} & x_{k 2} & \ldots & x_{k n}\end{array}\right)$

Numerical results (Reichel and Ye 2008)

Example 1 (Fredholm equation)

$$
\int_{0}^{\pi} \kappa(s, t) x(t) d t=b(s), \quad 0 \leq s \leq \frac{\pi}{2}
$$

- Discretize to get $A \hat{x}=\hat{b}, n=400$ Solve $A x=b,\|b-\hat{b}\|=10^{-3}\|\hat{b}\|$

Numerical results (Reichel and Ye 2008)

Example 1 (Fredholm equation)

$$
\int_{0}^{\pi} \kappa(s, t) x(t) d t=b(s), \quad 0 \leq s \leq \frac{\pi}{2}
$$

- Discretize to get $A \hat{x}=\hat{b}, n=400 \quad$ Solve $A x=b,\|b-\hat{b}\|=10^{-3}\|\hat{b}\|$
- Among $\left\{x_{k}^{\mathrm{LSQR}}\right\}, x_{3}^{\mathrm{LSQR}}$ is closest to \hat{x}

Numerical results (Reichel and Ye 2008)

Example 1 (Fredholm equation)

$$
\int_{0}^{\pi} \kappa(s, t) x(t) d t=b(s), \quad 0 \leq s \leq \frac{\pi}{2}
$$

- Discretize to get $A \hat{x}=\hat{b}, n=400$
- Among $\left\{x_{k}^{\text {LSQR }}\right\}, x_{3}^{\mathrm{LSQR}}$ is closest to \hat{x}
- GLSQR: choose $c=\left(\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right)^{T}$ because true $x \approx 100 c$

Numerical results (Reichel and Ye 2008)

Example 2 (Star cluster)

- 470 stars, $\hat{x}=256 \times 256$ pixels, $\hat{b}=A \hat{x}, n=65536$
- Solve $A x=b,\|b-\hat{b}\|=10^{-2}\|\hat{b}\|$

Numerical results (Reichel and Ye 2008)

Example 2 (Star cluster)

- 470 stars, $\hat{x}=256 \times 256$ pixels, $\hat{b}=A \hat{x}, n=65536$
- Solve $A x=b,\|b-\hat{b}\|=10^{-2}\|\hat{b}\|$
- Choose $c=b \quad$ (because $b \approx x$)
- Compare error in x_{k}^{LSQR} and x_{k}^{GLSQR} for 40 iterations

Numerical results (Reichel and Ye 2008)

Example 3 (Fredholm equation)

$$
\begin{aligned}
\int_{0}^{1} k(s, t) x(t) d t & =\exp (s)+(1-e) s-1, \quad 0 \leq s \leq 1 \\
k(s, t) & = \begin{cases}s(t-1), & s<t \\
t(s-1), & s \geq t\end{cases}
\end{aligned}
$$

- Discretize to get $A \hat{x}=\hat{b}, n=1024$
- Solve $A x=b,\|b-\hat{b}\|=10^{-3}\|\hat{b}\|$
- $x_{22}^{\text {LSQR }}$ has smallest error, but oscillates around \hat{x}

Numerical results (Reichel and Ye 2008)

Example 3 (Fredholm equation)

$$
\begin{aligned}
\int_{0}^{1} k(s, t) x(t) d t & =\exp (s)+(1-e) s-1, \quad 0 \leq s \leq 1 \\
k(s, t) & = \begin{cases}s(t-1), & s<t \\
t(s-1), & s \geq t\end{cases}
\end{aligned}
$$

- Discretize to get $A \hat{x}=\hat{b}, n=1024$
- Solve $A x=b,\|b-\hat{b}\|=10^{-3}\|\hat{b}\|$
- $x_{22}^{\text {LSQR }}$ has smallest error, but oscillates around \hat{x}
- Discretize coarsely to get $A_{c} x_{c}=b_{c}, n=4$
- Prolongate x_{c} to get $x_{\text {prI }} \in \mathbb{R}^{1024}$ and starting vector $c=x_{\text {prI }}$
- $x_{4}^{\text {GLSQR }}$ is very close to \hat{x}

Conclusions

Subspaces

- Unsymmetric Lanczos generates two Krylov subspaces:

$$
\left.\left.\left.\left.\begin{array}{l}
U_{k} \in \operatorname{span}\{b \quad A b \\
V_{k} \in \operatorname{span}\left\{\begin{array}{llll}
c & A^{T} c & \left(A^{T}\right)^{2} c & \ldots
\end{array}\right. \\
\hline
\end{array} A^{k-1} b\right\} A^{T}\right)^{k-1} c\right\}\right\} \text {. }
$$

Subspaces

- Unsymmetric Lanczos generates two Krylov subspaces:

$$
\begin{aligned}
& U_{k} \in \operatorname{span}\left\{b \quad A b \quad A^{2} b\right. \\
& V_{k} \in \operatorname{span}\left\{\begin{array}{llll}
c & A^{T} c & \left(A^{T}\right)^{2} c & \ldots
\end{array} A^{k-1} b\right\} \\
& \left.\left.A^{T}\right)^{k-1} c\right\}
\end{aligned}
$$

- Orthogonal tridiagonalization generates

$$
\begin{aligned}
& U_{2 k} \in \operatorname{span}\left\{\begin{array}{lllllll}
b & A A^{T} b & \ldots & \left(A A^{T}\right)^{k-1} b & A c & \left(A A^{T}\right) A c & \ldots
\end{array}\right\} \\
& V_{2 k} \in \operatorname{span}\left\{\begin{array}{llllll}
c & A^{T} A c & \ldots & \left(A^{T} A\right)^{k-1} c & A^{T} b & \left(A^{T} A\right) A^{T} b
\end{array} \ldots\right.
\end{aligned}
$$

Subspaces

- Unsymmetric Lanczos generates two Krylov subspaces:

$$
\begin{aligned}
& U_{k} \in \operatorname{span}\left\{b \quad A b \quad A^{2} b\right. \\
& V_{k} \in \operatorname{span}\left\{\begin{array}{llll}
c & A^{T} c & \left(A^{T}\right)^{2} c & \ldots
\end{array} A^{k-1} b\right\} \\
& \left.\left(A^{T}\right)^{k-1} c\right\}
\end{aligned}
$$

- Orthogonal tridiagonalization generates

$$
\begin{aligned}
& U_{2 k} \in \operatorname{span}\left\{\begin{array}{lllllll}
b & A A^{T} b & \ldots & \left(A A^{T}\right)^{k-1} b & A c & \left(A A^{T}\right) A c & \ldots
\end{array}\right\} \\
& V_{2 k} \in \operatorname{span}\left\{\begin{array}{lllll}
c & A^{T} A c & \ldots & \left(A^{T} A\right)^{k-1} c & A^{T} b
\end{array}\left(\begin{array}{ll}
\left(A^{T} A\right) A^{T} b & \ldots
\end{array}\right\}\right.
\end{aligned}
$$

- Reichel and Ye 2008:

Richer subspace for ill-posed $A x \approx b$ (can choose $c \approx x)$
A can be rectangular
Check for early termination of $\left\{u_{k}\right\}$ or $\left\{v_{k}\right\}$ sequence

Functionals $c^{T} x=b^{T} y$

- Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve $A x=b$ and $A^{T} y=c$ simultaneously and to estimate $c^{T} x=b^{T} y$ at a superconvergent rate:

$$
\left|c^{T} x_{k}-c^{T} x\right| \approx\left|b^{T} y_{k}-b^{T} y\right| \approx \frac{\left\|b-A x_{k}\right\|\left\|c-A^{T} y_{k}\right\|}{\sigma_{\min }(A)}
$$

Functionals $c^{T} x=b^{T} y$

- Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve $A x=b$ and $A^{T} y=c$ simultaneously and to estimate $c^{T} x=b^{T} y$ at a superconvergent rate:

$$
\left|c^{T} x_{k}-c^{T} x\right| \approx\left|b^{T} y_{k}-b^{T} y\right| \approx \frac{\left\|b-A x_{k}\right\|\left\|c-A^{T} y_{k}\right\|}{\sigma_{\min }(A)}
$$

- Golub, Stoll and Wathen (2008) use orthogonal tridiagonalization with GLSQR to do likewise

Functionals $c^{T} x=b^{T} y$

- Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve $A x=b$ and $A^{T} y=c$ simultaneously and to estimate $c^{T} x=b^{T} y$ at a superconvergent rate:

$$
\left|c^{T} x_{k}-c^{T} x\right| \approx\left|b^{T} y_{k}-b^{T} y\right| \approx \frac{\left\|b-A x_{k}\right\|\left\|c-A^{T} y_{k}\right\|}{\sigma_{\min }(A)}
$$

- Golub, Stoll and Wathen (2008) use orthogonal tridiagonalization with GLSQR to do likewise
- Matrices, moments, and quadrature

Functionals $c^{T} x=b^{T} y$

- Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve $A x=b$ and $A^{T} y=c$ simultaneously and to estimate $c^{T} x=b^{T} y$ at a superconvergent rate:

$$
\left|c^{T} x_{k}-c^{T} x\right| \approx\left|b^{T} y_{k}-b^{T} y\right| \approx \frac{\left\|b-A x_{k}\right\|\left\|c-A^{T} y_{k}\right\|}{\sigma_{\min }(A)}
$$

- Golub, Stoll and Wathen (2008) use orthogonal tridiagonalization with GLSQR to do likewise
- Matrices, moments, and quadrature
- Golub, Minerbo and Saylor 1998

Nine ways to compute the scattering amplitude
(1): Estimating $c^{\top} x$ iteratively

Block Lanczos

Orthogonal tridiagonalization is equivalent to

- block Lanczos on $A^{T} A$ with starting block ($\left.c A^{T} b\right)$ Parlett 1987

Block Lanczos

Orthogonal tridiagonalization is equivalent to

- block Lanczos on $A^{T} A$ with starting block ($\left.c A^{T} b\right)$ Parlett 1987
- block Lanczos on $\left(\begin{array}{ll} & A \\ A^{T} & \end{array}\right)$ with starting block $\left(\begin{array}{ll}b & \\ & c\end{array}\right)$

Golub, Stoll, and Wathen 2008

Block Lanczos

Orthogonal tridiagonalization is equivalent to

- block Lanczos on $A^{T} A$ with starting block ($c A^{T} b$) Parlett 1987
- block Lanczos on $\left(\begin{array}{ll} & A \\ A^{T} & \end{array}\right)$ with starting block $\left(\begin{array}{ll}b & \\ & c\end{array}\right)$ Golub, Stoll, and Wathen 2008

There are two ways of spreading light.
To be the candle or the mirror that reflects it.

- Edith Wharton

References

- M. A. Saunders, H. D. Simon, and E. L. Yip (1988).

Two conjugate-gradient-type methods for unsymmetric linear equations, SIAM J. Numer. Anal. 25:4, 927-940.

- L. Reichel and Q. Ye (2008).

A generalized LSQR algorithm, Numer. Linear Algebra Appl. 15, 643-660.

- G. H. Golub, M. Stoll, and A. Wathen (2008).

Approximation of the scattering amplitude and linear systems, ETNA 31, 178-203.

References

- M. A. Saunders, H. D. Simon, and E. L. Yip (1988).

Two conjugate-gradient-type methods for unsymmetric linear equations, SIAM J. Numer. Anal. 25:4, 927-940.

- L. Reichel and Q. Ye (2008).

A generalized LSQR algorithm, Numer. Linear Algebra Appl. 15, 643-660.

- G. H. Golub, M. Stoll, and A. Wathen (2008).

Approximation of the scattering amplitude and linear systems, ETNA 31, 178-203.

Special thanks to Chris Paige, Martin Stoll, and Sou-Cheng Choi

References

- M. A. Saunders, H. D. Simon, and E. L. Yip (1988).

Two conjugate-gradient-type methods for unsymmetric linear equations, SIAM J. Numer. Anal. 25:4, 927-940.

- L. Reichel and Q. Ye (2008).

A generalized LSQR algorithm, Numer. Linear Algebra Appl. 15, 643-660.

- G. H. Golub, M. Stoll, and A. Wathen (2008).

Approximation of the scattering amplitude and linear systems, ETNA 31, 178-203.

Special thanks to Chris Paige, Martin Stoll, and Sou-Cheng Choi

Happy birthday Lothar!

Thanks for noticing A can be rectangular!

Gene is with us every day

