The Stanford Systems Optimization Laboratory (SOL): Some Applications of our Large-scale Optimization Software

Michael Saunders

Management Science and Engineering (MS&E)
Institute for Computational and Mathematical Engineering (iCME)
Stanford University

Optimization Day — Research and Applications
Mechanical Engineering, Thermal and Fluid Sciences

Affiliates and Sponsors Program
Stanford University, Feb 1, 2011
SOL
Systems Optimization Lab
• **George Dantzig**
 1974–1988
 PILOT energy-economic model
 Linear program
Models, Algorithms, Software

- **George Dantzig**
 - 1974–1988 PILOT energy-economic model
 - Linear program

- **Alan Manne**
 - 1976 ETAMACRO energy model
 - nonlinear objective
 - 1996–2006 MERGE greenhouse-gas model
 - nonlinear objective and constraints
Models, Algorithms, Software

- **George Dantzig**
 1974–1988 PILOT energy-economic model
 Linear program

- **Alan Manne**
 1976 ETAMACRO energy model
 nonlinear objective
 1996–2006 MERGE greenhouse-gas model
 nonlinear objective and constraints

- **Ideal test problems for our optimization solvers**
Models, Algorithms, Software

- **George Dantzig**
 1974–1988 **PILOT** energy-economic model
 Linear program

- **Alan Manne**
 1976 **ETAMACRO** energy model
 nonlinear objective
 1996–2006 **MERGE** greenhouse-gas model
 nonlinear objective and constraints

- **Ideal test problems for our optimization solvers**

- **Murtagh and Saunders** **MINOS** LP/NLP
 Gill, Murray, and Saunders **SQOPT, SNOPT** QP, NLP
 Infanger **DECIS** Stochastic LP
Models, Algorithms, Software

- **George Dantzig**

 1974–1988 PILOT energy-economic model
 Linear program

- **Alan Manne**

 1976 ETAMACRO energy model
 nonlinear objective
 1996–2006 MERGE greenhouse-gas model
 nonlinear objective and constraints

- **Ideal test problems for our optimization solvers**

- **Murtagh and Saunders**
 MINOS LP/NLP
 Gill, Murray, and Saunders SQOPT, SNOPT QP, NLP
 Infanger DECIS Stochastic LP

- **Part of modeling systems**
 GAMS and AMPL (also TOMLAB)
Iterative Solvers for

\[Ax = b \quad \text{min} \| Ax - b \| \]

http://www.stanford.edu/group/SOL/software.html
CG-type solvers for symmetric $Ax = b$

Krylov subspace

Lanczos process generates $V_k = [v_1 \ v_2 \ \ldots \ v_k] \in \mathcal{K}_k$ using products Av_j

kth approximation

$x_k = V_k y_k$ for some y_k

\[\mathcal{K}_k(A, b) = \text{range}\{b, Ab, \ldots, A^{k-1}b\} \]
CG-type solvers for symmetric $Ax = b$

Krylov subspace
$K^k(A,b) = \text{range}\{b, Ab, \ldots, A^{k-1}b\}$

Lanczos process generates
$V_k = [v_1 \ v_2 \ \ldots \ v_k] \in K^k$
using products Av_j

kth approximation
$x_k = V_k y_k$ for some y_k

Choose y_k to minimize something
CG-type solvers for symmetric $Ax = b$

Krylov subspace

Lanczos process generates

kth approximation

Choose y_k to minimize something

- **CG**
 \[
 \min \frac{1}{2} x_k^T Ax_k - b^T x_k \quad (A \text{ posdef})
 \]

- **SYMMLQ**
 \[
 \min \| e_k \| \quad \text{error } e_k = x - x_k
 \]

- **MINRES**
 \[
 \min \| r_k \| \quad \text{residual } r_k = b - Ax_k
 \]

- **MINRES-QLP**
 \[
 \min \| r_k \| \quad \text{for singular incompatible } Ax \approx b
 \]

Paige, Saunders, Choi
CG-type solvers for $\min \|Ax - b\|$

Golub-Kahan process generates

$$U_k = \begin{bmatrix} u_1 & u_2 & \ldots & u_k \end{bmatrix},$$

$$V_k = \begin{bmatrix} v_1 & v_2 & \ldots & v_k \end{bmatrix}$$

using products Au_j, A^Tu_j

kth approximation $x_k = V_k y_k$ for some y_k
CG-type solvers for $\min \| Ax - b \|

Golub-Kahan process generates

$$U_k = [u_1 \ u_2 \ \ldots \ u_k],$$

$$V_k = [v_1 \ v_2 \ \ldots \ v_k]$$

using products $A v_j$, $A^T u_j$

kth approximation

$$x_k = V_k y_k$$ for some y_k

Choose y_k to minimize something
Iterative Solvers
Optimization Solvers
Aerospace Applications

Symmetric $Ax = b$
Unsymmetric or rectangular $Ax \approx b$

CG-type solvers for $\min \|Ax - b\|$

Golub-Kahan process generates

$U_k = \begin{bmatrix} u_1 & u_2 & \ldots & u_k \end{bmatrix}$,

$V_k = \begin{bmatrix} v_1 & v_2 & \ldots & v_k \end{bmatrix}$

using products Av_j, A^Tu_j

kth approximation

$x_k = V_k y_k$ for some y_k

Choose y_k to minimize something

LSQR $\min \|r_k\|$ residual $r_k = b - Ax_k$

LSMR $\min \|A^Tr_k\|$ residual for $A^TAx = A^Tb$

Paige, Saunders
David Fong, iCME
Jon Claerbout, Geophysics
LSQR vs LSMR on $\min \|Ax - b\|$

Measure of Convergence

- $r_k = b - Ax_k$
- $\|r_k\| \rightarrow \|\hat{r}\|$, $\|A^T r_k\| \rightarrow 0$
LSQR vs LSMR on \(\min \| Ax - b \| \)

Measure of Convergence

- \(r_k = b - Ax_k \)
- \(\| r_k \| \to \| \hat{r} \|, \quad \| A^T r_k \| \to 0 \)

LSQR

- \(\| r_k \| \)

LSQR

- \(\log \| A^T r_k \| \)
LSQR vs LSMR on \(\min \|Ax - b\| \)

Measure of Convergence

- \(r_k = b - Ax_k \)
- \(\|r_k\| \rightarrow \|\hat{r}\|, \quad \|A^Tr_k\| \rightarrow 0 \)

![Graphs comparing LSQR and LSMR](image)

Michael Saunders
Symmetric $Ax = b$

Unsymmetric or rectangular $Ax \approx b$

$$\log_{10} \frac{\|A^T r_k\|}{\|r_k\|}$$ for LSQR and LSMR – typical

Name: lp pilot ja, Dim: 2267x940, nnz: 14977, id=88
Optimization Solvers
Active-set solvers for LP, NLP

\[
\min_x \varphi(x) \quad \text{st} \quad \ell \leq \begin{pmatrix} x \\ Ax \\ c(x) \end{pmatrix} \leq u
\]

MINOS Sparse LP, NLP
LSSOL Dense constrained least-squares
NPSOL Dense NLP
QPOPT Dense QP
SQOPT Sparse QP also QPBLUR, Chris Maes, iCME
SNOPT Sparse NLP Philip Gill, UCSD
PDCO: An optimizer for convex objectives

Nominally:

$$\min_x \varphi(x) \quad \text{st} \quad Ax = b, \quad x \geq 0$$

where A may be a sparse matrix or an operator
PDCO: An optimizer for convex objectives

Nominally:

\[\min_x \varphi(x) \quad \text{st} \quad Ax = b, \quad x \geq 0 \]

where \(A \) may be a sparse matrix or an operator

More useful:

\[\min_{x, r} \varphi(x) + \frac{1}{2} \|D_1 x\|^2 + \frac{1}{2} \|r\|^2 \]

\[Ax + D_2 r = b, \quad \ell \leq x \leq u, \]

where \(D_1 \) and \(D_2 \) are posdef diagonal matrices

- Regularized LP, QP, . . .
PDCO: An optimizer for convex objectives

Nominally:

$$\min_x \varphi(x) \quad \text{st} \quad Ax = b, \quad x \geq 0$$

where A may be a sparse matrix or an operator

More useful:

$$\min_{x, r} \varphi(x) + \frac{1}{2} \|D_1 x\|^2 + \frac{1}{2} \|r\|^2$$

$$Ax + D_2 r = b, \quad \ell \leq x \leq u,$$

where D_1 and D_2 are posdef diagonal matrices

- Regularized LP, QP, …
- Basis Pursuit DeNoising

David Donoho
PDCO: An optimizer for convex objectives

Nominally:

$$\min_x \varphi(x) \ \text{st} \ A x = b, \ x \geq 0$$

where A may be a sparse matrix or an operator

More useful:

$$\min_{x, r} \varphi(x) + \frac{1}{2} \|D_1 x\|^2 + \frac{1}{2} \|r\|^2$$

$$A x + D_2 r = b, \ \ell \leq x \leq u,$$

where D_1 and D_2 are posdef diagonal matrices

- Regularized LP, QP, . . .
- Basis Pursuit DeNoising
- LP feasibility ($D_2 = I$)

David Donoho
Jon Dattorro
PDCO: An optimizer for convex objectives

Nominally:

$$\min_x \varphi(x) \quad \text{st} \quad Ax = b, \quad x \geq 0$$

where A may be a sparse matrix or an operator

More useful:

$$\min_{x,r} \varphi(x) + \frac{1}{2} \|D_1 x\|^2 + \frac{1}{2} \|r\|^2$$

$$Ax + D_2 r = b, \quad \ell \leq x \leq u,$$

where D_1 and D_2 are posdef diagonal matrices

- Regularized LP, QP, . . .
- Basis Pursuit DeNoising
- LP feasibility ($D_2 = I$)
- NMR analysis

David Donoho
Jon Dattorro
Zeev Wiesman, Ofer Levi
Aerospace Applications
David Saunders

1970 Visit Stanford for 1 month (now 40 years)
1974–present NASA Ames
David Saunders

1970 Visit Stanford for 1 month (now 40 years)
1974–present NASA Ames

Projects

OAW Oblique All-Wing supersonic airliner
HSCT Supersonic airliner
CTV SHARP shuttle design
CEV Apollo-type capsule to ISS, moon
OAW oblique all wing airliner
HSCT high speed civil transport
CTV crew transfer vehicle

SHARP design (Slender Hypervelocity Aerothermodynamic Research Probes)

Aerothermal performance constraint in (Velocity, Altitude) space, used during trajectory optimization with UHTC materials (Ultra High Temperature Ceramics) to avoid exceeding material limits
CTV crew transfer vehicle

SHARP design (Slender Hypervelocity Aerothermodynamic Research Probes)

Aerothermal performance constraint in (Velocity, Altitude) space, used during trajectory optimization with UHTC materials (Ultra High Temperature Ceramics) to avoid exceeding material limits

- Trajectory optimization with SNOPT
- Could always abort to Kennedy, Boston, Gander, or Shannon
- 4000-mile cross-range capability during reentry

Image credit: David Kinney, NASA Ames Research Center
CEV crew exploration vehicle

- Tried shape optimization of heat shield and shoulder curvature (but the Apollo folk were pretty close already)
Philip Gill, Rocky Nelson
1979–1988 SOL QPSOL, LSSOL, NPSOL
1988–2007 UC San Diego QPOPT, SQOPT, SNOPT
McDonnell-Douglas Space Systems, LA (now Boeing)
McDonnell-Douglas Aerospace Applications

- Philip Gill, Rocky Nelson
 1979–1988 SOL QPSOL, LSSOL, NPSOL
 1988–2007 UC San Diego QPOPT, SQOPT, SNOPT
 McDonnell-Douglas Space Systems, LA (now Boeing)

- Projects
 F-4 Minimum time-to-climb
 DC-Y SSTO Minimum-fuel landing maneuver
Aerospace Applications of NPSOL and SNOPT

OTIS #1
DC-Y single-stage-to-orbit
Control engineer
Feasible solution
1 year

2000 x 1200 NLP

NPSOL
Optimal solution
50% of fuel saved
OTIS
DC-Y Landing Maneuver
Retract air brakes at
2800 ft
420 mph
DC-Y landing, 2nd OTIS/NPSOL optimization

- 1st optimization: starting altitude = 2800 ft

- 2nd optimization: starting altitude = variable

New constraint needed: Don’t exceed 3g

Optimum starting altitude = 1400 ft

(!) Come back Alan Shepard!
DC-Y landing, 2nd OTIS/NPSOL optimization

1st optimization: starting altitude = 2800ft
2nd optimization: starting altitude = variable
DC-Y landing, 2nd OTIS/NPSOL optimization

- 1st optimization: starting altitude = 2800ft
- 2nd optimization: starting altitude = variable
- New constraint needed:
DC-Y landing, 2nd OTIS/NPSOL optimization

- 1st optimization: starting altitude = 2800ft
- 2nd optimization: starting altitude = variable
- New constraint needed: Don’t exceed 3g
DC-Y landing, 2nd OTIS/NPSOL optimization

- 1st optimization: starting altitude = 2800ft
- 2nd optimization: starting altitude = variable
- New constraint needed: Don’t exceed 3g

Optimum starting altitude = 1400ft(!)
DC-Y landing, 2nd OTIS/NPSOL optimization

- 1st optimization: starting altitude = 2800ft
- 2nd optimization: starting altitude = variable
- New constraint needed: Don’t exceed 3g

Optimum starting altitude = 1400ft(!)

Come back Alan Shepard!
Stanford Aerospace Applications

- Ilan Kroo Aircraft Aerodynamics and Design Group
- Antony Jameson Aerospace Computing Lab
- Juan Alonso Aerospace Design Lab

 MDO Multidisciplinary Design Optimization
 ASO Aerodynamic Shape Optimization
Stanford Aerospace Applications

- Ilan Kroo Aircraft Aerodynamics and Design Group
- Antony Jameson Aerospace Computing Lab
- Juan Alonso Aerospace Design Lab
 - MDO Multidisciplinary Design Optimization
 - ASO Aerodynamic Shape Optimization

- Numerous completed projects
 - OAW Oblique All-Wing supersonic airliner
 - Blended Wing-Body Transonic airliner

...
Blended wing airliner
Blended wing airliner

- Ilan Kroo, Michael Holden
 Aero/Astro, Stanford, 1999
Blended wing airliner

- Ilan Kroo, Michael Holden
 Aero/Astro, Stanford, 1999

- Compute controls for stable flight of 17ft-span flying model
 Model trajectory of flexible body over time
Blended wing airliner

- Ilan Kroo, Michael Holden Aero/Astro, Stanford, 1999
- Compute controls for stable flight of 17ft-span flying model
 Model trajectory of flexible body over time
- Minimize wing weight (or move CG aft as far as possible)
 subject to flutter constraints
Blended wing airliner

- **Ilan Kroo, Michael Holden**
 Aero/Astro, Stanford, 1999

- Compute controls for stable flight of 17ft-span flying model
 Model trajectory of flexible body over time

- Minimize wing weight (or move CG aft as far as possible) subject to flutter constraints

- 9000 nonlinear eqns, 9000 state variables, 7 design variables
 400,000 gradients in the Jacobian (sparse finite differences)
Blended wing airliner

- Ilan Kroo, Michael Holden Aero/Astro, Stanford, 1999
- Compute controls for stable flight of 17ft-span flying model
- Model trajectory of flexible body over time
- Minimize wing weight (or move CG aft as far as possible)
 subject to flutter constraints
- 9000 nonlinear eqns, 9000 state variables, 7 design variables
- 400,000 gradients in the Jacobian (sparse finite differences)
- MINOS 1999: 26 major iterations, 4000 minor iterations
 1500 function and Jacobian evaluations, 3 days on SGI Octane
Blended wing airliner

- Ilan Kroo, Michael Holden Aero/Astro, Stanford, 1999
- Compute controls for stable flight of 17ft-span flying model
- Model trajectory of flexible body over time
- Minimize wing weight (or move CG aft as far as possible) subject to flutter constraints

- 9000 nonlinear eqns, 9000 state variables, 7 design variables
- 400,000 gradients in the Jacobian (sparse finite differences)
- MINOS 1999: 26 major iterations, 4000 minor iterations
 1500 function and Jacobian evaluations, 3 days on SGI Octane
- SNOPT today: Probably 3 hours (or much less)
Latest use of optimization

Conservative Meshless Scheme for Conservation Laws
Edmond Chiu, Qiqi Wang and Antony Jameson

PDCO:
\[
\min \|a_f\|
\]
\[
s.t. \begin{bmatrix} C_f & D \end{bmatrix} \begin{bmatrix} a_f \\ m \end{bmatrix} = -C_p a_p, \ m > 0
\]

LSQR:
\[
\min \|a_f\|
\]
\[
s.t. C_f a_f = -C_p a_p - D m
\]
Geophysics at Stanford

- Paul Segall, Dan Sinnett, Andrew Bradley

Geophysical inverse problem:
Determine the dislocation on a dike near Kilauea based on GPS data
Geophysics at Stanford

- Paul Segall, Dan Sinnett, Andrew Bradley
 Geophysical inverse problem:
 Determine the dislocation on a dike near Kilauea based on GPS data
- Least-squares matrix: half-space Green’s functions
 Regularization for smoothness of surface deformation
Geophysics at Stanford

- **Paul Segall, Dan Sinnett, Andrew Bradley**
 Geophysical inverse problem:
 Determine the dislocation on a dike near Kilauea based on GPS data
- Least-squares matrix: half-space Green’s functions
 Regularization for smoothness of surface deformation
- Kinematic consistency constraints on the dike
 Certain slip components must be nonnegative
Geophysics at Stanford

- Paul Segall, Dan Sinnett, Andrew Bradley
 Geophysical inverse problem:
 Determine the dislocation on a dike near Kilauea based on GPS data
- Least-squares matrix: half-space Green’s functions
 Regularization for smoothness of surface deformation
- Kinematic consistency constraints on the dike
 Certain slip components must be nonnegative
- Apply SNOPT
News Flash, 3 March 2007

- Mike Ross
 Naval Postgraduate School, Monterey

DIDO: A package for solving optimal control problems
Implemented in MATLAB
Calls TOMLAB/SNOPT for the optimization
News Flash, 3 March 2007

- **Mike Ross**
 Naval Postgraduate School, Monterey

 DIDO: A package for solving optimal control problems
 Implemented in **MATLAB**
 Calls **TOMLAB/SNOPT** for the optimization

- **GMT 062:19:26**

 The International Space Station was successfully maneuvered using **DIDO/TOMLAB/SNOPT**
 Found **zero-propellant solutions** (globally optimal)
 Saved NASA **$1M fuel cost**
SNOPT Applications (Walter Murray)

Conventional Launcher:
Ariane 5 Dual Payload LEO/GEO

Direct optimization of Step-and-Shoot segments

Robot at JPL
Torque minimization
Daniel Clemente

Tumor radiation
Control problem
Paul Keall
Optimization

Stabilize aircraft
Minimize fuel
Reduce CO₂

Make the world a better place