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Why Some Pool Shots are More Difficult Than Others
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The physics behind the game of billiards is rather
well understood as is our grasp of classical me-
chanics. We present here a mathematical expla-
nation of why slice shots are more difficult than
direct shots. Despite a large number of treatises
dedicated to the study of physics of billiards, it
appears that the simple explanation has escaped
our attention until now. We show that high
impact-parameter shots impart a larger angular
spread to the object ball, compared to head-on
shots. The effect can be understood in terms
of a non-linear relationship between the impact
parameter and the scattering angle, and the fact
that a real-world pool player does not have a per-
fect cue ball control; in other words, the impact
parameter distribution is not a delta function,
but has a finite spread. To keep the mathematics
simple and not to obscure the underlying phys-
ical principles our treatment ignores the ball’s
spin, friction, and other well-known effects in the
game of pool.

Anyone who has ever played a game of pool, a form of
billiards, is intuitively familiar with the following sce-
nario: When a cue ball, an object ball, and a pocket lie
more or less in a straight line (Figure 1a), the shot is
said to be much easier than the configuration in which
a cue ball, an object ball, and a pocket are roughly at
right angles (Figure 1b). Why is that? A consideration
of this problem shows us how the use of straightforward
classical mechanics instructs us about collision dynam-
igs.
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In particle scattering theory, which describes molecular
or particle collisions, one of the easiest problems to solve
is the so-called hard-sphere collisions. Billiard ball colli-
sions are good examples of impenetrable sphere scatter-
ing. When a cue ball misses an object ball, the cue ball
continues in a straight line, but the object ball remains
at rest. In other words, the two balls do not interact
and the potential is said to be zero. When the two balls
collide, to a good approximation, they do so in a com-
pletely elastic manner. This means that kinetic energy
is conserved in the collision. In this case, the potential is
said to be infinitely large. Mathematically, this is shown
as V(b) = 0 for b > d and V (b) = oo for b < d, where b
is the familiar impact parameter that describes the dis-
tance of closest approach to the center of the object ball,
if the cue ball were to follow a straight line path. Here
d is the diameter of a billiard ball. The impact param-
eter b is taken as always positive. These two scattering
parameters as well as others are shown in Figure 2.

Here the cue ball impacts the target ball at the impact
parameter b and bounces elastically from it so that the
angle of incidence « equals the angle of reflection. It is
clear from the figure that sina = b/d. The scattering
angle @ in the center-of-mass frame (COM) is simply®
# =7 — 2. It follows that

@ =7 — 2sin~1 (%) :

(1a)

Figure 1. Comparison be-
tween (a) an 'easy' shot and
(b) a'difficult' shot inthe game
of pool. In the easy shot the
cue ball (white), the object
ball (red), and the pocket lie
more or less in a straight line.
In a difficult shot the cue ball,
the objectball, and the pocket
are nearly at right angles to
each other. The same con-
siderations apply to the board
game called Carroms
(Karroms). The game is very
popular throughout South
Asia mainly India, Pakistan,
Bangladesh, Sri Lanka,
Nepal, etc., and has gained
some popularity in Europe
and the United States where
it has been introduced by the
Indian diaspora.

' The ensuing discussion per-
tains to the cue ball, and hence
the scattering angle 6 refers “to
the angle through which the cue
ball is scattered. The conclu-
sions reached are identical to
those if the trajectory and scat-
tering angle of the object ball are
followed, instead of the cue ball.
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Figure 2. Typical hard
sphere scattering diagram:
bis the impact parameter, d
is the diameter of a billiard
ball, « is the angle of inci-
dence and reflection, and 6
is the scattering angle in the
center-of-mass frame.

Cue ball Object ball

which may be rearranged to express the impact param-

eter as
. {0 ® 7
b = dsin (§ - 5) = dcos (5) . (1b)

Equations (1a) and (1b) make up the key formulae for
hard-sphere scattering. The answer to the question posed
at the start of this article — why ‘slice’ or ‘cut’ shots are
more difficult than direct shots - ultimately follows from
these key formulae.

Nevertheless, as is evident from (1la), there is a one-to-
one relationship between the scattering angle and the
impact parameter. From this point of view, head-on and
grazing collisions might be thought to be of equal ‘dif-
ficulty’. Mathematically, this requires that the impact
parameter distribution be a delta function, i.e., P(b) =
3(b).

However, this impact parameter distribution is never re-
alized in practice. Even an expert pool player will have
a finite spread in the distribution of impact parameters.
In other words, all pool players are said to have ‘imper-
fect aim’. It is not unreasonable to assume a Gaussian
distribution of impact parameters. Thus, one can model
both head-on and grazing, or ‘slice’, collisions between
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two billiard balls as two Gaussian functions. Both colli-
sion types will have identical widths but will be centered
at small values of b for head-on collisions and large val-
ues of b for grazing collisions

(6~ f0?)

P wemp | -C5T). @)
where o is the familiar standard deviation, and the full
width at half maximum (FWHM) is 2v/2In2 0. Here the
slice coefficient, 0 < f < 1, represents the fraction of d
at which the impact occurs. As an example, let us as-
sume that the two P(b) functions have o = 0.02d so that
FWHM is approximately 0.047d. The head-on collision
is for f = 0.05, i.e., centered at b =0.05d, whereas the
‘cut’ shot impact parameter distribution is for f = 0.95,
centered at b = 0.95d. The two probability distribution
functions are plotted in Figure 3a. The question then is
as follows: What do the angular probability distribution
functions, P(6), look like in the COM frame?

Just like for any two probability distribution functions,
P(b) and P() are related by:

Figure 3. (a) Gaussian im-
pact parameter distribution
functions, P(b), for head-on
(b = 0.05d, black curve) and
grazing (b=0.954d, red curve)
collisions. (b) The resulting
angular distribution functions,
P(8), in the center-of-mass
(COM) frame for head-on
(black curve) and grazing
collisions (red curve). (c) An-
gular distribution functions

P(x) in the laboratory (LAB)
referenceframe, i.e.,as would
be observed during an actual
game. Note that even though
the two impact parameter dis-
tribution functions have iden-
tical widths, the resulting an-
gulardistribution functions do
not. This serves as a visual
explanation of why grazing or

db ‘slice’ shots are more difficult
P(9) = P (b(9)) - ‘-&5 ; (3)  than the head-on ones.
w
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Justin Jankunas doing
research for this article.
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To compute P(6) for a given P(b) form, one needs the
|g—3| term which is easily obtained from (1b). Thus, for
P(b) given by (2), the angular probability distribution
function is given by:

P(8) o exp [_ fesfie) — 2] o (g) .o

20'?

where o' = o /d. The two P(f) functions with ¢’ = 0.02
and f = 0.05 and f = 0.95 are plotted in Figure 3b.

The difference between Figures 3a and 3b is striking.
Even though both Gaussian distributions have identical
spreads in the impact parameter space — in other words,
equally good aim for head-on and grazing shots — the
spread in the angular space is not the same for head-
on collisions (f~ 180°) and ‘slice’ shots (6~ 0°). The
spread-in the scattering angle  is larger for ‘cut’ shots
than for head-on shots! In our particular example, we
have FWHM (f= 0.05) = 5° and FWHM (f= 0.95) =
1%

This example explains why the so-called ‘slice’ or ‘cut’
shots are more difficult than the head-on shots in any
game of billiards. The reasons are two-fold: the partic-
ular form of (1a), and the existence of a spread in the
P(b) distribution.

So far, we have analyzed the collision dynamics in the
COM frame where 0° < 6 < 180°, but the pool player
views the shot in the frame of the pool hall, that is,
the laboratory frame (LAB). It is well known that the
largest angle through which an object ball can be ‘cut’
is ~ 90° in LAB, in which case the cue ball is barely
deflected. Therefore, the scattering angle x should run
from 0° to 90° in the LAB frame. The two reference
frames are related by [1]:

Pix) = 4eos (3) P(O). ®
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where x = 0/2. P(x) is plotted in Fiigure 3c. The main
conclusions remain the same: The forward scattered cue
ball, which is the ‘cut’ shot, has a larger uncertainty
(spread) in the angular space than the head-on shot?.

An astute reader might object at this point. A common
statement about the hard sphere collisions that can be
found in any scattering textbook is that, ‘Hard sphere
scattering is isotropic’ [2]. Results obtained herein and
plotted in Figures 3b and 3c are far from isotropic.
What is going on?

Hard sphere scattering is indeed isotropic in three di-
mensions. The differential cross-section, do/df2, is de-
fined as a ratio of the number of particles, N, scattered
into a particular solid angle, df2, over the number of in-
cident particles, N,, within a certain impact parameter
range db, in other words 27bdbN, = 27sinfdN. Re-
arranging,’ and substituting the expressions for b and
g—g yields

do N b

dQ =~ N, sind

sinf 2 4

(6)
Textbooks rightly claim the hard sphere scattering to be
wotropic! In two dimensional collisions, as in a game of
pool, one has dbN, = déN, which yields

do _ N _|db| _ dsin(6/2) (1)
ggy 2

i -

db‘ _ dcos(0/2) dsin(6/2) _ &

a0 "9

1.e., the differential cross-section is anisotropic!

Although hard-sphere scattering is of limited relevance
i1 molecular collisions, mainly because atoms and molec-
ules almost always exhibit finite degrees of attraction
and repulsion, its use elsewhere can be fun and even ped-
apogical! This quick study explains what any billiards
plpyer has always intuitively known: ‘slice’ shots often
ring disappointed sighs and headshakes, but situations
which a cue ball, an object ball and a pocket lie on

2 Once again, care should be
taken when defining scattering
angles in the LAB frame. The
angle yx plotted in Figure 3c re-
fers to the angle through which
the cue ball is “deflected. If one
followed the object ball, the an-
gular distribution “functions
would remain the same, but the
x axis would flip though the 45°
point in Figure 3c.
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a more or less straight line are often a desired ‘leave’ of
any given shot and bring on smiles and fist pumps of tri-
umph. This is primarily caused by ‘imperfect aim’ which
basically is a finite spread in the impact parameter dis-
tribution function. To paraphrase what Marc Anthony
said about Brutus in Shakespeare’s Julius Caesar, slice

shots “are the most unkindest cut of all” [3].
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