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Abstract

Interior methods using iterative solvers for each search direction

can require drastically increasing work per iteration as higher

accuracy is sought.

The Zoom strategy solves first to low accuracy, and

then solves for a correction to both primal and dual variables,

again to low accuracy. We“zoom in”on the correction by

scaling it up, thus permitting a cold start for the correction.

The same strategy applies to warm-starting in general.
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Motivation

The problem that started it all

Image reconstruction

Nagy and Strakoš 2000 Byunggyoo Kim thesis, 2002
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Image Reconstruction

min λeTx+ 1

2
‖r‖2

st Ax+ r = b, x ≥ 0

NNLS: Non-negative least squares λ = 10−4

A is an expensive operator 2-D DFT

65K × 65K

PDCO uses LSQR for each dual search direction ∆y:

min

∥∥∥∥

(
DAT

I

)
∆y −

(
Dw

r1

)∥∥∥∥
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PDCO Solver
Matlab primal-dual interior method
http://www.stanford.edu/group/SOL/software.html

Nominal problem:

NP minimize
x

φ(x)

subject to Ax = b, ` ≤ x ≤ u

φ(x) convex, separable

Regularized problem:

NP(γ, δ) minimize
x, r

φ(x) + 1

2
‖γx‖2 + 1

2
‖r‖2

subject to Ax+ δr = b, ` ≤ x ≤ u
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PDCO search directions

3 methods for computing ∆y:

• Cholesky on (AD2AT + δ2I)∆y = AD2w + δr1

• Sparse QR on min

∥∥∥∥

(
DAT

δI

)
∆y −

(
Dw

r1

)∥∥∥∥

• LSQR on same LS problem (iterative solver)

Must use LSQR when A is an operator
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Motivation

LSQR iterations increase exponentially
with requested accuracy
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Zoom strategy: Accelerating IPMs

• Solve to 3 digits: cheap approximation to x, y, z

• Define new problem for correction dx, dy, dz

• Zoom in (scale up correction)

• Solve to 3 digits: cheap approximation to dx, dy, dz

Cold start for both solves
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Results: Accelerating IPMs
LSQR iterations inside PDCO
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Zoom strategy: Warm-starting IPMs

• Set solution to original LP as current approximation

• Define new problem for correction dx, dy, dz

• Zoom in (scale up correction)

• Solve loosely: cheap approximation to dx, dy, dz

Cold start for loose solve
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Warm-starting IPMs

LP(γ, δ) minimize
x, r

cTx+ 1

2
‖γx‖2 + 1

2
‖r‖2

subject to Ax+ δr = b, ` ≤ x ≤ u

Regularized LP γ = δ = 10−3

PDCO with Cholesky on AD2AT + δ2I

• LPnetlib problems with 5 random perturbations to A, b, or c
(cf. Benson and Shanno 2005)

• Smaller problems (< 100KB): 45 runs for each problem

• Compare Zoom to single solve
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Results: Warm-starting IPMs

PDCO iterations (warm/cold) vs. perturbation to x, y
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Zoom theory

Regularized LP:

RLP minimize
x,r,x1,x2

cTx + 1

2
‖γx‖2 + dTr + 1

2
‖r‖2 + cT

1
x1 + cT

2
x2

subject to Ax + δr = b : y

x− x1 = ` : z1

−x− x2 = −u : z2

x1, x2 ≥ 0

Suppose (x̃, ỹ, z̃1, z̃2, x̃1, x̃2, r̃) is an approximate solution

Redefine problem with

x = x̃ + dx

r = r̃ + dr
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Zoom theory

RLP′ minimize
dx,dr,x1,x2

cTdx + 1

2
‖γdx‖2 + · · ·

subject to Adx + δdr = b̃ : y

dx− x1 = ˜̀ : z1

−dx− x2 = − ũ : z2

x1, x2 ≥ 0

where

b̃ = b− Ax̃− δr̃

˜̀ = `− x̃

ũ = u− x̃
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Zoom theory

Add Lagrangian terms

ỹT (b̃−Adx− δdr) z̃T1 (˜̀− dx + x1) z̃T2 (− ũ + dx + x2)

to objective:

RLP′′ minimize
dx,dr,x1,x2

c̃Tdx + 1

2
‖γdx‖2 + d̃Tdr + 1

2
‖dr‖2 + c̃T

1
dx1 + c̃T

2
dx2

subject to Adx + δdr = b̃ : dy

dx− x1 = ˜̀ : dz1

−dx− x2 = − ũ : dz2

x1, x2 ≥ 0

Same form as original RLP
Primal and dual variables are small
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Next steps

• Multiple Zooms?

• How much is attributable to Zoom, to scaling?

• Explain outliers
(e.g. Check size of residuals to decide Zoom scaling)

Conclusions

• Minor changes to existing primal-dual algorithms

• Zoom time reduced 40–60%
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