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Models, Algorithms, Software

George Dantzig
1974�1988 PILOT energy-economic model

Linear program

Alan Manne
1976 ETAMACRO energy model

nonlinear objective
1996�2006 MERGE greenhouse-gas model

nonlinear objective and constraints

Ideal test problems for our optimization solvers

Murtagh and Saunders MINOS LP/NLP

Gill, Murray, and Saunders SQOPT, SNOPT QP, NLP

Infanger DECIS Stochastic LP

Part of modeling systems GAMS and AMPL (also TOMLAB)
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Symmetric Ax = b
Unsymmetric or rectangular Ax ≈ b

Iterative Solvers for

Ax = b min ‖Ax− b‖

http://www.stanford.edu/group/SOL/software.html
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Symmetric Ax = b
Unsymmetric or rectangular Ax ≈ b

CG-type solvers for symmetric Ax = b

Krylov subspace Kk(A, b) = range{b, Ab, . . . , Ak−1b}
Lanczos process generates Vk =

[
v1 v2 . . . vk

]
∈ Kk

using products Avj

kth approximation xk = Vkyk for some yk

Choose yk to minimize something

CG min 1
2xT

k Axk − bT xk (A posdef)
SYMMLQ min ‖ek‖ error ek = x− xk

MINRES min ‖rk‖ residual rk = b−Axk

MINRES-QLP min ‖rk‖ for singular incompatible Ax ≈ b

Paige, Saunders, Choi
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Symmetric Ax = b
Unsymmetric or rectangular Ax ≈ b

CG-type solvers for min ‖Ax− b‖

Golub-Kahan process generates Uk =
[
u1 u2 . . . uk

]
,

Vk =
[
v1 v2 . . . vk

]
using products Avj , ATuj

kth approximation xk = Vkyk for some yk

Choose yk to minimize something

LSQR min ‖rk‖ residual rk = b−Axk

LSMR min ‖ATrk‖ residual for ATAx = AT b

Paige, Saunders
David Fong, iCME

Jon Claerbout, Geophysics
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Symmetric Ax = b
Unsymmetric or rectangular Ax ≈ b

LSQR vs LSMR on min ‖Ax− b‖
Measure of Convergence

rk = b−Axk

‖rk‖ → ‖r̂‖, ‖ATrk‖ → 0
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� LSMR
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Symmetric Ax = b
Unsymmetric or rectangular Ax ≈ b

log10
‖ATrk‖
‖rk‖ for LSQR and LSMR � typical
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Active-set solvers
Interior-point solver

Active-set solvers for LP, NLP

min
x

ϕ(x) st ` ≤

 x
Ax
c(x)

 ≤ u

MINOS Sparse LP, NLP
LSSOL Dense constrained least-squares
NPSOL Dense NLP
QPOPT Dense QP
SQOPT Sparse QP also QPBLUR, Chris Maes, iCME

SNOPT Sparse NLP Philip Gill, UCSD
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Active-set solvers
Interior-point solver

PDCO: An optimizer for convex objectives

Nominally:
min

x
ϕ(x) st Ax = b, x ≥ 0

where A may be a sparse matrix or an operator

More useful:

min
x, r

ϕ(x) + 1
2‖D1x‖2 + 1

2‖r‖
2

Ax + D2r = b, ` ≤ x ≤ u,

where D1 and D2 are posdef diagonal matrices

Regularized LP, QP, . . .

Basis Pursuit DeNoising David Donoho

LP feasibility (D2 = I) Jon Dattorro

NMR analysis Zeev Wiesman, Ofer Levi
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Aerospace Applications
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NASA Aerospace Applications

David Saunders
1970 Visit Stanford for 1 month (now 40 years)
1974�present NASA Ames

Projects
OAW Oblique All-Wing supersonic airliner
HSCT Supersonic airliner
CTV SHARP shuttle design
CEV Apollo-type capsule to ISS, moon
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OAW oblique all wing airliner
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Stanford
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HSCT high speed civil transport
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CTV crew transfer vehicle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SHARP design (Slender Hypervelocity Aerothermodynamic Research Probes)
Aerothermal performance constraint in (Velocity, Altitude) space, used during trajectory optimization

with UHTC materials (Ultra High Temperature Ceramics) to avoid exceeding material limits

Trajectory optimization with SNOPT

Could always abort to Kennedy, Boston, Gander, or Shannon

4000-mile cross-range capability during reentry

Image credit: David Kinney, NASA Ames Research Center
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McDonnell-Douglas
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CEV crew exploration vehicle

Tried shape optimization of heat shield and shoulder curvature
(but the Apollo folk were pretty close already)
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McDonnell-Douglas Aerospace Applications

Philip Gill, Rocky Nelson
1979�1988 SOL QPSOL, LSSOL, NPSOL
1988�2007 UC San Diego QPOPT, SQOPT, SNOPT
McDonnell-Douglas Space Systems, LA (now Boeing)

Projects
F-4 Minimum time-to-climb

DC-Y SSTO Minimum-fuel landing maneuver
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DC-Y single-stage-to-orbit
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NASA
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Stanford
Around the World

DC-Y landing, 2nd OTIS/NPSOL optimization

1st optimization: starting altitude = 2800ft

2nd optimization: starting altitude = variable

New constraint needed:

Don't exceed 3g

Optimum starting altitude = 1400ft(!)

Come back Alan Shephard!
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Stanford Aerospace Applications

Ilan Kroo Aircraft Aerodynamics and Design Group

Antony Jameson Aerospace Computing Lab

Juan Alonso Aerospace Design Lab

MDO Multidisciplinary Design Optimization

ASO Aerodynamic Shape Optimization

. . .

Numerous completed projects
OAW Oblique All-Wing supersonic airliner

Blended Wing-Body Transonic airliner

. . .
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Blended wing airliner
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Blended wing airliner

Ilan Kroo, Michael Holden Aero/Astro, Stanford, 1999

Compute controls for stable �ight of 17ft-span �ying model
Model trajectory of �exible body over time

Minimize wing weight (or move CG aft as far as possible)
subject to �utter constraints

9000 nonlinear eqns, 9000 state variables, 7 design variables
400,000 gradients in the Jacobian (sparse �nite di�erences)

MINOS 1999: 26 major iterations, 4000 minor iterations
1500 function and Jacobian evaluations, 3 days on SGI Octane

SNOPT today: Probably 3 hours (or much less)
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subject to �utter constraints

9000 nonlinear eqns, 9000 state variables, 7 design variables
400,000 gradients in the Jacobian (sparse �nite di�erences)

MINOS 1999: 26 major iterations, 4000 minor iterations
1500 function and Jacobian evaluations, 3 days on SGI Octane

SNOPT today: Probably 3 hours (or much less)
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Latest use of optimization

Conservative Meshless Scheme for Conservation Laws
Edmond Chiu, Qiqi Wang and Antony Jameson

PDCO:

min ‖af‖

s.t.
[
Cf D

] [
af

m

]
= −Cpap, m > 0

LSQR:

min ‖af‖
s.t. Cfaf = −Cpap −Dm
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Geophysics at Stanford

Paul Segall, Dan Sinnett, Andrew Bradley
Geophysical inverse problem:
Determine the dislocation on a dike near Kilauea
based on GPS data

Least-squares matrix: half-space Green's functions
Regularization for smoothness of surface deformation

Kinematic consistency constraints on the dike
Certain slip components must be nonnegative

Apply SNOPT
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News Flash, 3 March 2007

Mike Ross Naval Postgraduate School, Monterey

DIDO: A package for solving optimal control problems
Implemented in MATLAB

Calls TOMLAB/SNOPT for the optimization

GMT 062:19:26
The International Space Station was successfully maneuvered

using DIDO/TOMLAB/SNOPT
Found zero-propellant solutions (globally optimal)
Saved NASA $1M fuel cost
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SNOPT Applications (Walter Murray)

Robot at JPL
Torque minimization

Daniel Clemente

Tumor radiation
Control problem
Paul Keall
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