
Neuron

Review
Closed-Loop and Activity-Guided Optogenetic Control
Logan Grosenick,1,2,3,6 James H. Marshel,1,2,6 and Karl Deisseroth1,2,4,5,*
1Department of Bioengineering
2CNC Program
3Neurosciences Program
4Department of Psychiatry and Behavioral Sciences
5Howard Hughes Medical Institute
Stanford University, Stanford, CA 94305 USA
6Co-first authors
*Correspondence: deissero@stanford.edu
http://dx.doi.org/10.1016/j.neuron.2015.03.034

Advances in optical manipulation and observation of neural activity have set the stage for widespread imple-
mentation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop op-
togenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way)
is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the
effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether
inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical
and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail
the known caveats and limitations of optogenetic experimentation in the context of addressing these chal-
lenges with closed-loop optogenetic control in behaving animals.
Introduction
Closed-loop control theory refers to a large body of work in the

engineering literature concerned with using an error signal—

that is, the difference between measured output and a desired

target trajectory—to guide changes in control inputs to a system.

Automobile cruise control is a familiar example: the car mea-

sures its speed and uses error-sensing negative feedback to

accelerate or decelerate in order to maintain a target output

speed. Inherent to such closed-loop control is the availability

of a target (goal speed), some system control inputs (accelera-

tion/deceleration), and measured system outputs (measured

speed). Applied to neuroscience, closed-loop control could

guide perturbations of neural systems (neurons and circuits) to

achieve sophisticated, real-time control over neural dynamics

and animal behavior and would generate, refine and confirm

circuit-based models of the underlying system in the process.

Optogenetics, a methodology that allows millisecond-scale

optical control of neural activity in defined cell types during ani-

mal behavior (in some cases at single-cell resolution in living

mammals; Prakash et al., 2012; Rickgauer et al., 2014; Packer

et al., 2015), is well-suited for closed-loop control in biological

systems (for a history and overview of optogenetics, see Fenno

et al., 2011). We therefore define ‘‘closed-loop optogenetics’’

as closed-loop control theory applied to optogenetic stimulation,

inhibition, andmodulation. In closed-loop optogenetics, the con-

trol input is a structured, time-varying light stimulus that is auto-

matically modulated based on the difference between desired

and measured outputs, which may include behavioral, electro-

physiological, or optical readouts of activity generated by the

biological system. In neural systems, closed-loop optogenetics

could allow important basic-science investigations of adapta-

tion, plasticity, and neural state changes, as well as online tuning

of optogenetic inputs in vivo (to achieve specific output param-
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eters), and online system-identification of neural circuits (that

is, choosing optogenetic stimuli online to ‘‘reverse engineer’’

neural circuits by causally establishing functional circuit archi-

tecture), among other possibilities. Moreover, clinical closed-

loop control of optical stimulation will likely be necessary to build

and maintain models used to inform next-generation retinal,

cochlear, motor, and neuropsychiatric prosthetics that adap-

tively interface with neural circuitry subject to changing internal

and environmental dynamics. Indeed, preclinical evidence for

closed-loop optogenetics in seizure detection and prevention

has already been demonstrated (Paz et al., 2013; Krook-Magnu-

son et al., 2014, 2015).

To fully leverage the potential of closed-loop optogenetics,

optical interventions must continue to grow more similar in scale

and complexity to natural circuit activity dynamics, a need that

has already spurred significant optogenetic technology develop-

ment. Nevertheless, few studies have achieved closed-loop op-

togenetic control to date. Indeed, most published optogenetic

experiments in behaving animals can be categorized instead

as open loop (Figure 1A), even if still activity-guided or activity-

informed in various offline ways. In the latter class of experi-

ments, information from the literature or from direct neural

recording is used to guide selection of light stimulus parameters

(for example, pulse frequency), but without directly observing

and feeding back the neural effects of the optogenetic stimula-

tion online. For example, stimulation delivered as phasic bursts

of light was chosen prior to experimentation to evoke high levels

of dopamine release from ventral tegmental area (VTA) neurons

(Gunaydin et al., 2014; Tsai et al., 2009) with behavioral impact

compared to pulse number-matched low frequency (tonic) stim-

ulation (Tsai et al., 2009), all directly informed by previously pub-

lished recordings of dopamine neuron activity (Schultz, 2007)

and quantitative mapping of dopamine release to carefully
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Figure 1. Open-Loop and Closed-Loop Optogenetic Control
(A) Open-loop control (as a box diagram; Åström and Murray, 2010): control inputs to the system are chosen beforehand to reach a target system response, and
are not affected by the measured output.
(B) A recent example of activity-guided open-loop optogenetics; control inputs (light pulses chosen to evoke short, separated phasic bursts of dopamine neuron
activity in the ventral tegmental area) were chosen beforehand based on previous electrophysiological and optogenetic literature (left). Behavioral outputs were
measured once and quantified (right). Adapted with permission from Gunaydin et al. (2014).
(C) Closed-loop control box diagram: control inputs are chosen online to minimize the difference between the measured system output and the target outcome
this difference is (the ‘‘error’’).
(D) An example of closed-loop optogenetics. Control inputs to inhibitory, fast-spiking (FS), parvalbumin-positive interneurons were generated online conditional on
measured pyramidal (PY) neuron spike times. The figure shows PY cell responses to nonrhythmic synthetic EPSCs (center trace) with and without this closed-loop
optical feedback inhibition. Closed-loop feedback was critical to inducing gamma oscillations based on PY firing. Adapted with permission from Sohal et al. (2009).
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titrated pulse frequency (Adamantidis et al., 2011). This activity-

informed, open-loop stimulation pattern was used to stimulate

behaving animals, and the resulting changes in behavior quanti-

fied without recourse to feedback (Figure 1B). With some excep-

tions, this open-loop but activity-guided control is currently the

standard in the optogenetics literature.

In contrast, closed-loop optogenetics uses simultaneous

readout of neural activity or behavior to make real-time deci-

sions about how and when to stimulate optogenetically, using

measurements to guide stimulation in a closed feedback loop

(Figure 1C). For example, in the initial closed-loop optogenetics

experiment, Sohal et al. (2009) used dynamic clamp (a closed-

loop control method based on electrophysiological methods;

Sharp et al., 1993; Prinz et al., 2004) to drive inhibitory

parvalbumin-positive interneurons with optogenetic stimulation

triggered by observed pyramidal neuron spikes, thereby imple-

menting circuit-level feedback inhibition (Figure 1D). Closed-

loop optogenetic technology was crucial in demonstrating

that the natural firing patterns of pyramidal cells could directly

drive an increase in gamma-frequency power (Sohal et al.,

2009). Although open-loop stimulation at gamma frequencies

could also evoke increases in gamma in measured local field

potentials (Cardin et al., 2009), closing the loop with real-time

feedback to trigger circuit inhibition conditional on native activ-

ity established a plausible circuit-level mechanism for gamma

oscillations mediated by interactions between fast-spiking

inhibitory parvalbumin neurons and pyramidal cells. Further,

closed-loop stimulation showed a causal effect of gamma on

the efficient flow of information through the circuit, whereas

randomly removing an equivalent number of spikes (i.e., imple-
menting inhibition without real-time feedback) had no such

effect (Sohal et al., 2009).

Subsequently, Paz et al. (2013) closed the loop to target thala-

mocortical neurons in injured epileptic cortex of awake rats,

successfully interrupting seizures defined by EEG and behavior

using real-time,closed-loop,optical inhibition.Usingonlinedetec-

tion of seizures near the time of onset to conditionally hyperpolar-

ize targeted neurons using the optogenetic inhibitor eNpHR3.0

(Gradinaru et al., 2010), this study provided initial evidence that

thalamocortical neuronal activity is necessary for poststroke epi-

lepsy and suggesteda therapeutic direction for otherwise untreat-

able epilepsies (Paz et al., 2013); conditional stimulation based

on real-time readout of neural activity was necessary for effective

timing of optogenetic intervention. Krook-Magnuson et al. (2014)

further demonstrated that closed-loop excitation or inhibition of

parvalbumin-expressing neurons in the cerebellum resulted in a

decrease in temporal lobe seizure duration, and that closed-loop

optogenetic hyperpolarization of granule cells in dentate gyrus

efficiently terminated spontaneous temporal lobe seizures while

activation of the same cells significantly worsened spontaneous

seizures (Krook-Magnuson et al., 2015).

Similar closed-loop manipulations have recently been used to

better understand the causal role of theta oscillations in informa-

tion encoding and retrieval (Siegle and Wilson, 2014) and of

genetically targeted cell types in high-frequency ripple oscilla-

tions in the hippocampus (Stark et al., 2014). Siegle and Wilson

used millisecond-timescale, closed-loop control of inhibitory

neurons inmouse dorsal hippocampus to gate hippocampal out-

puts at specific phases of the hippocampal theta cycle during a

spatial navigation task. Closing the loop in vivo was necessary to
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 107



Table 1. Control Table

Control Type Description

Common

Example Pros Cons

Neuroscience

Applications Key References

On-off When a certain

condition (e.g.,

temperature set

point), is reached,

turns control input

on or off

Bimetallic

domestic

thermostat

Very simple, easy

to implement

Nonadaptive,

overly simplistic

for many

applications

Conditional

inhibition for

seizure

prevention (Paz

et al., 2013);

Motion-

dependent

optical

stimulation

(O’Connor et al.,

2013)

Sohal et al., 2009;

Paz et al., 2013;

O’Connor et al.,

2013; Krook-

Magnuson et al.,

2014; Siegle and

Wilson, 2014;

Stark et al., 2014;

Krook-Magnuson

et al., 2015

Proportional Adjusts control

input in direct

proportion to

current error;

classical, model-

free approach

used in simple

SISO systems

Fly-ball governor,

toilet bowl float

proportioning

valve

Simple, fast,

relatively easy to

implement

Unstable at rapid

response times

Very fast, but

unlikely to be as

useful as PI/PID

control except

under extreme

time or

computational

constraints

Maxwell, 2003;

Åström and

Murray, 2010

Proportional

integral (PI) and

proportional

integral derivative

(PID) control

Adjusts control

input in direct

proportion to

current error, as

well as to the

error’s time

integral and

derivative;

classical, model-

free approach

used in most

SISO systems

Automobile cruise

control

Simple, scalable,

optimal for first-

order (PI) and

second-order

(PID) linear

processes

without time

delays; widely

applied in real-

world

applications

Does not account

for time delays,

switching

dynamics, or time

varying

parameters

Potential

application: fast,

real-time all-

optical control for

SISO and SIMO

systems (Figures

2A–2F and

4C–4F)

Åström and

Hägglund, 2006;

Åström and

Murray, 2010

Model predictive

control (MPC)

Uses a model of

the system being

controlled to

accounts for time

delays by

predicting future

states; modern

and model-based

Most industrial

process control;

autonomous

vehicles

Can be

multivariable,

robust, and

nonlinear;

accounts for time

lags in the control

process

Requires a model

of the system

obtained by

system

identification

Potential

application:

neural

microcircuit

control

(Figure 5D)

Rawlings, 2000;

Maciejowski,

2002; Qin and

Badgwell, 2003;

Bertsekas, 2005a;

Wirsching et al.,

2007; Wang and

Boyd, 2011b

Switching

dynamical system

(hybrid system)

MPC that

switches between

different control

models based on

changes in

measured

dynamics

Provably safe

flight-mode

switching

algorithms for

autopilot in

commercial

aircraft

Models large

changes in

system dynamics

that are hard to

capture in one

model

Requires

estimation of

multiple models

and change point

detection

Potential

application: large

changes in brain

dynamics like

sharp wave

ripples versus

theta in

hippocampus,

sleep/wake, etc.

Branicky, 1998;

Egerstedt, et al.,

2003

Robust control MPC that allows

control without

knowing the

distribution of

error and is

insensitive to

modest

parameter

changes

Chemical process

control

Allows control of

worst case

deviations from

the target

trajectory; does

not require noise

assumptions

Can be more

computationally

expensive and

tedious to

implement; can

degrade

performance to

increase

robustness

Potential

application:

accounting for

large, intermittent

disturbances

Dullerud and

Paganini, 2005

(Continued on next page)
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Table 1. Continued

Control Type Description

Common

Example Pros Cons

Neuroscience

Applications Key References

Adaptive control Common robust

control type that

adjusts model

parameters as the

system changes

over time

Airplane roll

dynamics

‘‘Self tuning’’;

multivariable;

inherently

nonlinear

Best for smoothly

or slowly

changing

parameters, not

rapid state

changes

Potential

application:

online adaptation

to habituation or

plasticity effects

Bertsekas, 2005a;

Ogunfunmi, 2007;

Åström and

Wittenmark, 2013

Stochastic model

predictive control

MPC that models

unobservable

disturbances in

the state

evolution of the

system

Modern building

climate control

(based on

occupancy,

weather, and

changing

electricity costs)

Less pessimistic

than robust

control; can allow

for modest

disturbances

while maintaining

performance

Hard to solve in

practice;

approximate

solutions are

often necessary

Potential

application:

accounting for

modest

intermittent

disturbances

Mesbah and

Streif, 2014;

Paulson et al.,

2014

Optimal control General approach

to solving control

problems using

optimization

theory

Aircraft

performance

optimization; time

optimal satellite

launching

General

framework for

solving control

problems using

constrained

optimization

Can be

computationally

intensive

Potential

application: single

neuron or small

subset of neuron

control with

safety and/or

physiological

constraints

Bertsekas, 2005a;

Ogata, 2010

Suboptimal

control

Stops short of the

ideal optimal

solution or makes

approximations in

order to speed up

computations

Autonomous

helicopter flight;

large, distributed

systems control

Deals with

‘‘curse of

dimensionality,’’

time constraints,

and imperfect

state information

Solution is

suboptimal;

performance

guarantees are

limited

Potential

application:

neural

microcircuit

control

(Figure 5D) for

large numbers of

neurons with

constraints

Kosut, 1970;

Bertsekas,

2005b; Zeilinger

et al., 2011; Wang

and Boyd, 2011a
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provide adequate temporal precision and accuracy within the

theta cycle to target optogenetic manipulations to particular

phases of naturally generated theta rhythms on a trial-by-trial ba-

sis (Siegle and Wilson, 2014). This causally demonstrated that

the falling or rising phases of theta had different effects depend-

ing on behavioral context: hippocampal CA1 inhibition at the

peak of theta improved navigational accuracy when external

cues were available, while hippocampal inhibition at the trough

improved accuracy when behavioral guidance was based on in-

ternal signals alone (Siegle and Wilson, 2014). Stark et al. used

high-density electrical recordings and multisite optogenetic

stimulation, leveraging the speed of closed-loop methods to

define causal roles for targeted pyramidal and interneuron types

in maintaining and pacing sharp-wave ripple events. Pyramidal

cell activity was reported to be necessary for sustaining ripple

events while parvalbumin-positive interneurons were found to

pace but not to cause ensemble spiking; closed-loop optoge-

netic stimulation based on online detection of sharp-wave rip-

ples was needed to determine cell-type roles during these brief,

dynamic events (Stark et al., 2014).

In the above examples of closed-loop optogenetics, stimula-

tion or inhibition was achieved using real-time hardware systems

to process electrophysiological data online and then condition-

ally modulate the light source following specific on-off control
rules. Carefully measured behavioral, rather than electrophysio-

logical, variables may be used in a similar fashion. O’Connor

et al. (2013) elegantly demonstrated such an approach by target-

ing optogenetic stimulation to single barrels of somatosensory

cortex and using real-time measurements to optogenetically

mimic touch-evoked activity in layer 4 neurons during whisking.

In this case, closed-loop photostimulation was sufficient to

evoke behavior consistent with illusory perception of an object

if stimulation occurred during a bout of whisking. Yoking pre-

cisely timed and calibrated optogenetic stimulation to milli-

second-timescale whisker position allowed the authors to

determine that instantaneous whisker position was not required

for object localization (O’Connor et al., 2013).

All of the investigations mentioned thus far effectively utilized

on-off control, that is, turning on or off a control input conditional

on some event occurring. However, there exists a much broader

class of closed-loop control strategies that have not been, but

could be, built into optogenetic experiments (see examples in

Table 1). These have been developed and applied in a vast engi-

neering literature with examples stretching back to the 19th cen-

tury (James Clerk Maxwell’s ‘‘On Governors,’’ 1868; reprinted in

Maxwell, 2003), and some have recently been theoretically

extended to the control of individual neurons (Schiff, 2012; Dasa-

nayake and Li, 2011; Ahmadian et al., 2011; Danzl et al., 2009)
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 109
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and neural populations (Ching and Ritt, 2013; Liu et al., 2010;

Schiff and Sauer, 2008). These strategies, coupled with the

emerging technologies reviewed below, could have a profound

influence on the conduct of optical physiology, allowing real-

time adaptation to animal state, enforcement of physiological

constraints on evoked patterns, calibrated control with cellular

resolution, and a variety of important experimental controls

that were previously inaccessible.

It is perhaps surprising that while closed-loop optogenetic

control has been possible for several years using either electrical

recording or behavior to modulate optogenetic stimulation, to

the best of our knowledge only a few papers have utilized feed-

back control in this way (e.g., Sohal et al., 2009; Paz et al., 2013;

O’Connor et al., 2013; Krook-Magnuson et al., 2014, 2015; Sie-

gle andWilson, 2014; Stark et al., 2014). This is unlikely to be due

to the technical and experimental challenges involved in under-

taking such investigations, since neurobiologists are accus-

tomed to the design and implementation of experiments charac-

terized by computational and technical complexity. There may

be, however, a cultural gap between biologists and engineers

regarding available tools, techniques, and motivation for

closed-loop optical control and related technologies in systems

engineering. Here we seek to address the latter challenge by

helping to unite the relevant literatures on optical actuators, op-

tical sensors, electrophysiology, genetic and optical targeting

strategies, and the engineering literature on system identification

and control, all from the perspective of closed-loop optoge-

netics. Throughout, we seek to frame biological applications in

the language of systems and control theory, as already used

effectively in engineering for understanding and controlling com-

plex dynamical systems. Considered along the way are the mul-

tiple technical limitations and potential confounds of optogenetic

experimentation; we have previously described these caveats

and challenges in detail along with relevant experimental design

guidelines (e.g., Gradinaru et al., 2007; Yizhar et al., 2011a; Mat-

tis et al., 2012; Ferenczi and Deisseroth, 2012; Deisseroth, 2014),

but activity-guided and closed-loop methods now substantially

augment these approaches for careful and rigorous conduct of

optogenetics.

Electrical/Optical Devices Enabling Closed-Loop
Control in Rodents and Primates
In the papers described above, digitized electrophysiological

measurements provided a readily utilizable, submillisecond

output source for closed-loop optogenetic control because

real-time systems already exist for electrophysiological applica-

tions (Paz et al., 2013; Prinz et al., 2004). For in vitro electrophys-

iology, local stimulation with a guided light source (e.g., Tye

et al., 2011) or integration of optical fibers into patch pipettes

(Katz et al., 2013) can allow for relatively precise targeting of light

as the modulated feedback signal, and various structured light

approaches have already been applied for optogenetic manipu-

lations in slice and culture (discussed in detail in a later section).

For in vivo applications, the optrode (Gradinaru et al., 2007) is the

simplest and most widely used device for integrated electrical

recording and optical feedback and has seen several design

improvements including a coaxial, tapered design (Zhang

et al., 2009), a glass-coating optrode application for deep struc-
110 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
tures in primates, and an integrated mLED optrode designed with

closed-loop optogenetic applications in mind (Cao et al., 2013).

In systems engineering, these deviceswould be classified as sin-

gle-input single-output (SISO) systems (Levine, 1999; Åström

and Murray, 2010), allowing a single electrical measurement of

the system (output) and a single optical control input to use in

controlling the system (Figures 2A–2C).

A variety of strategies have been employed to increase the

number of available electrical measurements while maintaining

a single optical input, including optetrodes (Anikeeva et al.,

2012), 16-site neural probes with a single waveguide (Cho

et al., 2010), commercially available 16-recording-site, single-fi-

ber probes (Kravitz et al., 2010), and Utah arrays modified to

include a tapered optrode (Zhang et al., 2009), yielding various

single-input, multiple output (SIMO) systems (Figures 2D–2F).

To stimulate and record from multiple sites, multiple-input multi-

ple output (MIMO) systems for electrical readout and optoge-

netic control now include multishank silicon probes with inte-

grated light guides or diodes (Stark et al., 2012; Royer et al.,

2010), Utah-slant optrode arrays (Abaya et al., 2012a), glass op-

trode arrays (Abaya et al., 2012b), optical fiber bundles bundled

with multiple electrodes (Hayashi et al., 2012), and multipoint

emitting tapered optical fibers combined with silicon probes (Pi-

sanello et al., 2014; Figures 2G–2J). Feasibility for spike-detect-

ing, closed-loop SIMO control has recently been demonstrated

(Nguyen et al., 2014) using template matching to do online spike

detection on 32-channel tetrode recordings (system outputs)

and using detected spikes to control optogenetic stimulation

through a single fiber optic (system input) at �8 ms closed-

loop latency in awake rats.

Categorization of systems into SISO, SIMO, MISO, and MIMO

systems (Figure 2) is useful for deciding which control strategies

should and can be employed. For example, with just one input

andoneoutput,SISOsystemsdonot requireconsiderationofcor-

relations between inputs and outputs and allow parameters to be

fit very rapidly (Åström and Hägglund, 2006; Åström and Murray,

2010). In contrast, MIMO systems generally model the effect of

each input on each output, resulting in potentially increased flex-

ibility and accuracy of control at the cost of greater computational

complexity (naively viewed, this complexity is combinatorial in the

number of possible relationships between inputs andoutputs; but

see the section on closed-loop control of microcircuits for other

approaches). For the purposes of analysis, it may be useful to

reduce more complicated systems to the simpler cases, for

example, treating a SIMO system as multiple SISO components,

or a MIMO system as multiple MISO systems. For example, the

distances between individual optrodes on a Utah optrode array

may allow treating each optrode as a separate SISO system, al-

lowing much faster online control. The theory for SISO systems

is by far the most developed (Åström and Hägglund, 2006). How-

ever, if evoked correlations between shanks are important, a

more complicated MIMO model will be necessary, requiring

more modern multivariate control strategies (Bertsekas, 2005a;

Ogata, 2010). Finally, we note that although MISO systems are

not currently represented in terms of optical control inputs and

electrical outputs of extant devices, they remain important; for

example, controlling a single behavioral outputwithmultiple opto-

genetic control inputswould be a highly interestingMISO system.
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Figure 2. Combination Electrical-Optical
Devices for Closed-Loop Optogenetic
Control
(A–C) Single-input, single-output (SISO) systems:
optrode (Gradinaru et al., 2007), optopatcher
(Katz et al., 2013), and integrated mLED optrode for
chronic implantation (Cao et al., 2013).
(D–F) Single-input, multiple-output (SIMO) sys-
tems: optetrode (in cross-section, fiber optic is
blue, electrodes gold; Anikeeva et al., 2012),
16-site neural probe with a single optical wave-
guide (Cho et al., 2010), Utah array modified to
include a single tapered optrode (Zhang et al.,
2009).
(G–J) Multiple-input, multiple output (MIMO) sys-
tems: multishank silicon probes with integrated
diodes (Stark et al., 2012), multipoint emitting
tapered optical fibers combined with a silicon
probe (Pisanello et al., 2014), optical fiber bundle
with multiple electrodes (in cross-section, fiber
bundles are blue, electrodes gold; Hayashi et al.,
2012), glass optrode array (Abaya et al., 2012b).
Gray box (implant innovations).
(K) Highly flexible biomimetic all-polymer fiber
probes appropriate for the spinal cord and pe-
ripheral nervous system (inset shows example
cross-section; Lu et al., 2014).
(L) Ultrathin, mechanically compliant, deep-brain-
compatible electrodes with multiple embedded
miniaturized mILEDs (Kim et al., 2013b).
(M) Fiber probe that allows for simultaneous opti-
cal stimulation, neural recording and drug delivery
in behaving mice (‘‘Ch,’’ the coaxial drug delivery
channel; Canales et al., 2015).
(N) Wireless powering of intracranial (Kim et al.,
2013b) or external skull-mounted (Wentz et al.,
2011) devices has been described, though
requiring a bulky head-mountable power receiver
(reviewed in Warden et al., 2014); however,
wireless devices for optogenetic stimulation
that are fully implantable within the organism
have now been designed as illustrated (Yeh et al.,
2014; Yeh et al., 2014, Society for Neuroscience
abstract).
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Beyond the number of optical inputs and electrical outputs,

several advances in optoelectrical devices for closed-loop opto-

genetics are relevant for determining the best device for a given

application (Figures 2K–2N). First, the rigidity of implanted ele-

ments—including electrodes, fiberoptics, and other waveguides

commonly employed for combined electrical recording and op-

togenetic stimulation—can damage tissue and may be too

inflexible to use in small, more mobile structures such as the spi-

nal cord or peripheral nerves (Lu et al., 2014; Llewellyn et al.,

2010; Pashaie et al., 2014). To address these limitations, both

highly flexible, biomimetic, all-polymer fiber probes appropriate

for the spinal cord and peripheral nervous system (Lu et al.,

2014; Towne et al., 2013) as well as ultrathin, mechanically

compliant, deep-brain-compatible electrodes with multiple

embedded miniaturized mILEDs one-thousandth the size of

conventional LEDs (Kim et al., 2013b) have been developed to

facilitate simultaneous optical stimulation and electrical

recording during behavior (Figures 2K and 2L). Related flexible
polymer technologies have enabled the development of fiber

probes that allow for simultaneous optical stimulation, neural

recording, and drug delivery in behaving mice (Figure 2M;

Canales et al., 2015) as well as largely transparent, flexible

electrocorticography (ECoG) grids that conform to the folds of

the brain and are compatible with wide-field or structured opto-

genetic stimulation (Richner et al., 2014; Minev et al., 2015).

Recent developments in remote wireless powering of devices

(Figure 2N) have resulted in receivers the size of peppercorns

(Yeh et al., 2014), raising the tantalizing possibility of miniature,

biocompatible, self-contained implants where power receiver,

recording transmitter, miniature LEDs and electrodes could all

be subcutaneously implanted (Yeh et al., 2014, Society for

Neuroscience abstract). This would enable closed-loop optoge-

netics in behaving animals unhindered by large headmounted

electronics, or even by lightweight flexible connectors (although

systems neurobiology in rodents and monkeys has been suc-

cessfully built upon such flexible connectors, with complex
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behaviors carried out by animals linked to readout systems by

long, lightweight wires or even thinner fiberoptics, spanning the

full range of well-validatedmotor, cognitive, social, neuropsychi-

atric, and other behavioral domains (reviewed by Moser et al.,

2015; Deisseroth, 2014; Shenoy and Carmena, 2014; Wilson

and McNaughton, 1994). Indeed, despite the abundance of pos-

sibilities, adoption of multichannel, conformal, and wireless de-

vices has so far been slow, perhaps since the fiberoptic neural

interface (Adamantidis et al., 2007) has been widely adaptable

in biological discovery and also enables the two crucial capabil-

ities of deep brain projection targeting (Deisseroth, 2014), and

readout of neural activity in cells and projections during free

behavior (Gunaydin et al., 2014).

Implantable devices like miniaturized LEDs not only cannot

alone provide such readout capability, but can also emit sub-

stantial heat, the effects of which must be carefully measured

and/or controlled for in vivo (Yizhar et al., 2011a; Li et al.,

2013b; Yeh et al., 2014, Society for Neuroscience abstract).

LED-based devices can be designed with more inputs and out-

puts, but any associated increase in size and complexity may

lead to more damage to tissue when implanted (a caveat not

unique to electro-optical devices). Difficulty in the fabrication of

more complicated devices may also hinder adoption of the tech-

nology without productive industrial partnerships, which in turn

can be slow to develop for the research community (although de-

vice designs are typically made broadly available by the origi-

nating labs). And if these devices are placed not inside but

outside the brain with no fiberoptic interface (as in the initial

noninvasive optogenetic control of motor output through the

intact adult mouse skull; Gradinaru et al., 2007), the resulting sur-

face interfaces (though functional) can provide neither of the two

key functions of versatile projection targeting nor deep brain ac-

tivity readout.

Although they are often integrated with optical control hard-

ware and allow exquisite temporal precision, electrical recording

methods exhibit well-documented limitations relative to optical

approaches for readout of neural circuits. Electrical readout of

activity cannot readily be genetically specified, only active cells

can be observed, electrode arrangementmay severely limit sam-

pling of neural activity (especially spatially), and it is difficult or

impossible in most cases to relate recorded cells to detailed

anatomy or molecular phenotype. Although new all-optical

approaches (discussed next) are beginning to address these

gaps, electrical methods still have some strong advantages

including the speed of electrical recordings, the ground-truth

status of the electrically measured spike readout as fundamental

to neuronal communication, the availability of commercially

available real-time systems for spike waveform identification

and analysis, and the current utility of electrical devices in the

clinical setting.

All-Optical Closed-Loop Optogenetics: General
Principles and Constraints
Optical technologies provide unique capability for precisely tar-

geting neurons specified by type and wiring for both measure-

ment and perturbation. Already, optical measurements of neural

activity with single-cell resolution in dense populations have

extended our understanding of neural activity beyond the sparse
112 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
and activity-biased measurements achievable with electrode-

basedapproaches. For example, imaging of neural activity in vivo

has revealed that while activity can be sparse at any one instant

(that is, with activity restricted to a small fraction of the entire

neural population), correlated activation occurs in small subsets

of neurons—often termed ensembles—that are scattered

throughout the brain volume. Optical recording studies have

revealed ensemble-like activity in sensory-evoked responses

(e.g., similarly tuned neurons; Ko et al., 2011), motor-related ac-

tivity (Komiyama et al., 2010), spatial navigation (Dombeck et al.,

2010), and even spontaneous activity (Ko et al., 2011). Moreover,

correlations within ensembles appear to increase inmagnitude in

relevant neurons during learning (Komiyama et al., 2010). It has

also been revealed that brain wiring is not random (in the

Erd}os–Rényi sense), but demonstrates rules of specificity even

at the microcircuit level that can map onto ensemble identity

(Ko et al., 2011). Activity patterns in these ensembles have the

potential for distinct influences on downstream targets (for

example, higher-order cortical areas receive specific subsets

of information from lower areas; Glickfeld et al., 2013), likely

sampling from specific ensembles of neurons (Sato and Svo-

boda, 2010). Further, projection-targeting optogenetic experi-

ments have shown that different efferent pathways from the

same anatomical structure can have very different behavioral

outcomes, since they arise from distinct populations that are

anatomically intermixed at the cellular level (e.g., Kim et al.,

2013a). But separating these populations experimentally is not

always easy because distinct neural ensembles, especially of

excitatory neurons, often belong to a similar genetic class and

are thus difficult or impossible to target separately without

including additional strategies based on function or wiring. Given

that these ensembles are dynamically active in time and change

with animal state, online targeting based on rapid observation

and analysis of functional patterns and behavior will be required

to accurately play back observed patterns of endogenous activ-

ity. This level of control will be essential for testing the causal role

of specific activity patterns in generating subsequent activity

patterns and behavior.

The importance of optogenetically targeting neurons based on

functional ensemble identity has been recently demonstrated by

using activity-dependent labeling of neurons with an inducible

system based on activity-regulated c-fos promoter elements

(Liu et al., 2012). With this approach it was possible to use fear

conditioning in a specific context to selectively drive expression

of channelrhodopsin in neurons of the dentate gyrus that were

strongly active during a pharmacologically induced time window

(�1 day), and to then reactivate the fear response in a different,

habituated context using only optogenetic stimulation of the

opsin expressing neurons in dentate gyrus (Liu et al., 2012;

Figure 3F). This finding (along with a number of elegant controls

in the paper) highlights the importance of targeting a specific

ensemble of neurons active during behavior. While relatively little

is known about the cellular identity of these activity-defined en-

sembles, it is possible that additional information about cell type,

including molecular detail (Micheva and Smith, 2007) and wiring

information (see circuit-targeting strategies reviewed below

and Bock et al., 2011) could be further obtained (for example,

leveraging recent advances in multiround molecular and
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anatomical analysis in large, intact cleared brains; Chung et al.,

2013; Tomer et al., 2014). While of great value, these activity-

dependent opsin expression approaches have limited temporal

resolution compared with the relevant neural activity timescales.

This temporal resolution also extends the time over which addi-

tional neurons less related to the specific behavior under study

could be labeled by this approach.

Despite these and other recent advances in targeting

gene expression to specific cell types based on genetics,

wiring, and functional properties, matching controlled real-time

dynamics to native dynamical patterns will require new comple-

mentary closed-loop approaches to ultimately understand the

causal underpinnings of neural computation and behavior.

Recent advances in optical methods for both observation and

control, combined with precise genetic targeting, now offer a

promising set of approaches for reaching these goals. While

all-optical, closed-loop control (using both optical sensors of

neural activity and optogenetic tools as actuators of circuit

activity feedback control) has yet to be demonstrated, all of

the technologies necessary are now developed and available.

Further, all-optical open-loop control at cellular resolution has

already been enabled using approaches defined in vivo (Prakash

et al., 2012; Rickgauer et al., 2014; Szabo et al., 2014; Packer

et al., 2015) as well as in vitro (Nikolenko et al., 2007; Rickgauer

and Tank, 2009; Dal Maschio et al., 2010; Prakash et al., 2012;

Packer et al., 2012). In this section we review three key technol-

ogies critical for achieving all-optical, closed-loop optogenetic

control: the compatible optogenetic actuators and optical sen-

sors, the tools for targeting both actuators and sensors to

genetically or anatomically defined cells, and the mathematical

and computational tools necessary for closed-loop control of

neurons and neural circuits.

Optogenetic Actuation and Optical Sensing of
Neural Activity
Herewe focus on the specific optogenetic tools that are compat-

ible with available optical sensors of neural activity, and identify

parameters of these tools that will be important in the context of

control. By compatible, we mean with limited spectral overlap

between the illumination wavelengths necessary for imaging

the activity sensor and for actuating the optogenetic tool—a

critical (and historically limiting) issue for all-optical optogenetic

approaches. Although optogenetic constructs and reporters of

neural activity can be used together (Zhang et al., 2007; Airan

et al., 2007), becausemost opsins have broad excitation spectra

all-optical applications will require either limits on the light inten-

sity that can be used for imaging illumination or other means to

minimize cross-stimulation (e.g., limiting light duration or using

patterned illumination to avoid certain cells or excitable regions).

Figures 3A and 3B show a selection of opsins and sensors with

windows in their spectral overlap that could allow for combina-

tion in closed-loop optogenetic control. Although we show sim-

ple bars generated by thresholding spectra in order to visually

accommodate a number of sensors and actuators, we note

that it is important to consider the full, non-normalized action

spectra when planning a particular experiment (see http://

actionspectra.org for an interactive resource for comparing

sensor and actuator action spectra).
In the one-photon case, new genetically encodable Ca2+ indi-

cators (GECIs) that are red-shifted (Inoue et al., 2015; Akerboom

et al., 2013; Wu et al., 2013, 2014; Hochbaum et al., 2014; Zhao

et al., 2011) are compatible with blue light-activated control tools

such as the Chlamydomonas channelrhodopsin ChR2 and its

variants (Akerboom et al., 2013; Inoue et al., 2015). Conversely,

the initial demonstration in neurons of red light excitation

(C1V1T/T; Yizhar et al., 2011b) and inhibition (eNpHR3.0; Gradi-

naru et al., 2010) with microbial opsins raised the prospect of

combination with blue light-activated GECIs (Figure 3A,B).

Such red-shifted actuation or readout will allow deeper one-

photon circuit interrogation due to reduced scattering at the

longer illumination wavelength. However, for deeper imaging

and greater spatial restriction of photostimulation to the single-

cell level, two-photon laser scanning microscopy (TPLSM;

Denk et al., 1990) for activity imaging and optogenetic control

(Prakash et al., 2012; Rickgauer and Tank, 2009) will likely be

necessary. Two-photon methods have been shown to be effec-

tive in combination with GCaMP variants for short wavelength-

driven, two-photon imaging and C1V1 opsin variants for long

wavelength-driven control (Rickgauer et al., 2014; Packer

et al., 2015).

Although rapidly developing with many advances still to be

made, genetically encoded voltage indicators (GEVIs; Siegel

and Isacoff, 1997; Ataka and Pieribone, 2002; Sakai et al.,

2001) could allow for similar targeting strategies to be applied

to optical membrane voltage readout with higher temporal preci-

sion (for reviews see Knöpfel et al., 2006; Peterka et al., 2011;

Mutoh et al., 2011; Perron et al., 2009a); note also that many

promising non-genetically targeted strategies also exist (Peterka

et al., 2011). Again, minimizing direct stimulation of coexpressed

optogenetic tools by imaging light will be critical to determining

which opsin-GEVI combinations are viable, making low imaging

illumination intensities and minimally overlapping action spectra

critical. Much progress in higher signal-to-noise GEVIs has been

made in recent years, including for fluorescent protein-based

(Akemann et al., 2012; Jin et al., 2012; St-Pierre et al., 2014;

Gong et al., 2014), and microbial-opsin-based (Kralj et al.,

2012; Flytzanis et al., 2014) reporters, although the high light

intensities required to image at fast frame rates with currently

available probes still present a challenge for all-optical applica-

tions. GEVIs with blue range (Lundby et al., 2008; Perron et al.,

2009a) and red range (Perron et al., 2009b) action spectra have

been developed, and opsin-GEVI pairs have been shown to

work together in cultured cells in vitro (Hochbaum et al., 2014);

continuing progress in this area may also eventually allow all-

optical voltage readout and photostimulation in vivo.

It is also important to note that the choice of actuator will

constrain the range of firing rates that can be evoked (and the

latency and jitter), defining the range of patterns that can be reli-

ably controlled (Mattis et al., 2012; Gunaydin et al., 2010). From

the systems engineering perspective, how well-actuated the

system is can have a strong impact on whether the system is

controllable—meaning that the chosen system can be driven

from any starting condition to any desired final state in a finite

amount of time. This controllability concept along with observ-

ability (see below) together play a central role in the design of

control systems in state space (Åström and Murray, 2010;
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Kalman, 1960). In neuroscience applications of optogenetics,

controllability relates to whether patterns of optogenetic stimula-

tion can evoke desired target patterns of neural activity or

behavior (e.g., emulating endogenously observed patterns). As

a simple example, consider a single fast-spiking, opsin-express-

ing neuron to be the system under study. If certain patterns of ac-

tivity (e.g., 40 Hz activity) cannot be reliably evoked using a

particular opsin because of slow opsin photocycle dynamics,

then the system is not controllable for that application. More

generally, systems themselves may or may not be controllable

depending on actuator properties, neural state space dynamics

(Paninski et al., 2010; Kemere et al., 2008) and the arrangement

of actuators and sensors (Summers and Lygeros, 2014; Ching

and Ritt, 2013). Indeed, while parameters of optogenetic tools

chosen can strongly influence whether the system will be

controllable, at the circuit level interactions between cells and

projections will result in more complicated dynamics than in

the single neuron case. For example, it is possible to evoke

gamma oscillations at the circuit level using a relatively slow

opsin variant ChR2(H134R) (Sohal et al., 2009; Cardin et al.,

2009), although the same construct cannot always reliably drive

individual pyramidal cells at such frequencies (Gunaydin et al.,

2010). It is notable that the classical controllability definition

may require some relaxation for some neural systems, in partic-

ular for underactuated cases (like single optical fiber prepara-

tions; Ching and Ritt, 2013). We return to these issues below in

the section on closed-loop control of circuit dynamics.

Figures 3C and 3D demonstrate another well-known property

of optogenetic control tools important for effective closed-loop

control: steady-state to peak current ratios change both with

light intensity (top panel) and over time based on stimulation

history (bottom panel; reviewed in Mattis et al., 2012). This effect

can be limited by using any of the several opsins with steady-
from Mattis et al., 2012; Hochbaum et al., 2014; Inoue et al., 2015; Wu et al., 201
2012, 2013; Chen et al., 2013c; Berndt et al., 2014; Gradinaru et al., 2010; Chuo
examine nonnormalized spectra and other published details for each protein (for
(B) Bars like those in (A), but showing thresholded action spectra ranges for protei
Inoue et al., 2015; Prakash et al., 2012; Chen et al., 2013c; Akerboom et al., 201
(C and D) (C) Peak-to-steady-state ratio of a typical channelrhodopsin change
(J. Mattis and K.D., unpublished data); scale bars, 400 pA; light pulses, 1 s.
(E) These nonstationary effects can be efficiently modeled using simple linear dyn
e.g., describing the photocycle dynamics in terms of two conducting states that c
excited to the high (C1) or low (C2) conducting states when photoexcited (D1 and
denote transitions states governed by rate constants, and blued dotted lines sho
(F) Targeting strategies for mammalian gene expression in specific neurons, cell ty
by localized viral injection; the virus is engineered to introduce a specific gene(s)
combinations of promoter used and viral tropism (Nathanson et al., 2009). Optog
multiple outputs from the source brain area. Stimulating opsins located in project
pathways from the source brain area. (ii) Retrograde tracing viruses can infect
stimulation can be restricted to the site of injection (optical fiber a), or specific inpu
to a single neuron in vivo by single-cell transfection, e.g., by single-cell electropo
expression to monosynaptic inputs to a specific population of neurons (Wickersh
Cre-dependent helper virus; Wall et al., 2010), or to a single neuron by single ce
configuration, Rancz et al., 2011). Light-restriction strategies are similar to as in (ii)
advantage that the transfected neuron (or Cre-defined population) at the site of the
in addition to the gene(s) expressed by the rabies virus. (v) Amultitude of transgeni
gene expression in recombinase dependent fashion (for example, see Taniguchi e
logic’’ operations of combinations of Cre and/or Flp recombinase expression (in
(vi) Targeting gene expression to neurons activated in a specific time window
expression and inducible genetic targeting systems (Liu et al., 2012). Importantly
using all-optical methods (e.g., imaging and stimulating through the same fiber), a
et al. (2013) for recent reviews including additional gene-targeting strategies.
state/peak ratios approaching 1 (reviewed in Mattis et al.,

2012). If this is not feasible, for example due to opsin/sensor

compatibility concerns, nonstationary effects of opsin photo-

cycle dynamics can be modeled by using observations to fit pa-

rameters in three- or four-state linear models that closely

approximate opsin photocycle dynamics and would be easily

run in real time (Figure 3E; Nikolic et al., 2009; Hegemann

et al., 2005) such that they could be used to vary light intensity

online to result in stationary control combined with other

methods (e.g., Ahmadian et al., 2011).

The case of hyperpolarizing optogenetic tools is interesting

from the closed-loop control perspective. First, an engineered

hyperpolarizing ion pump (Mattis et al., 2012) has been shown

to be effective for single-cell resolution two-photon inhibition

in scattering mammalian brain tissue (Prakash et al., 2012), but

light-driven chloride and proton pumps from archaeal halobacte-

ria conduct only a single ion per photon, making responses

(though quite linear with light intensity) significantly more

inefficient than those of channel opsins. Recently developed

chloride-selective hyperpolarizing channels (Berndt et al., 2014;

Wietek et al., 2014) so far have only been employed in the one-

photon regime; these are more efficient because they directly

conduct many ions per photon, but this fact also complicates dy-

namics since conductance direction (as with native inhibition

mechanisms) is conditional onmembranepotential and iongradi-

ents. Closing the loop in this case could allowmore guided mod-

ulation of light-activated chloride conductance based on neural

activity level, as well as allowing adaptive modulation of light to

achieve complex waveforms. It is notable that placing inhibition

in a closed-loop control framework would allow specifying target

levels of inhibition thatmaydecrease activity to adesired nonzero

set point rather than aiming to simply silence neural firing, allow-

ing a more nuanced approach to optogenetic inhibition.
3; Yizhar et al., 2011b; Klapoetke et al., 2014; Lin et al., 2013; Akerboom et al.,
ng et al., 2014). Note that this is high-level comparison and that it is critical to
a developing resource in this area, see http://actionspectra.org).
ns compatible with two-photon closed-loop optogenetic control (adapted from
2).
s with stimulation light intensity (D) and with history of stimulation over time

amical systems (Nikolic et al., 2009; Nagel et al., 2003; Hegemann et al., 2005),
onduct at different rates (C1 and C2) and two dark states that are differentially
D2, respectively; see equations 1a–1d of Hegemann et al., 2005). Here arrows
w excitation from dark to conducting states by photostimulation.
pes, and circuits. (i) Gene expression can be restricted to a particular brain area
of interest (e.g., an opsin or GECI), and may be biased to specific cell types by
enetic light stimulation at the site of the injection (fiber a) will potentially perturb
ions (optical fibers b and c) from the source area can distinctly perturb specific
local axon terminals and label inputs to a given brain area. Optogenetic light
ts (optical fibers b and c). (iii) Gene expression specificity can be restricted even
ration (Kitamura et al., 2008). (iv) Transsynaptic tracing rabies virus can restrict
am et al., 2007b), cell type labeled with Cre (and targeted by expression from a
ll transfection methods (e.g., electroporation, Marshel et al., 2010; whole-cell
in terms of addressing specific inputs (optical fibers b and c), with the additional
optical fiber a can be targeted for specific gene expression, separate from and

cmouse lines exist for targeting specific cell typeswith recombinases to restrict
t al., 2011). Intersectional strategies can increase specificity through ‘‘Boolean
cluding AND, NOT, OR, NAND, NOR, XNOR, and XOR) (Fenno et al., 2014).
(hours to �1 day) is possible by taking advantage of immediate early gene
, for all of these examples, closed-loop control strategies can be implemented
s further elaborated in Figure 4. See Huang (2014); Luo et al. (2008), and Packer
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In choosing optical sensors for closed-loop optogenetics,

there are several important parameters to consider (beyond

limiting crosstalk with complementary optogenetic control

tools); these considerations share some similarity to those of

concern in imaging-only applications (Peterka et al., 2011; Wilms

and Häusser, 2014) but with new significance in the control

framework. In particular, temporal resolution (e.g., on/off ki-

netics) and signal-to-noise over a sufficient dynamic range are

important for observability. As an example, if we are interested

in evoking or suppressing individual action potentials in a partic-

ular temporal pattern, but our sensor is not sensitive enough to

effectively report single action potentials, then we will not know

if our optogenetic manipulation has succeeded and will not be

able to use feedback to reliably control the system to this level

of precision. If, however, our goal is to evoke bursting of a partic-

ular magnitude or to limit firing rates below a certain observable

level then the same indicator may be sufficient. In the case of

GECIs, various kinds of saturation and buffering can have similar

effects, thereby decreasing spike resolution at high firing rates

(Vogelstein et al., 2009). Theoretical analyses, such as those

for limits of detection of spikes with calcium and voltage sensors

(Wilt et al., 2013; Sjulson andMiesenböck, 2007), can be used to

set reasonable bounds on expected detection given collection

and sensor statistics.

In mammalian tissue, scattering sets limits on both controlla-

bility (Yizhar et al., 2011a) and observability by attenuating signal

and stimulation light in a depth- and tissue-dependent fashion

(Svoboda et al., 1997). Although forward models of attenuation

in principle can be used to alter illumination intensity in an

open-loop, depth-dependent manner (Vellekoop et al., 2008)

and potentially at real-time rates (Conkey et al., 2012), closed-

loop modulation using direct feedback from observed activity

will bemore robust tomodel errors andmore corrective of model

mis-specification in terms of measured neural activity. Since

both observability and controllability will degrade with tissue

depth, tissue scattering should be explicitly taken into account

and calibrated for in open- and closed-loop feedback models

whenever possible. Further, protein expression levels from cell

to cell can be variable, requiring cell-wise calibration of light

stimulus intensity to evoked activity—a step more effectively

accomplished using rapid optical feedback. Finally, in vivo appli-

cations can experience motion-related fluorescence changes

when there has been no actual change in neural activity.

Genetically encoded ratiometric sensors (Thestrup et al., 2014)

or online optical correction (Chen et al., 2013b) and motion

modeling may help to avoid artifactual signals from corrupting

feedback control inputs. In the case of actuation, particularly at

the single-cell level as described below, motion can also lead

to mistargeting of light patterns away from desired neurons

without closed-loop adjustment of light patterns based on de-

tected motion.

Circuit and Cell-Type Targeting Strategies
Beyond optical actuator and sensor parameters, continued

refinement in targeting expression of these proteins to prespeci-

fied populations of neurons using genetic tools will be critical for

making stimulation and feedback possible in defined cell types

and circuits. Several approaches are available to target specific
116 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
subsets of neurons based on cell type or wiring (Figure 3F;

for review, see Huang, 2014; Luo et al., 2008; Packer et al.,

2013). For example, transgenic mouse and rat lines expressing

recombinases in subsets of neurons may be combined with

recombinase-dependent gene delivery systems such as viral

approaches or crosses with other mouse lines (e.g., Witten

et al., 2011; Taniguchi et al., 2011) to restrict expression of con-

trol and readout proteins to cells of interest. The combined use of

multiple recombinases (e.g., Cre and Flp) has recently enabled

multiple-feature ‘‘Boolean logic’’ neuron targeting based onmul-

tiple genetic or topological parameters (Fenno et al., 2014),

greatly improving potential targeting specificity. An expanding

number of line crosses are possible for recombinase-dependent

expression of both activity indicators and optogenetic actuators,

allowing specific cell types to be reliably targeted for all-optical

interrogation.

Cell types have also been preferentially targeted based on

specific developmental stage (e.g., birth date) as in the case of

in utero electroporation to target specific layers in cortex (Saito

and Nakatsuji, 2001; Gradinaru et al., 2007; Petreanu et al.,

2007) and by promoter-based strategies and viral tropism (Ada-

mantidis et al., 2007; Nathanson et al., 2009). Applying these

approaches has been integral to observations that genetically

defined cell types have distinct influences on circuit processing,

as in the case of interneuron subtypes (Isaacson and Scanziani,

2011; Luo et al., 2008). As discussed above, activity-dependent

gene expression systems have enabled labeling and interroga-

tion of activity-defined ensembles of neurons in vivo (Liu et al.,

2012; Guenthner et al., 2013). Finally, targeting based on wiring

is possible with circuit-tracing viruses (reviewed in Luo et al.,

2008). For example, rabies virus infects neurons trans-synapti-

cally in the retrograde direction and has been modified to carry

genes for fluorescently labeling neurons and expressing activity

sensors and optogenetic actuators (Wickersham et al., 2007a;

Osakada et al., 2011). Furthermore, rabies has been modified

to spread only to monosynaptic inputs to a given brain region

defined by injection site (Wickersham et al., 2007a), to geneti-

cally targeted cells (Wickersham et al., 2007b) such as a given

cell type defined by recombinase-dependent infection (Wall

et al., 2010), or even to a single neuron defined by in vivo sin-

gle-cell electroporation (Marshel et al., 2010) or patching (Rancz

et al., 2011). All of these methods on their own are powerful for

targeting interrogation-tool function (e.g., in the case of single

cell electroporation: Pala and Petersen, 2015; Judkewitz et al.,

2009; Kitamura et al., 2008), alongside other targeting methods

involving anterograde projection targeting with lentivirus or ad-

eno-associated virus (AAV, discussed below) and trans-synaptic

targeting with HSV (Lo and Anderson, 2011) or wheat germ

agglutinin (WGA) in AAV (Gradinaru et al., 2010; Braz et al.,

2002; Xu and Südhof, 2013; Gunaydin et al., 2014).

Important considerations in selection of targeting strategy

are the gene expression timescale needed and the strength of

promoter to be used because—as with any transgene–geneti-

cally encoded fluorescent proteins, optogenetic actuators, and

optical sensors all carry the risk of possible toxic effects of

high or long-term protein expression. In the case of opsins,

this risk is now routinely addressed with use of appropriate pro-

moters and viruses suitable for expression timing and strength
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(reviewed in Yizhar et al., 2011a), protein modifications including

routine addition of short molecular motifs borrowed from

mammalian membrane proteins that allow these evolutionarily

distant proteins to be efficiently and safely trafficked within the

cell over the experimental timescales required (Gradinaru et al.,

2008, 2010), and proper experimental design controls including

incorporation of light on/off controls and behavioral and physio-

logical comparisons with control-transduced (non-opsin ex-

pressing) animals at baseline (Yizhar et al., 2011a). Such controls

are now standard practice for any such experimental interven-

tion in neuroscience and are extended to the fluorescent activity

reporters and structural markers as well; even with native pro-

teins, overexpression over time causes toxicity. Integration

of activity sensing with control also facilitates monitoring and

testing for typical activity patterns at baseline and in response

to perturbation in the presence or absence of different expressed

markers.

Control Theory and System Identification for Neurons
Once appropriate optogenetic actuators and sensors have been

targeted to cells of interest, online algorithms are needed for

designing stimulation with light conditional on observed neural

activity or behavior (Figure 1C). Optical sensorsmeasure activity,

and this information is used by the controller to estimate the

current state of the neural system. This neural state estimate is

then used as input to algorithms that compute the necessary

control action (e.g., light input) to achieve a target activity level

or pattern. Finally, this control action is carried out and the

reaction of the system is again recorded by the sensors, closing

the loop.

To provide some general background on the types of control

algorithms, Table 1 reviews existing approaches in closed-loop

control theory. Note these broad categories of closed-loop con-

trol are not exclusive and can be combined, nor are these all the

categories that could be highlighted (the systems engineering

and control literature is quite substantial). However, a few major

distinctions are worth keeping in mind when considering

methods for feedback control. In general, such methods can

be categorized according to linearity (linear versus nonlinear),

time representation (continuous versus discrete), and domain

representation (frequency versus time) (Aström and Murray,

2010).

Continuous frequency-domain approaches generally tend to

take a more classical view and have a powerful and deeply

developed theory for SISO systems going back more than

two centuries (Åström and Hägglund, 2006). Time-domain, or

‘‘state-space’’ methods (Kalman, 1960), which have already

seen wide application for modeling dynamic systems in neuro-

science (Paninski et al., 2010; Shenoy and Carmena, 2014),

are a cornerstone of modern control theory and are well-suited

to MIMO systems. We anticipate classical methods like the

fast proportional-integral-derivative (PID) control used in auto-

mobile cruise control (Table 1) will be most useful in single

fiber/electrode SISO or SIMO applications, while state-space

approaches will typically be more appropriate for MIMO

experiments involving arrays, fiber bundles, or imaging with

structured illumination—consistent with applications in existing

control literature (Table 1).
Effective integration of closed-loop control theory with

neuroscience will be highly interdisciplinary, even beyond the

advanced optics and physiology involved, ideally extending to

the involvement of computational and anatomical expertise.

First, because neurons and neural circuits are complicated,

nonlinear, nonstationary systems composed of heterogeneous

cell types that change dynamically on millisecond timescales,

and because safety and physiological constraints are important,

tools from modern and nonlinear control theory that are robust,

adaptive, and allow formulation as an optimization problem

with constraints will be most appropriate in all but the simplest

or most time-limited cases (Ogata, 2010; Bertsekas, 2005a;

Kuo, 1982). Further, because closed-loop depends on real-

time computation to keep up with rapid ongoing dynamics, there

is always a computational budget that places limitations on

model complexity. In many modern applications such con-

straints may lead to only partially solving optimization problems

at each time step, resulting in ‘‘suboptimal’’ control (Bertsekas,

2005a) which nonetheless can be very effective in real-world ap-

plications where time budgets are limited (Boyd et al., 2014;

Wang and Boyd, 2010, 2011b; Bertsekas, 2005a; Wirsching

et al., 2007). On the anatomical side, genetic-targeting strategies

and post hocmolecular phenotyping (with, for example, coregis-

tration to high-resolution anatomical data; Tomer et al., 2014) will

be necessary for identifying cell-type roles in dynamics, as well

as aid in understanding projection patterns alongside circuit

tracing technologies (which will bring its own computational

challenges).

Recent work on closed-loop control for more effective

and safer electrical microstimulation for electrical deep-brain

stimulation (EDBS) in Parkinson’s disease has developed contin-

uous-time nonlinear control tools for both SISO (Danzl et al.,

2009) and MIMO (Liu et al., 2010) electrical recording and stim-

ulation devices. Although validated only via simulation, several

important points arise in this work. Danzl et al. (2009) demon-

strated in simulation that synchronized activity can be actively

disrupted using minimal intensity inputs chosen online using

constrained nonlinear control (solving a constrained optimization

problem) to use minimal electrical inputs in a SISO system.

Liu, Oweiss, and Khalil simulated closed-loop control in an

all-electrical MIMO system for EDBS and raised key points

directly relevant to closed-loop optogenetics for MIMO systems,

perhaps most importantly showing that a properly designed

MIMO feedback controller can control a subset of simulated

neurons to follow a prescribed spatiotemporal firing pattern

despite the presence of unobserved disturbances (an inevita-

bility in most neural systems of interest, as most of the

brain will remain unobserved. Furthermore, this paper showed

that a simplified linear-nonlinear model can be quite effective

in controlling firing rates, despite strong simplifying assump-

tions (this is important for systems where speed dictates hard

computational constraints). In addition to the practical goal of

safer, more effective deep-brain stimulation, the resulting spatio-

temporal patterns identified could themselves be of intrinsic

value in providing new insights into how neural circuits process

information.

Additional theoretical work involves optimal control theory

to design control inputs that evoke desired spike patterns
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with minimum-power stimuli in single neurons (Dasanayake and

Li, 2011) and ensembles of neurons (Ahmadian et al., 2011) us-

ing electrical current injection. Robust computational models

using similar methods have been developed for optimal control

of simple models of spiking neural networks (Li et al., 2013a)

and more abstractly, individually controlling coupled oscillators

using multilinear feedback (Kano and Kinoshita, 2010). Given

that converging evidence suggests that abnormalities in syn-

chronized oscillatory activity of neurons may have a role in

the pathophysiology of some psychiatric disease (Uhlhaas

and Singer, 2006) and considering their established role in ep-

ilepsy, it seems fruitful to continue considering oscillations

themselves as a direct target of closed-loop optogenetic con-

trol (Sohal et al., 2009; Witt et al., 2013) alongside control of

spiking neurons.

In a seminal paper, Ahmadian et al. (2011) presented a fast

(convex), discrete-time approach finding the best time-depen-

dent modulation of electrical or optogenetic inputs to cause a

neuron to follow a target spike pattern as closely as possible

(subject to hardware limitations and physiologically inspired

safety measures). Importantly, the method was validated

in vitro (using electrical stimulation), demonstrating optimal con-

trol with biological constraints directly applied to spike control

in single neurons. In simulation, this paper also showed exten-

sions to multicell stimulation including modeling of crosstalk.

Although this treatment of optogenetic stimulation did not

include the particular dynamics of photoexcitable channels

and pumps nor model the effects of optical recording, it could

be readily extended to include photocycle dynamics (as pointed

out by the authors) and combined with existing methods for

spike estimation from optical physiology data.

So far, all discussion here of closed-loop control has implic-

itly assumed existence of a model relating optical inputs to

effects on the neural system that the controller uses to choose

these optogenetic inputs (this model is called the ‘‘input trans-

fer function’’ for classical systems or the ‘‘input equation’’ for

state-space models; Åström and Murray, 2010). However, in

all but the simplest cases we usually start an experiment with

inexact knowledge of how light inputs will perturb the system.

Previous work has addressed this by mapping stimulus param-

eters, varying light intensity and/or frequency to gain insight

into the relationship between optogenetic stimulation and

behavior (e.g., Adamantidis et al., 2007; Tsai et al., 2009; Car-

din et al., 2009) and thoroughly characterizing the response of

individual cells expressing optogenetic constructs to light

impulses in vitro (Mattis et al., 2012). In systems engineering,

estimating this relationship between inputs and outputs of a

system is known as system identification (Ljung, 1998, 2010;

Zadeh, 1956). System identification is a critical step for any

control application and from the perspective of ‘‘reverse engi-

neering’’ the brain, a major end in itself for understanding neural

circuits. Indeed from this reverse-engineering perspective con-

trol is in some sense a means of validating the quality of system

identification (which is generally a model of how the system

functions). Of course, in some applications like brain machine

interfaces and prosthetics, closed-loop control performance

may be more important than whether the identified model

best approximates the true neural system.
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In the SISO case in particular, it is possible to effectively

achieve ‘‘system identification’’ without directly modeling the

system. For example, in a PID controller, closed-loop control

can be obtained by iteratively fitting three model parameters

with no explicit model of the system being controlled (Åström

and Hägglund, 2006). This is called ‘‘black box’’ modeling

(to differentiate from ‘‘white box’’ modeling in which one is given

a full and accurate physical model of the system) and is used

quite widely (Åström and Hägglund, 2006; Ljung, 1998, 2010).

An example of black box modeling mentioned above would

be fitting the relationship between light inputs for optogenetic

control and simultaneous fiber photometry measurements (see

below). In this case, limited system knowledge and imperfect

control (e.g., optogenetic underactuation; Ching and Ritt, 2013)

will likely lead to a ‘‘model-free’’ approach like PID control.

More common in MIMO systems where we have some limited

physical information are ‘‘gray box’’ models, for which we can

build a parametric model based on our imperfect physical

knowledge, and fit the parameters of the model using observed

input-output data (Ljung, 1998, 2010). In general, it is important

to consider system identification both as ameans to understand-

ing the system (‘‘reverse engineering’’) and as a precursor to

controlling the system, whether or not the control application is

for basic science purposes like causal model validation, or for

practical purposes like neural prosthetics.

For those interested in learning more about system identifi-

cation and control, many excellent references are available on

systems engineering and control theory that are relevant to

neural control with optogenetics, including a survey of neural

control engineering (Schiff, 2012), a recent introduction to

systems and control theory for biologists (Control Theory for Bio-

engineers, H.M. Sauro, 2015, Ambrosius Publishing ISBN-13:

978-0982477380; available online), general texts on feedback

control (Åström and Murray, 2010), detailed engineering texts

on modern control theory (Franklin et al., 2015; Kuo, 1982;

Ogata, 2010) and nonlinear control theory (Vidyasagar, 2002;

Khalil, 2002), and an overview (Ljung, 2010) and textbook

(Ljung, 1998) on system identification. A brief nonmathematical

introduction to control theory can be found in Mitra and Bokil

(Mitra and Bokil, 2007, chapter 3). For those with more engineer-

ing background the two-volume treatment of optimal control and

dynamic programming by Bertsakas (Bertsekas, 2005a) is both

accessible and comprehensive.

Observing and Controlling Population and Projection
Dynamics in Behaving Animals
Specification of defined neural pathways for optogenetic pertur-

bation has been achieved in a number of ways (reviewed in

Deisseroth, 2014; Packer et al., 2013; Zalocusky and Deisseroth,

2013). One approach (called projection targeting) relies on opto-

genetic actuator expression in an upstream neuronal population

defined by focal virus injection; a subset of these neurons

(defined by having efferent connections to a spatially-separated

downstream brain area) is then selected by restricting light deliv-

ery to excite or inhibit the axons of this neuronal subpopulation in

the target brain region (or, more generally, in a location that dis-

tinguishes the pathway of interest) in vivo during behavior (Gra-

dinaru et al., 2009; Tye et al., 2011; Stuber et al., 2011). This
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approach depends on functional expression of optogenetic

actuator in the axons of targeted neurons (Gradinaru et al.,

2007; Petreanu et al., 2007), which may require longer expres-

sion times or axon-targeting expression strategies to achieve

adequate expression levels (Mattis et al., 2012; Gradinaru

et al., 2010). Other approaches use various forms of retrograde

tracing to target actuator expression in neurons that project to

the target brain area (e.g., Gradinaru et al., 2010; Gunaydin

et al., 2014), which can be useful for comparing multiple projec-

tions to a specific target (see also Britt et al., 2012) and can help

avoid concerns about stimulating only fibers of passage in a

target brain region (from the same source but to different,

unintended targets). Analysis and understanding of projection

anatomy are also key to best design and interpretation of projec-

tion-targeting experiments.

For in vivo experiments, the fact that during behavior microbial

opsin-expressing projections can be either excited (Gradinaru

et al., 2009; Tye et al., 2011; Stuber et al., 2011) or inhibited

(Tye et al., 2011; Stuber et al., 2011) is useful for establishing ne-

cessity and sufficiency of anatomically defined cells in driving

specific behaviors. It is also important to note that inmany cases,

excitation of opsin-containing axons can lead to antidromic

(reverse-propagating) action potentials potentially reaching the

cell body and/or other axon collaterals of an excited neuron

(Deisseroth, 2014). In general this is a desired effect, for recruit-

ing a cell type in its entirety defined by connectivity; the wiring-

defined cell type is more likely to be a functional unit in nervous

system processing than excitation of a specific subbranch of an

axon, which will not typically happen in isolation.

However, it may also be desired in certain cases to isolate the

influence of a specific collateral projection in a specific brain re-

gion, for example to gain knowledge of finer-scale organization

of neural pathways and in certain clinically oriented applications

(Deisseroth, 2014; Li et al., 2012; Gradinaru et al., 2009). Here, it

is helpful that optogenetic inhibition of the axon or its branch will

remain local to the site of light delivery, and can be used to

provide that level of specificity where desired. In the context

of excitation, control experiments with local pharmacological

blockade (e.g., Schneider et al., 2014; Znamenskiy and Zador,

2013) or direct modulation of other known pathways can help

determine if those projections influence the same or distinct

output responses (Kim et al., 2013a), as needed. All of these

methods are now widely used in optogenetics when axon

collaterals, rather than projection-defined cell types, are the cir-

cuit element of interest.

By utilizing closed-loop optogenetics additional approaches

become possible, since stimulation light intensity, duration,

and frequency could be tuned to the level sufficient to attain

the desired excitatory output pattern while also minimizing side

effects. For example, simultaneously observing activity in the

upstream brain area containing cell bodies of the projection or

in other recipient areas during optogenetic stimulation of the

projection could confirm whether antidromic or collateral stimu-

lation occurs (e.g., by imaging or electrically recording action-

potential-generated activity in the cell bodies, in collateral

branches, or in other recipient areas). If such activity is observed,

the same measurements could be used to further determine

whether specific light delivery parameters as needed promote
or reduce the effect. In a similar vein, light delivery patterns could

be calibrated online to minimize overall light delivery needed to

achieve a desired activity pattern in the target brain region, for

example, as measured by fiber photometry (Gunaydin et al.,

2014) or when a specific behavioral outcome is achieved.

More generally, without real-time observation of activity it is

not clear for most interventions (including electrical and optoge-

netic stimulation) whether the intervention provides stronger or

weaker, or more or less synchronous, activity in the target pop-

ulation than naturally occurs. However, natural activity patterns

recorded using an optical fiber could be used in a closed-loop

optogenetic framework in order to evoke target activity levels

similar to those already observed in the same population of cells,

keeping the evoked activity within physiological ranges and

potentially allowing replay of naturally occurring patterns. Such

fiber-based, all-optical approaches would enable the all-optical

closed-loop experiments described here (among other opportu-

nities), but would require new methodological developments to

be realizable.

To reach this goal, methods for population recording from

a genetically specified cell population and genetically and

topologically defined projections during behavior have recently

been demonstrated (Gunaydin et al., 2014), dovetailing naturally

with standard optogenetic approaches for open-loop control

(Figure 4A). Figure 4B illustrates the initial simultaneous fiber

photometry and optogenetic stimulation of a genetically targeted

neural population (in this case, tyrosine hydroxylase-expressing

VTA neurons) in a freely behaving animal; the red-excited opsin

is the C1V1 variant C1V1T/T (Yizhar et al., 2011b) alongside the

blue-excited indicator GCaMP3, targeted as described earlier

(Gunaydin et al., 2014) but here using a titer-matched mixture

of two recombinase-dependent (DIO) viruses (I. Kauvar, L.G.,

K. Zalocusky, and K.D, unpublished data). Although the low

illumination intensities enabled by fiber photometry allow this

opsin-sensor combination, recently developed red sensor

variants may be even more suitable when combined with blue-

light-sensitive opsins (Inoue et al., 2015; Akerboom et al.,

2013; Wu et al., 2013, 2014; Hochbaum et al., 2014; Zhao

et al., 2011), as these will more effectively limit opsin-sensor

spectral overlap and allow a large range of optogenetic actuators

to be used. Still, care must be taken to avoid (or model) artifacts

during optogenetic stimulation since fluorescence from these

sensors can fluctuate in blue light and may resemble neural

activity (Akerboom et al., 2013; Wu et al., 2013). Nevertheless,

in a manner crucial for closed-loop and activity-guided optoge-

netics, all-optical minimally invasive single-fiber recording and

optogenetic stimulation in a genetically targeted deep brain

cell population during behavior is now possible (Figure 4B).

For genetically-targeted, closed-loop optogenetic control

in vivo, the most straightforward example would be with this

configuration, in which optical stimulation could be constrained

by optical recording through a single fiber in the same targeted

cell population: an all-optical SISO system (Figure 4C). The

simplest closed-loop control in this case would resemble the

cruise control example: given a set point or target trajectory for

the observed activity (based on observed endogenous activity,

for example), the controller tunes stimulation parameters to

evoke the desired magnitude and time course of activity using
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 119
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Figure 4. Opportunities for Fiber-Based Closed-Loop Optogenetics
(A) Single fiber observation and control device. (Left) Fiber photometry setup showing light path for fluorescence excitation and emission through a single 400
micron fiber optic implanted in the ventral tegmental area (VTA). (Right) Recombinase-dependent viral targeting of GCaMP5 to VTA dopamine neurons. Adapted
with permission from Gunaydin et al. (2014).
(B) All-optical interrogation of frequency-dependent effects using simultaneous fiber photometry and optogenetic stimulation of targeted neurons in dopami-
nergic neurons in the VTA; traces recorded using fiber photometry from a freely behaving animal expressing C1V1T/T and GCaMP3 (red-toned traces;
n = 3 animals) or GCaMP3 only (blue trace; n = 1) targeted as previously described (Gunaydin et al., 2014); photostimulation of C1V1 with 594 nm laser light
at 7.9 mW/mm2 (measured at tip of fiber) was administered at 5, 10, 12.5, 16, 25, or 50 Hz at 50% duty cycle (so total light power over the 10 s of stimulation was
the same on each trial), and VTA dopaminergic activity was recorded simultaneously by illuminating GCaMP3 with 473 nm light at 0.2 mW/mm2 (leveraging the
sensitivity of fiber photometry to keep illumination intensity low to minimize cross talk); dF/F traces grouped by 5, 10–15, 16–30, and 50 Hz (3 animals with 15, 14,
29, and 14 trials per group, respectively) are shown with bootstrapped 68% confidence intervals for the mean, baseline-corrected to coincide 250 ms prior to
photostimulation onset (black arrow) for clearer comparison of poststimulation effects (stimulation effects add to a naturally time-varying baseline); recording
GCaMP3 expression alone with the same stimulation and recording protocol is shown in blue (1 animal, 46 stimulation trials); yellow bar indicates period of
photostimulation (I. Kauvar, L.G., and K.D., unpublished data).
(C) The results shown in (B) open up the possibility of stimulating cells conditional on their simultaneously measured activity. Here and below, open blue arrow
indicates excitation light, closed yellow arrow indicates imaging excitation light, and closed red arrow indicates imaging emission light. A single transduced cell
body population is represented with red and green circles; stimulation may be made conditional upon parameters of observed activity state in this population
below the fiber.
(D) Block diagram of closed-loop optogenetic stimulation through a single fiber; the target activity pattern is compared to current fluorescence measurements of
activity, and used to choose light inputs in real time to bring the observed activity more in line with the target activity.
(E) Illustration of feedback control to achieve a theoretically desired activity waveform (black), using activity information (red) fed back from neural circuitry as
modulated light pulse rate changes (blue dashes); the light pulses would be chosen online based on current observed activity; for example, at time t a pulse has
been algorithmically chosen online to try and increase activity to return decreasing activity to the (arbitrary) target trajectory.

(legend continued on next page)
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online recording as feedback for how well error is minimized be-

tween a target level or time-varying trajectory and the observed

activity (proportional-integral-derivative, or PID, control; Åström

and Hägglund, 2006; Figures 4D and 4E; Table 1). Conditional in-

hibition of a genetically targeted subpopulation using the simul-

taneously recorded activity of that subpopulation is another

straightforward example. Because fiber photometry readout is

a univariate, time-varying scalar, submillisecond processing

with a real-time operating system (Sohal et al., 2009; O’Connor

et al., 2009; Paz et al., 2013; Krook-Magnuson et al., 2014; Siegle

and Wilson, 2014; Stark et al., 2014; Laxpati et al., 2014; Krook-

Magnuson et al., 2015) could be used to optogenetically clamp

activity in the cells below a target level with minimal intensity in-

puts (Ahmadian et al., 2011). Because a constant online stream

of optical information about how targeted cells are responding to

the photoinhibition is available in a single channel, illumination

could, in theory, be adjusted in real-time to be no more intense

than needed, to adaptively increase to avoid escape from the op-

tical clamp, to silence potential rebound activity if desired, and to

reveal which time-varying pattern of inhibition wasmost effective

at achieving these goals (itself useful informative about circuit

dynamics). As mentioned above, the best control strategies for

this kind of application are likely to be the fast classical propor-

tional-integral (PI) or PID control approaches (Åström and Häg-

glund, 2006) based on ‘‘black box’’ models of the system (that

is, statistically derived models that assume little about the

biophysics of the system; Ljung, 1998).

It is of course important to consider this use of optogenetics in

the context of prior methods for stimulation or inhibition (lesions,

pharmacology, and electrical stimulation). Proper conduct of op-

togenetics has long capitalized on its relative speed, reversibility,

and flexibility; for example, the extent of optogenetic modulation

can be smoothly varied in parametric fashion even in the same

animals (from below detection limit to near seizure-promotion

level) by varying intensity and/or frequency of the laser light deliv-

ered by fiberoptic or objective (e.g., Adamantidis et al., 2007). To

track the effects of such mapping, it is often best practice in

optogenetic circuit analysis to conduct real-time recording

from circuitry (whether optically or electrically), capitalizing on

the opportunity that was not present with electrical stimulation

in terms of recording simultaneity and cell type targeting, nor

for lesions and pharmacology in terms of temporal precision.

From this perspective, closed-loop and activity-based optoge-

netics is moving to fully utilize natural advantages of optoge-

netics in terms of speed and simultaneity of observation and

control. The ability to observe and evoke activity in the same

genetically and topologically targeted population in a behaving

animal is a new opportunity, which can be achieved even with

the same versatile fiberoptic device for both quantitative

photometry and control during behavior (Gunaydin et al., 2014;
(F) Using genetic and projection-specific targeting strategies: conditional optog
conditional control of targeted axonal projections conditional on local cell state (le
and even conditional control of one axon projection based on the activity of ano
(G) (Left) Careful use of more than one sufficiently spectrally separated GECI (e.
postsynaptic fiber photometry with closed-loop optogenetic stimulation. (Left ce
projections while reading out activity in stimulated and postsynaptic neurons, su
effects yielding transfer functions between projections and their postsynaptic ta
recordings from targeted cells and projections in different brain regions, or (right
Figure 4B). Although it is possible to separately image native dy-

namics and then try to evoke a similar response in open loop

fashion by designing light stimuli before the experiment, such

an approach is highly sensitive to model misspecification, cali-

bration, and state changes in the system (habituation, plasticity,

motor state, etc.), and without simultaneous measurement it

cannot be confirmed that the response was accurately evoked.

Closed-loop feedback control now allows real-time adjustment

of input parameters to keep the observed output as close as

possible to a target level or time-varying trajectory (Figure 4E).

A key limitation of fiber photometry is its design for recording

from populations of neurons and their processes rather than

single cells, resulting in target-element averaged responses.

However, leveraging the targeting strategies discussed above

greatly improves the effective resolution of the method; the abil-

ity to record optically from both genetically specified cell bodies

as well as topographically or genetically defined projections, and

to rapidly use the resulting signal to conditionally modify optoge-

netic stimulation online, now enables interesting experiment

types when coupled with emerging intersectional targeting

(Fenno et al., 2014) and projection-based strategies. Conditional

optogenetic control of one cell type based on the activity of

another cell type, conditional control of targeted axonal projec-

tions to a region conditional on local cell state, conditional con-

trol of local cells based on axon recordings, and even conditional

control of one axon projection based on the activity of another,

all could now be done through the single fiber implant already

used in standard optogenetics experiments (Figure 4F). For

example, by using more than one spectrally separated GECI

(such as a combination of orange and red or far-red indicators)

with sufficient care it would be possible to separately record

from targeted pre- and postsynaptic circuit elements (and

thereby infer population-defined and averaged synaptic weights

during behavior) while including closed-loop optogenetic

stimulation of either the post- (Figure 4G, left) or presynaptic

(Figure 4G, left middle) population.

Similar targeting strategies could be applied with multiple

implants allowing readout and control at several potentially

connected locations, using modified fibers to spatially modulate

optogenetic stimulation while optically recording with fiber

photometry, or with image-forming devices such as fiber bun-

dles (Szabo et al., 2014) or implantable GRIN optics (Ghosh

et al., 2011; Flusberg et al., 2005) that can allow near-cellular res-

olution imaging with optogenetic stimulation (Figure 4G; right

middle and right panels). Indeed, in areas that accommodate

larger implants comparable in size to those used for hippocam-

pal imaging in vivo (Ziv et al., 2013; Barretto and Schnitzer, 2012;

Dombeck et al., 2010; �2–3 mm implant outer diameter), fiber-

scope imaging using a fiber bundle and implanted GRIN lens

has recently been used for simultaneous imaging and
enetic control of one cell type based on the activity of another cell type (left),
ft center), conditional control of local cells based on axon activity (right center),
ther projection (right), are now possible.
g., those in Wu et al., 2013) or GEVI could allow separately targeted pre- and
nter) By allowing selective stimulation of genetically and topologically targeted
ch a configuration would enable system identification of population synaptic
rgets. More elaborate configurations might involve (right center) multiple-fiber
) fiberscope or GRIN lenses for image-forming applications.
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photostimulation in freely moving animals (Szabo et al., 2014). In

particular, Szabo et al. (2014) pioneered the use of a fiberscope

combined with a phase spatial light modulator (SLM) for struc-

tured stimulation in the illumination arm and a digital micromirror

device (DMD) in the imaging arm to demonstrate simultaneous

structured optogenetic stimulation and near-cell-resolution

imaging in behaving animals (Szabo et al., 2014). We discuss

this innovation further in the section on observing and controlling

circuit dynamics below.

Closed-Loop Optical Control: Implementation
at the Cellular and Microcircuit Level
As described above, in vivo neural activity involves spatiotem-

poral patterns of cells and ensembles, with active cells inter-

spersed among inactive cells in scattered locations throughout

the brain volume. Information sent from one area to another

may vary over time in ensemble-specific fashion, and activity

will likely be integrated and further refined by specific wiring link-

ing different ensembles in each area, with important rules of con-

nectivity at the neuronal level. A straightforward example for the

relevance of this point of view is sensory processing, where the

existence of ‘‘parallel pathways’’ has been well-studied for de-

cades (e.g., Nassi and Callaway, 2009 for a review of parallel

pathways in the primate visual system). This organization is

apparent from the periphery (e.g., functionally specific retinal

ganglion cells) up through high-order cortical areas, where com-

plex receptive fields and multimodal response patterns are

found and thought to derive in part from combinations of specific

feedforward input. In addition, these responses are further influ-

enced by top-down andmodulatory inputs as well as local circuit

dynamics. Evidence suggests that computations can occur at

the level of population dynamics (Mante et al., 2013; Shenoy

et al., 2013), but causal understanding of how these dynamics

emerge and how computations are achieved at the circuit level

is largely lacking. To enable testing of causal relationships in

neural circuits at this level of detail, observational and perturba-

tional approaches should be designed to access together

correspondingly fine levels of spatial and temporal resolution.

Specifically for the single-cell resolution subtype of closed-

loop optogenetics neural ensembles would need to be selected

and perturbed in real time based on observation of behaviorally

relevant activity patterns at single-cell resolution across multiple

neurons in vivo.

Recent years have witnessed the development and applica-

tion of a number of promising tools for reaching cellular or

near-cellular resolution—both for optogenetic stimulation and

for optical imaging of neural activity. When combined, these

tools, along with imaging modalities like two-photon laser

scanning microscopy (TPLSM; Denk et al., 1990), enable activ-

ity-dependent optogenetic control at cellular or near-cellular

resolution. This in turn provides the possibility of functional mea-

surement and conditional perturbation of cortical or subcortical

microcircuits to better understand dynamics and to relate these

dynamics to sensation, behavior, and internal states.

A natural categorization of these tools is once again in terms of

illumination type—specifically one- versus two-photon—with

direct consequences for the choice of opsin, sensor, and illumi-

nation strategy. One-photon fluorescence imaging modalities
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used for activity observation can be subdivided into wide-

field (Ziv et al., 2013; Grienberger and Konnerth, 2012), fiber-

bundle (Szabo et al., 2014; Hayashi et al., 2012), light sheet

(Bouchard et al., 2015; Ahrens et al., 2013), and light field

(Grosenick et al., 2009; Broxton et al., 2013; Prevedel et al.,

2014; Cohen et al., 2014) approaches. One-photon structured

illumination methods usable for multicell perturbational ap-

proaches include laser scanning (Wilson et al., 2012), micro-

LED array (Grossman et al., 2010), digital micromirror device

(DMD; Dhawale et al., 2010), light field (Levoy et al., 2009;

Figure 5A), and holographic (Lutz et al., 2008; Szabo et al.,

2014) illumination. In the case of two-photon imaging ap-

proaches used for activity observation, TPLSM (Denk et al.,

1994), two-photon extended depth of field (EDoF; Quirin et al.,

2013), and two-photon 3D random access scanning (Fernán-

dez-Alfonso et al., 2014; Cotton et al., 2013; Katona et al.,

2012; Grewe et al., 2010; Duemani Reddy et al., 2008; Otsu

et al., 2008; Iyer et al., 2006) all provide two and three-dimen-

sional approaches to functional imaging. Two-photon-based

methods for optical perturbation have used either laser scanning

(Prakash et al., 2012; Rickgauer and Tank, 2009), temporal

focusing (Rickgauer et al., 2014; Andrasfalvy et al., 2010), digital

holography (Packer et al., 2012, 2015; Nikolenko et al., 2007),

or a combination of digital holography and temporal focusing

(Oron et al., 2012; Papagiakoumou, 2013; Bègue et al., 2013)

for patterned optogenetic stimulation.

Given all of these options for imaging and stimulation, in addi-

tion to the potential for combinations of one-photon imaging

and two-photon photostimulation, there is a dizzying array of

design choices to be made in constructing a system for all-opti-

cal closed-loop cellular or near-cellular optogenetic control. We

therefore focus here on fundamental trade-offs and synergies for

closed-loop optogenetics in behaving animals. Driving many of

these considerations are the expected trade-offs among field

of view, spatial resolution, and temporal resolution. To make

gains in one of these areas, it is generally necessary to sacrifice

in another. Ultimately, these trade-offs are set by the information

capacity of the optical system (Cox and Sheppard, 1986), where

degrees of freedom are traded between space and time given a

fixed optical bandwidth. Although recent developments in com-

pressed sensing and use of prior information about sample

structure are increasing the efficiency with which this information

can be used (Pnevmatikakis and Paninski, 2013; Studer et al.,

2012; Fitzgerald et al., 2012), fundamental spatiotemporal limita-

tions and trade-offs remain.

In terms of in vivo imaging with single-cell resolution, two-

photon laser scanning methods allow precise localization in

three dimensions and optical sectioning up to the diffraction

limit, but at the cost of scanning in time. Light sheet methods

for functional imaging (Ahrens et al., 2013; Keller and Ahrens,

2015) improve imaging speed by scanning a sheet of light over

time, and are capable of achieving high spatial resolution (Tomer

et al., 2014). However, this approach requires scanning a sheet

of light orthogonal to the objective, complicating optical access

and largely limiting in vivo applications to relatively transparent

samples imaged at a few Hz. Recently, promising methods for

imaging and creating a light sheet through the same objective

were introduced for mammalian imaging (Bouchard et al.,
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Figure 5. Multiple-Cell Control for Population-Level Closed-Loop Optogenetics
(A and B) Promising one- and two-photon methods for simultaneous structured volumetric photostimulation. (A) Light-field illumination (Levoy et al., 2009; L.G.,
M. Broxton, and K.D., unpublished data; see the light field illumination section of http://clarityresourcecenter.org/functional3D.html for movies and references)
allows millisecond formation of structured one-photon volumes for optical stimulation. Shown are two views of a volume rendering of a light field imaging
reconstruction (Broxton et al., 2013; reconstructed with 3 3 3 3 5 micron voxels) of a volume containing multiple localized peaks generated in a fluorescent
volume (a hydrogel densely populated with submicron beads using light field illumination; imaging parameters: 403 0.8; 203 0.5 NA objective; 125 micron pitch,
100% fill-factor rectangular microlens arrays; 1:0.7 demagnifying telecentric relay; DMD was a TI DLP9500, and illumination path used a matched tube lens and
the same microlens array parameters; setup modeled on Levoy et al., 2009).
(B) Structured two-photon excitation with a phase SLM has been shown to stimulate multiple cells simultaneously at different planes in a volume with cellular
resolution and has been validated in vitro with paired patch electrophysiology (reproduced with permission from Packer et al., 2012).
(C) System identification in a neural microcircuit: patterned stimulation is chosen online in iterative fashion, guided by optical observation of neural activity and
online estimation of microcircuit connectivity.
(D) Model-predictive control in a neural microcircuit. A target pattern of cellular activity is compared to a predicted outcome of past optogenetic stimulation
and the difference (error) is used to choose the next photostimulation pattern subject to constraints on the photostimulation parameters in order to minimize
a user-specified cost function (e.g., squared error). The model estimated in (C) is used to make predictions about the time evolution of the system, which is
subject to unobserved disturbances and measurement noise.
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2015), although at reduced optical quality relative to standard

light sheet and with depth-limitations in scattering tissue, where

light sheet quality degrades with depth. Planar sampling with

a light sheet provides significant speed over point-scanning

modalities, but still divides the frame rate of the camera by the

number of planes imaged. Extended depth of field two-photon

methods give a single two-dimensional projection through a

scattering volume, gaining access to more neurons over the vol-

ume for simultaneous imaging at the cost of having ambiguous

axial information—although structural images can help to disam-

biguate axial sources (Quirin et al., 2013). One-photon functional

light field imaging allows fully volumetric imaging at camera

frame rates and integrates information at the sensor throughout

each camera frame, giving high speeds and SNR (Levoy et al.,

2006; Grosenick et al., 2009; Broxton et al., 2013; Prevedel

et al., 2014; Cohen et al., 2014). However, light field methods

trade spatial resolution for improved depth and temporal

resolution (although in our experience, single-neuron resolution

over large volumes in scattering mammalian tissue may still be

obtained).

Similar trade-offs exist for photoactivation with optogenetics.

Scanned diffraction-limited two-photon spots can be used to

reach single neuron resolution even in vivo (Prakash et al.,

2012), but do so sequentially, one cell at a time. Using 3 mm

galvanometer mirrors and optimized spiral scan parameters for

C1V1 activation, on-cell scan time to induce maximal photocur-

rent (and a single spike) takes �2 ms, and switching between

neuron locations in a 400 3 400 micron field of view takes less

than 200 ms between the most distant neuron pairs (significantly

less for closer pairs), leading to an approximate addressable set

of 50 neurons at 10 Hz (J.H.M. and K.D., unpublished data). The

rate of sequentially stimulating groups of neurons could poten-

tially be improved by using AODs to switch between neuron

locations in tens of microseconds. However, on-cell scan time

involving optimized scan velocity and scan line density to effi-

ciently drive opsin-mediated conductances across the cell

body is likely to remain the rate limiting step for sequential scan-

ning approaches, and to achieve stimulation of larger numbers of

neurons at higher rates will most likely require methods for simul-

taneous stimulation of multiple neurons. For example, phase

spatial light modulations (SLMs) focusing multiple diffraction

limited two-photon spots in three dimensions simultaneously

can scan those spots over cell bodies of at least ten neurons

to stimulate at the same time with single cell resolution in vitro

(Packer et al., 2012; Figure 5B) and in vivo (Packer et al.,

2015), as discussed further below.

As a potential fast alternative to scanning, temporal focusing

(TF; Oron et al., 2012) allows the axial beam profile to be

controlled independently of its lateral distribution. For two-

photon optogenetic stimulation this obviates the need for scan-

ning to stimulate a single cell and may result in faster membrane

depolarization by opening a larger numbers of conductances per

pulse than a diffraction-limited spot, as has been demonstrated

in vitro (Andrasfalvy et al., 2010). Further, TF may bemore robust

to scattering than focused spots (Bègue et al., 2013; Papagia-

koumou 2013; Dana and Shoham, 2011) and has been shown

to work for cellular or near-cellular resolution optogenetic stimu-

lation of single neuronswithin densely labeled populations in vivo
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(Rickgauer et al., 2014). TF in combination with digital hologra-

phy has been demonstrated for multispot optogenetic stimula-

tion in mammalian tissue in vitro (Bègue et al., 2013; Papagia-

koumou, 2013; Oron et al., 2012), and a recent design in

principle allows volumetric scanning of TF for sequential optoge-

netic stimulation (Mayblum et al., 2015). However, it is still an

open question how well combined TF and digital holography

approaches could scale for stimulation of larger numbers of

neurons.

Scaling up multineuron stimulation approaches while main-

taining precise single-cell resolution is a challenge of growing

interest. Simultaneously scanned, diffraction-limited spots

generated with a phase SLM have been shown to excite at least

ten cells simultaneously in vivo with single-spike precision

(confirmed with simultaneous optical readout, and spikes were

detected with electrophysiology from one neuron when up to

20 cells were stimulated simultaneously; Packer et al., 2015).

These approaches should therefore scale to at least tens of neu-

rons, for example with improved SLMs and lasers. However, in

scaling to many neurons obstacles arise in terms of achieving

and maintaining rigorous multiple single-cell resolution, and

avoiding tissue heating or overcoming damage effects may be

needed. Observed increases in nontargeted local circuit activity

may result from synaptic activation of connected neurons, direct

cross-stimulation of immediately neighboring nontargeted neu-

rons, or a combination of the two (Packer et al., 2015). It is impor-

tant to note that the spatial resolution will depend crucially

on whether the scanned stimulation pattern overlaps any neigh-

boring neurons laterally, a parameter that can readily be adjusted

to be more conservative (J.H.M. and K.D., unpublished data;

A. Packer and M. Hausser, personal communication). In general,

parameter tuning and improved optics could be used to

generate more spatially restricted spots and trajectories,

although more laterally limited scan patterns could result in

reduced stimulation efficacy, and physical device characteristics

of currently available SLMs force a tradeoff between targetable

field of view and resolution (which may be adjusted depending

on the experiment). Of course, it is possible that more efficient

stimulation scan patterns and improvements in target cell light-

sensitivity could also help scale up these technologies. More

neurons could be targeted using higher power as well as more

efficient (higher peak power) lasers, ultimately constrained in

principle by tissue heating and nonlinear damage effects

(although such limits thus far have not been reached in published

work of this type). More studies and new technologies are

needed to quantify and limit these effects, and to compare

spot-scanning SLM and combined TF/SLM approaches.

Furthermore, closed-loop approaches can be used to help

determine effective stimulation patterns to achieve the desired

goal (e.g., desired population dyanamics trajectory, or behavior)

taking into account the controllability of the system and physio-

logical contraints as previously described.

Patterned one-photon, two-dimensional illumination with

digital micromirror devices (DMDs; Dhawale et al., 2010) and

one-photon, three-dimensional illumination with light field

illumination (Levoy et al., 2009; Figure 5A) are unlikely to yield

true single-neuron stimulation resolution as scattered and out-

of-focus light could both effectively drive opsins in neurons
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and dendrites adjacent to the target cell. However, these ap-

proaches would allow simultaneous patterned illumination of

many neurons switchable at tens of kilohertz using current

DMD technology. Such one-photon methods can also drive

low-jitter spikes with considerably less power than two-photon

approaches over wide fields of view. Further, these one-photon

approaches are known to be compatible with most microbial

opsins, including those appropriate for driving fast spiking (Gu-

naydin et al., 2010) and inhibitory channel opsins (Berndt et al.,

2014; Wietek et al., 2014) and therefore may promise superior

temporal controllability. It also remains to be seen which system

identification and closed-loop control applications require abso-

lute single-cell resolution from the photostimulation side and

which do not. The answer will likely be circuit and question

dependent, with one-photon methods allowing rapid differential

photostimulation or photoinactivation of many neurons while

two-photon methods stimulate fewer cells (based on higher

power requirements per cell) at slower speeds for more refined

microcircuit mapping when cross-stimulation cannot be

modeled or is otherwise unacceptable to the experimental

design. Finally, one-photon methods are currently much more

easily powered and miniaturized (Ziv et al., 2013; Ghosh et al.,

2011; Kim et al., 2013b; Yeh et al., 2014), and are therefore better

candidates for commercial and prosthetic applications. As al-

ways, questions of the spatial and temporal resolution needed

for desired levels of control will have practical consequences,

here for selecting optimal closed-loop optical approaches.

Fast neuronal activity imaging with light field microscopy (Gro-

senick et al., 2009; Broxton et al., 2013; Prevedel et al., 2014;

Cohen et al., 2014), and fast delivery of control light with light

field illumination (Levoy et al., 2009; Figure 5A), currently promise

the greatest speeds for simultaneous imaging and photostimula-

tion of many neurons over large volumes, but in both cases

spatial resolution must be traded to gain camera-limited or

DMD-limited rates of imaging and stimulation. Further, both

are one-photon techniques, limiting their performance in turbid

mammalian tissue. Although light field imaging can provide sin-

gle-neuron resolution over large volumes, thanks to advanced

deconvolution methods (Cohen et al., 2014; Broxton et al.,

2013), light field illumination is purely a physical process and

cannot be improved using statistical deconvolution. It thus

provides a rapid (up to tens of kHz) method for creating dynamic

volumes of light, with the critical caveat that the spatial restriction

of the light will always be worse than that of two-photon photo-

stimulation methods. As the speed of phase SLMs improves,

phase modulating devices may also be used for fast one-photon

optogenetic stimulation building on existing work using one-

photon digital holography for photostimulation (Lutz et al.,

2008; Szabo et al., 2014).

System Identification for Neural Microcircuits
In the case of systems identification for spiking neurons

observed with single-cell resolution (that is, a MIMO application),

we can utilize existing biophysical knowledge to construct

parameterized gray box models where cells are treated as

separate variables of the system interacting through estimated

synaptic connections (Dahlhaus et al., 1997; Brillinger et al.,

1997). The end goal in this case would be to find differential
equations describing the evolution of interactions between

neurons in terms of their connections and estimated synaptic

weights, conditional on animal internal state, sensory inputs,

and motor behavior.

Of course, before cell-resolution time series can be modeled,

cells must be localized in optical physiology data and clean time

series extracted for each cell. For image data, a variety of auto-

mated methods for motion correction (Greenberg and Kerr,

2009; Dombeck et al., 2010) and cell region-of-interest (ROI)

detection have been developed. The latter include template

matching approaches (Ahrens et al., 2013; MacLean et al.,

2005; Cossart et al., 2003); local correlation heuristics (Smith

and Häusser, 2010); independent-components analysis applied

to volume data (ICA) (Grosenick et al., 2009); spatiotemporal ICA

applied to image data (Mukamel et al., 2009); and sparse, struc-

tured matrix factorization techniques applied to image data

(Andilla and Hamprecht, 2013, 2014; Maruyama et al., 2014;

Pachitariu et al., 2013). Although effective in specific applica-

tions, these methods are still evolving, in part through commu-

nity-driven competitions like the Neurofinder challenge (http://

codeneuro.org/neurofinder/).

Once cell ROIs have been found and validated, the individual

traces often require additional processing. In the state-space

formulation for neural data (Paninski et al., 2010), actual spiking

activity of the neurons is hidden through ameasurement process

that involves both measurement noise and other measurement

limitations, such as convolution of the spikes with slower calcium

dynamics in the case of calcium imaging data. In this situation,

if one is explicitly interested in the spiking data, it is necessary

to infer the times or probabilities of individual action potentials

using deconvolution (Andilla and Hamprecht, 2014; Vogelstein

et al., 2009, 2010; Yaksi and Friedrich, 2006), template matching

(Lütcke et al., 2013; Oñativia et al., 2013; Grewe et al., 2010;

Greenberg et al., 2008; Kerr et al., 2007), or supervised learning

algorithms trained on labeled data (Theis et al., 2014; Sasaki

et al., 2008).

Several studies have shown that at high frame rates (>30 Hz)

network information can be estimated from such inferred popu-

lation spike dynamics (Fletcher and Rangan, 2014; Lütcke et al.,

2013; Stetter et al., 2013; Mishchenko et al., 2011; Vogelstein

et al., 2010). Indeed, simulations by Lutke et al. suggest that

connectivity between neurons can be partially inferred from

limited observational calcium imaging data, limited sampling

from the population, and in the context of fluctuating, unob-

served, common input (Lütcke et al., 2013). However, these

important theoretical studies were focused primarily on the

recovery of estimated synaptic connectivity offline under some-

what idealized conditions and did not optimize for speed, or test

how well these estimates performed in recapitulating circuit

dynamics—critical considerations for model validation and

control. Finally, dynamical models that can estimate nonlinear

relationships between cells online (Luo et al., 1996); can give

good system estimates in the presence of highly correlated

and nonlinear noise; and are capable of modeling potential

neural dynamical processes including chaos, bifurcations, and

subharmonics are available (Isermann andMünchhof, 2011; Bill-

ings 2013; Fan and Yao, 2008). These should be used alongside

standard GLM models (Kass et al., 2005, 2014). Improved
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models of neuronal variability that account for changing animal

state should also be integrated with these and other existing

models of dynamic variability (Lai and Xing, 2010; Goris et al.,

2014).

Finally, information about the structure of microcircuit dy-

namics can be used to inform and improve system identification.

For example, models of imaging data that include ‘‘low-rank’’

models of dynamics (Soudry et al., 2013; Buesing et al., 2014;

Pfau et al., 2013) are desirable for their consistency with

current models of low-rank state evolution and common-input

properties in observed brain dynamics (Shenoy et al., 2013;

Mante et al., 2013; Kaufman et al., 2014; Churchland et al.,

2012; Harvey et al., 2012; Yu et al., 2006; Sahani, 1999). Once

estimated, these models offer computational advantages in the

form of a smaller state space to consider, along with better sta-

bility and generalization to new data (Katayama, 2006). Similarly,

sparsity priors or constraints on models are consistent with ex-

isting data on synaptic connectivity in microcircuits and have

been shown to improve and accelerate model estimation proce-

dures for microcircuit imaging data (Fletcher and Rangan, 2014;

Shababo et al., 2013; Pfau et al., 2013; Mishchenko et al., 2011;

Grosenick et al., 2009). These can be further combined with low-

rank models (Pfau et al., 2013) and models able to include prior

information about connectivity and structured spatial correla-

tions (Watanabe et al., 2014; Grosenick et al., 2013; Allen

et al., 2013).

Online Experiment Design for Neural Microcircuits
Given availability of the inputs described above, the next

question is which inputs should be chosen to yield good system

identification results. This can be categorized as a problem of

experiment design—an area of inquiry dating back to the early

days of statistics (Fisher, 1925). Basic sequential experimental

designs are already in use in neuroscience; for example,

in vitro studies of mammalian microcircuits have used imaging

in hippocampal brain slices to screen for rare, highly connected

‘‘hub’’ neurons that appear to be important for engaging

the larger network in oscillations (Bonifazi et al., 2009). In this

study, analysis of functional calcium imaging data during the

experiment (which was limited in time by the longevity of the

sliced tissue) allowed the identification of small subsets of

neurons that had strong directional correlations with many

other neurons in the population. These correlational data were

then used to target single candidate ‘‘hub’’ neurons in the

same slices for stimulation by patch-clamp electrophysiology

to test the role of these neurons in driving network synchroniza-

tion. Importantly, this sequential experiment design used a

first stage of online correlational modeling to enable further

rounds of more refined experimentation on a time budget, and

thereby was able to establish synaptic connectivity details in

what would otherwise have been very unlikely neurons to patch

at random.

In the field of online experiment design, this type of staged

approach is taken to a mathematical and algorithmic level

able to estimate the best stimulation inputs to make at each

stage, based on models fit to the observations and stimulation

made at previous stages (Figure 5C). Such algorithms have

been developed for neurophysiology experiments (Lewi et al.,
126 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
2009; Paninski, 2005), and most recently for mapping neural

microcircuits with optical stimulation (Shababo et al., 2013).

The latter work considers the problem of finding the minimal

set of optical inputs to identify synaptic strengths by stimulating

a set of presynaptic neurons while recording electrophysiolog-

ically from a postsynaptic neuron. As in Bonifazi et al. (2009),

the authors were motivated by the need to efficiently find con-

nections during a time-sensitive experiment. They therefore

developed an online method for finding a sequence of such in-

puts that (on simulated data) significantly improved perfor-

mance over random inputs and over previous work using

random inputs with compressed sensing (Hu et al., 2009). In

addition to the improvements over random inputs, Shababo

et al. (2013) also presented general methods for modeling vari-

ability in stimulation efficacy and a clear overall motivation for

the online identification problem. However, extension of this

model to the optogenetic case—by incorporating more realistic

physiological details (e.g., from Ahmadian et al., 2011), as well

as adjusting to the realities of optical observation of data and

changes in animal state while maintaining real-time perfor-

mance, remains for future work.

As highlighted by Shababo et al. (2013), algorithm speed is

critical for online neurostimulation applications due to poten-

tially rapid changes in preparation state and health. This is

particularly true for less-stable in vitro applications. In contrast,

chronic in vivo imaging allows for the possibility of imaging the

same circuit over multiple days with cellular or near-cellular

resolution in behaving animals (Ziv et al., 2013). Minimizing im-

aging light intensity to avoid photodamage to cells under study

could enable multiple rounds of system identification and con-

trol over days, potentially tiled over multiple fields of view or

simultaneously from different regions (Lecoq et al., 2014).

This outcome would greatly expand the number of computa-

tional approaches that could be tried, as more computationally

intensive steps would be left for offline analysis between

experimental sessions and used as starting points for online

procedures during experiments. In anticipation of multiple

field-of-view imaging data, computational work has already

begun to explore methods for combining multiple fields of

view to estimate low-rank dynamics shared across fields that

would be characteristic of, for example, common inputs (Sou-

dry et al., 2013; Turaga et al., 2013).

Still, online adjustments will clearly be necessary to account

for variations in the preparation, errors in coregistration to data

from previous experiments, and changing state of the animal.

As a result, microcircuit-appropriate methods for online system

identification, streaming clustering and factor analysis (for on-

line updating low-rank estimates embedded in dynamical sys-

tems like those in Buesing et al., 2014; Pfau et al., 2013), and

change-point detection algorithms to identify rapid shifts in an-

imal brain state (for example, those seen during sharp wave rip-

ples as compared to during theta oscillations in hippocampus

(Buzsaki, 2006) will all be useful. Various relevant streaming

clustering and factor analytic approaches have already been

developed (Akhtar et al., 2012; Mairal et al., 2010; O’Callaghan

et al., 2002). Change-point identification methods have also

been developed for spiking neural data (Pillow et al., 2011),

and could help identify large state changes in system dynamics
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in such a way that several state-appropriate models could be fit

and switched among. There is a strong precedent in the control

and time series literatures for such procedures when switching

dynamics are present (Fan and Yao, 2008; Liu and Gong, 2014;

Zappavigna et al., 2010; Egerstedt et al., 2003; Xu and Antsa-

klis, 2002) as they allow for the fitting of several (often simpler;

for example, locally linear) models appropriate under different

conditions. System identification for such switching models

can be accomplished by explicit identification of different re-

gimes (e.g., running versus sitting quietly for rodent hippocam-

pal recordings) or in a data-driven fashion using ‘‘sum-of-

norms’’ methods (Ohlsson and Ljung, 2013; Ohlsson et al.,

2010).

Implementing Closed-Loop Control for Neural
Microcircuits
Once tentatively satisfied with a model describing a microcir-

cuit’s dynamics as well as a model relating optogenetic inputs

to neural activity (e.g., evoked spikes or firing rates), the

closed-loop-capable neuroscientist will be ready to use optimal

or suboptimal control theory (Bertsekas, 2005a) to choose

appropriate inputs to try achieving a target pattern of activity in

the microcircuit online (Figure 5D). This process will be similar

to the goals set forth and applied in Ahmadian et al. (2011), but

now applied to the more difficult task of optogenetically stimu-

lating multiple neurons and predicting and manipulating interac-

tions online (instead of controlling a single neuron). Still, on the

level of tens of cells this control problem is not clearly more diffi-

cult than some solved in a variety of engineering applications.

Therefore, given the remarkable technological advances in

patterned illumination, optical sensing, and optogenetic control

reviewed above, and given the many labs now working toward

this overarching goal, we expect achieving all-optical microcir-

cuit feedback control to be only a matter of time.

We therefore briefly review the requisite toolkit from the

control literature that might be most useful and promising for

the case of all-optical, multineuron feedback control in actual

experiments, assuming existence of time series data coming

from identified cell locations (as discussed above). Latencies

introduced by data acquisition (e.g., scanning-image recon-

struction time, frame-grabber latency, operating system limita-

tions), online image processing (e.g., online motion correction,

cell ROI application), the optical sensors themselves (e.g., rise

time), computational time to choose inputs (e.g., solving a

constrained optimization problem), and delays in hardware

actuation (e.g., loading images to spatial light modulators,

galvanometer or AOD travel and settling time) will likely together

sum to milliseconds of delay between detecting an event and

delivering a targeted light stimulus (Laxpati et al., 2014).

Such delays, and the need to test the quality of themicrocircuit

model in situ, suggest that fast model predictive control (MPC)

with constraints (Wang and Boyd, 2010; Bemporad, 2006;

Qin and Badgwell, 2003; Maciejowski, 2002; Camacho and

Bordons, 2004) may be important to achieve control at the

speeds allowed by optogenetic tools while utilizing the model of

connectivity found during system identification and including

constraints on inputpower andevoked responses.MPC (andsto-

chasticMPC) usesestimated systemdynamics to forecastwhere
the systemwill be in several time steps and then chooses control

inputs that will bring that forecast more in line with the target tra-

jectory over that timehorizon (Figure 5D; Table 1; Rawlings, 2000;

Cheng et al., 2014). Various fast strategies have been developed

to solve such problems including precomputed lookup tables

(Rauov et al., 2009; Maurovic et al., 2011), suboptimal control

strategies (Wang and Boyd, 2010; Bertsekas, 2005a), and fast

explicit solutions that may be carried out at each step (Wang

and Boyd, 2011b). New computational architectures like Apache

Spark andSparkStreaming (as applied in Freemanet al., 2014) as

well as GPU and FPGA computing could aid in accelerating on-

and offline computation for optogenetic MPC.

It is well-documented that the overall dynamics of the micro-

circuit may change, potentially dramatically, with changing

motor activity, sensory inputs, and internal state of the animal

(see examples below). Robust and adaptive control (Bertsekas,

2005a; Ogunfunmi, 2007; Dullerud and Paganini, 2005) and

switching systems (Egerstedt et al., 2003) can be combined

with the methods above to account for such changes (Table 1).

Adaptive control tends to work on slower timescales whereas

switchingmodels fit differentmodels of dynamics for different re-

gimes and switch among them rapidly when appropriate (Ogun-

funmi, 2007). Switching models are particularly promising for

state change adaptation under strict time constraints as the

separatemodels can be fit offline but still allow online adjustment

to changing conditions. In situations with strong random distur-

bances driving the system, stochastic versions of the above

approaches will be needed (Cannon et al., 2010; Couchman

et al., 2006; Table 1). Given that most current methods for cell

localization, spike inference, and system identification operate

in less than real time, we fully expect hybrid offline/online,

open/closed-loop strategies will be the norm inmulticell applica-

tions for some time. A clear example of such an offline/online,

activity-guided approach is the recent all-optical work by Rick-

gauer et al. (2014), wherein offline processing of calcium imaging

data was used to identify place cell fields in a mouse navigating

a virtual linear track. Subsequently, this model of place fields

could be used to optogenetically impose place-cell-like activity

online as mice traversed the appropriate segments of a virtual

environment. In this way, computationally slow but necessary

preprocessing and fitting could be performed offline, yielding a

model useful for online conditional stimulation of neural activity.

Finally, as the number of neurons recorded grows, models of

larger systems will require decomposition into smaller subsys-

tems or simpler low-rank models if the models are to be run

in real time. Recent progress in dynamic low-rank models for

microcircuits recorded with optical sensors of neural activity

(Buesing et al., 2014; Pfau et al., 2013), as well as recent devel-

opments in sparse modeling and screening rules for decomposi-

tion of graphical models into subsystems (Witten et al., 2011;

Voorman et al., 2013;Mazumder andHastie, 2012) are promising

avenues for developing lower dimensional or local submodels

that will run in parallel at millisecond timescales.

Closed-Loop and Activity-Guided Optogenetics across
Brain Scales
Here, we have focused on closed-loop and activity-guided opto-

genetics at the circuit level involving connections between and
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 127
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within specific brain areas. Brain dynamical processes span a

remarkable range of spatiotemporal scales, from millisecond

dynamics in dendrites and spines to slow, many-seconds-time-

scale synchronization and desynchronization across brain

regions. Neuroimaging modalities have rapidly developed to

encompass this wide range, from fast local calcium imaging of

dendritic spines to slow and global methods such as functional

magnetic resonance imaging (fMRI). By applying closed-loop

optogenetic strategies across scales, dynamics spanning the

subcellular (Tischer and Weiner, 2014), the microcircuit, the

interregional, and the whole-brain level could be similarly inves-

tigated across scales. At the finest scale, fast light-targeting

methods have been developed in dendritic imaging and gluta-

mate uncaging experiments (Branco et al., 2010; Lutz et al.,

2008; Nikolenko et al., 2008; Svoboda et al., 1997; Yuste,

2010; Denk et al., 1996; reviewed in Grienberger et al., 2015).

At the same time, mathematical and computational machinery

necessary for system identification and control on dendrites

using observation with optical voltage and calcium sensors has

been developed (Pakman et al., 2014; Pnevmatikakis et al.,

2012; Huggins and Paninski, 2012; Paninski, 2010), rendering

optogenetic system identification and control of dendritic trees

a promising area for future investigations. Recently, holographic

light shaping and SLM point-scanning optogenetic manipula-

tions have been explored using tools defined at the subcellular

and cellular scale (Prakash et al., 2012; Packer et al., 2012; Vaziri

and Emiliani, 2012; Anselmi et al., 2011; Yang et al., 2011;

Papagiakoumou et al., 2008).

At the mesoscopic scale, optical investigation across brain re-

gions has been achieved through large cranial window, multisite,

and clear-skull preparations (Lecoq et al., 2014; Andermann

et al., 2011; Marshel et al., 2011; Guo et al., 2014). Bridging

scales to the whole-brain level in mammals, fiber-based optical

activity recording (Schulz et al., 2012), and optogenetic stimu-

lation (Lee et al., 2010) have been combined with fMRI

(optogenetic fMRI, or ofMRI) to simultaneously control local

cell population activity and record whole-brain dynamics (Lee

et al., 2010). Combining all-optical closed-loop optogenetics

through one or multiple fibers with fMRI would put real-time

online readout and control of targeted mammalian cell popula-

tions in a whole-brain context. Further, recent development of

real-time ofMRI using graphics processing units (GPUs) to

reconstruct, motion correct, and analyze fMRI volume data in

under 15 ms (Fang and Lee, 2013) puts fMRI processing on a

timescale amenable to closed-loop optogenetic manipulations

conditional on whole-brain state or interregional dynamics.

Outlook
Brain activity is an emergent phenomenon depending on

many subcategories of activity including previous history, input

signals, ongoing internal dynamics, and neuromodulatory or

brain-state regulation mechanisms. A comprehensive under-

standing of neural function would require that all of these factors

be considered and, ideally, measured and precisely perturbed.

One of the hallmarks of optogenetics compared to more

traditional methods of neural perturbation (e.g., electrical stimu-

lation, pharmacology, and lesion) is the opportunity for increased

temporal and cellular specificity in this effort, by controlling
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these different classes of activity during behavior in the various

responsible neurons and projections, via genetic targeting

schemes, localized viral injections, circuit labeling techniques,

and precise light guidance. As a result, traditional (open-loop)

optogenetics, building upon a long history of electrophysiolog-

ical, pharmacological, imaging, and lesion studies, has already

identified activity patterns in numerous neural cell populations

and pathways important for specific behavioral outcomes

(reviewed in Deisseroth, 2014). Yet even with this enormous

progress, there is no question that our understanding is still

lacking in critical dimensions ranging from information repre-

sentation and population coding to detailed wiring implementa-

tions of information transmission in the circuit elements that

are likely to underlie natural behavior in all its complexity. As

technologies continue to mature for closed-loop optogenetics,

new opportunities will emerge to causally reveal and confirm

increasingly detailed neural circuit mechanisms underlying

behavior.

As just one example, the advent of in vivo all-optical ap-

proaches at the single-cell level has the potential to illuminate

the importance of ensemble wiring and activity on behavioral

outcomes (Rickgauer et al., 2014; Packer et al., 2015). These

approaches are currently capable of optogenetic stimulation

with �10–20 ms onset latencies and imaging rates of 15–30 Hz

when relying on two-photon C1V1 stimulation (Prakash et al.,

2012) and GCaMP6 imaging (Chen et al., 2013c). Used in com-

bination (Rickgauer et al., 2014; Packer et al., 2015), it is possible

to all-optically stimulate and record at least ten neurons simulta-

neously every 10–20 ms (Packer et al., 2015) using the scanning,

multifocus-phase SLM approach described above. However,

even for just ten cells, the number of possible connectivity

patterns is combinatorial (35,184,372,088,832 different possible

undirected graphs could describe the basic binary connectivity

relations for ten cells, ignoring projection direction and synaptic

strength/type). To make matters worse, connectivity is difficult

to predict a priori, and the behavior of the network is bound

to change conditional on previous activity, inputs, internal

dynamics, and neuromodulation. In order to robustly identify

likely connections between neurons within the timescale of

an experiment and without damaging or altogether changing

microcircuit behavior, application of online system identifi-

cation methods that adaptively and minimally stimulate in

closed-loop to reduce model uncertainty will almost certainly

be necessary. Of course, multiple, animal-state-dependent

estimates may be needed and the quality of the estimated rela-

tionships should be tested by demonstrating that naturally

observed activity patterns can be evoked in the cells under

appropriate conditions.

Imagine, for example, that our ten optically controlled and

observed cells are pyramidal neurons in the dorsal hippocampus

of an awake, head-fixed mouse (as in Rickgauer et al., 2014).

We know that pyramidal cell spiking activity should advance to

earlier phases of the theta cycle as the mouse passes through

the cell’s place field (O’Keefe and Recce, 1993), that changes

in GABAergic and cholinergic tone can alter the amplitude and

frequency of the theta oscillation (Lee et al., 1994; Yoder and

Pang, 2005), that the same cell might be involved in rapid replay

events during sharp-wave ripples when the mouse is not running
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(Skaggs and McNaughton, 1996), that these cells are constantly

updating their tuning conditional on the animal’s experiences

(Muller and Kubie, 1987; Bostock et al., 1991; Markus et al.,

1995), and that causal interventions have different effects de-

pending both on the specific phase of endogenous oscillations

and on available sensory information (Siegle and Wilson, 2014).

Thus the responsiveness of the ten cells to the same pattern of

optogenetic stimulation is likely to vary significantly with contex-

tual changes, locomotion, theta cycle phase, neuromodulation,

and other variables. So, just as commercial airliners adjust

the responses of their control surfaces online to account for

rapidly changing wind and weather conditions, the correct

pattern of optogenetic stimulation in a behaving animal should

be chosen online to accurately evoke a particular pattern of

behavior while taking into account changes in observed animal

behavioral and brain state. Closed-loop control is almost univer-

sally the engineering approach taken to solve such dynamic and

conditional control problems.

In most cases, the integrated technologies described above

in their current forms cannot reliably achieve the higher tempo-

ral precision (�1–4 ms) that has been observed in certain brain

circuits (Wehr and Zador, 2003; Pouille and Scanziani, 2001)

and that could be essential for coding and—from an experi-

mental standpoint—for optimal integration and controllability

of optogenetically driven activity into ongoing circuit dynamics.

However, future integration of faster and more sensitive activity

sensors and actuators, more efficient stimulation patterns,

higher-speed sequencing between stimulated neurons, and

improved illumination sources all promise to improve the speed

and scale of single-cell, all-optical approaches. Further, it is

important to note that manipulation of local populations with

single-cell resolution at the scale made possible by recent pub-

lished studies is already within the range of the number of neu-

rons that have driven behavioral outcomes in mammals (�1–50

neurons) in pioneering studies of the value of individual or small

sets of neurons on learning and behavior (Kwan and Dan, 2012;

Clancy et al., 2014; Vallbo et al., 1984; Papadopoulou et al.,

2011; Li et al., 2009; Huber et al., 2008; Houweling and Brecht,

2008; Doron et al., 2014; Brecht et al., 2004; Bonifazi et al.,

2009).

Even prior to single-cell resolution control of large numbers of

cells, a current capability of closed-loop optogenetics is popula-

tion-scale emulation of naturalistic activity patterns while ac-

counting for the fact that neural system properties are highly

nonlinear and nonstationary. Neural activity operates in distinct

regimes within a specific, broad dynamic range (Pouille et al.,

2009), for example, maintaining a critical balance of excitation

and inhibition (Shu et al., 2003; Haider and McCormick, 2009;

Okun and Lampl, 2008; Wehr and Zador, 2003; Xue et al.,

2014; Yizhar et al., 2011b; Isaacson and Scanziani, 2011). The

processes that regulate dynamic range and the balance of exci-

tation and inhibition involve carefully orchestrated circuit mech-

anisms, including feedforward and feedback inhibitory circuits

(Isaacson and Scanziani, 2011). These are particularly relevant

when considering how natural or experimental perturbations

are integrated into the network. Local feedforward inhibitory

circuits within region A that are normally activated by afferent

excitatory inputs from region B, presumably in part to balance
excitation with inhibition, will not be as precisely activated by

direct experimental stimulation (whether electrical or optical)

of neuronal cell bodies in region A (highlighting the unique

opportunity provided by projection-targeted optogenetics which

can directly control the inputs from region B to region A). In

general, however, much more investigation is required to under-

stand how precise afferent activity is integrated into local cir-

cuits. Without ongoing measurements of circuit activity, it is diffi-

cult or impossible to know how native feedback excitatory and

inhibitory circuit mechanisms are engaged, and with what cir-

cuit-level outcome. All-optical, closed-loop optogenetic experi-

ments have the potential to reveal and tune these neural

dynamics.

Beyond the fact that more specific and potent behavioral ef-

fects can be seen with optogenetic projection targeting

compared with focal regional stimulation (e.g., Tye et al., 2011;

Warden et al., 2012; Britt et al., 2012; Znamenskiy and Zador,

2013; reviewed in Deisseroth, 2014), it is also the case that

different afferent projections of the same general class (e.g.,

excitatory/glutamatergic) to the same target region can have

very different behavioral effects from each other or from direct

modulation (such as excitation) of the target region (e.g., Warden

et al., 2012; Britt et al., 2012). Of course, if the different afferent

excitatory projections to the target region connected with

exactly the same synapse types upon the same local ensembles

and were recruited with identical dynamics and strength,

presumably the same behavioral effects would result; but the

fact is that different projections do have different strengths,

dynamics, and local wiring essential to their function, and opto-

genetic projection targeting provides a handle on this diversity

(Britt et al., 2012). For example, increasingly elegant closed-

loop and activity-guided experiments will allow dynamical pat-

terns of projection activation to be matched to natural patterns

with increasing precision, with accessible parameters now

including activity level (Figure 4B), timing with regard to environ-

mental or brain events (Sohal et al., 2009; Paz et al., 2013;

O’Connor et al., 2013; Krook-Magnuson et al., 2014; Siegle

and Wilson, 2014; Stark et al., 2014; Krook-Magnuson et al.,

2015), and even addition or deletion of individual members of

the neuronal ensemble (Prakash et al., 2012; Rickgauer et al.,

2014; Packer et al., 2015). These more natural and nuanced ex-

periments will be important for addressing potential caveats of

experimental design and intervention, and for achieving and

testing predictive models of neural activity patterns on specific

downstream and behavioral outputs.

Closed-loop optogenetics has the potential also to help under-

stand how circuits change with stimulation and learning; and to

recruit in vivo plasticity mechanisms for desired effects. Several

studies have recently used projection-recruitment methods to

show causal significance for plasticity in defined projections in

mammalian behavior (Nabavi et al., 2014; Creed et al., 2015).

This capability also represents a unique advantage of optoge-

netic projection targeting because electrodes cannot specifically

recruit a single projection defined by origin and target, which has

real experimental consequences. For example, it is has been

reported that DBS-like electrical stimulation of the nucleus

accumbens does not fully recruit native plasticity at the normally

plastic cortico-accumbens glutamatergic synapses due to
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 129
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spurious coactivation of local dopaminergic terminals by the

electrode (Creed et al., 2015). To achieve greater plasticity, it

has been reported that the local dopamine receptors should

be blocked pharmacologically at the same time—an experi-

mental complication that is not needed with the more precise

optogenetic projection-targeting driven plasticity (Creed et al.,

2015). At the single-neuron, microcircuit, or projection level, ac-

tivity-dependent plasticity mechanisms, such as those involving

spike timing-dependent plasticity (STDP) or other LTP/D (long-

term potentiation/depression) effects, could be guided by

closed-loop methods to test the causal relevance of circuit

element-specific activity-dependent plasticity mechanisms in

development, learning, memory, and computation. For example,

online monitoring of correlation coefficients between repetitively

optogenetically stimulated neurons that are also imaged over

time could be used in closed-loop fashion to set constraints on

promoting or minimizing detected plasticity in the population,

and population synaptic weights could be tracked and tuned in

real time using fiber photometry (Figures 4A and 4G). Closed-

loop control has already been used in vitro to investigate plas-

ticity at the microcircuit level, to examine the effects of reducing

AMPAergic glutamate receptor transmission on plasticity inde-

pendent of spiking levels in the local circuit (by optogenetically

keeping population spiking stable during AMPA blockade;

Fong et al., 2015).

More generally, online analysis and closed-loop methods

may help in determining photostimulation protocols that are

efficacious with the least amount of intervention, addressing a

concern common to all approaches (including electrophysiolog-

ical and optical) for perturbing brain function—that of eliciting

undesired effects, such as heating, membrane damage, and

cell-health changes. In optogenetics, investigators have long

had the unique opportunity to include (where indicated) the

powerful control conditions of ‘‘light but no opsin’’ and ‘‘opsin

but no light,’’ accounting for concerns common to many kinds

of intervention but uniquely addressable in this way in optoge-

netics—for example, tissue heating (Yizhar et al., 2011a)

and cell health related to viral transduction or long-term overex-

pression of transgenes (Gradinaru et al., 2008, 2010). But

more subtly, closed-loop methods allow tracking, detection,

andminimization/elimination (if needed) of specific cellular activ-

ity changes in response to the intervention, which may include

effects of postintervention rebound, ion redistribution and

biochemical adaptation (Gradinaru et al., 2007; Ferenczi and

Deisseroth, 2012), and other short or long-term plasticity associ-

ated with altered activity (which are seen in response to even

naturally shifting activity levels). It is helpful to consider these

factors when designing and interpreting optogenetic (and other)

experiments, and closed-loop methods provide new ways for

achieving high specificity of neural circuit dissection in terms of

both observation and perturbation.

While electrical stimulation will tend to drive local cells,

afferent axons, and fibers of passage with synchrony that is

difficult to control ormeasure, and is unlikely to reflect native pat-

terns, optogenetic methods can bring this aspect of experi-

mental stimulation (depending on the need) under more flexible

control. The absence of photosensitivity in diverse off-target

afferent fibers when typical AAV-based projection targeting is
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carried out already addresses a major synchrony confound of

electrical stimulation (Creed et al., 2015). Though natural popula-

tion firing aligned with brain rhythm phase (and other population-

wide synchronous events) are common features of native neural

activity, cell bodies within a region are not usually driven with

tight synchrony by typical moderate optogenetic somatic or pro-

jection stimulation due to variability of cell history, photon flux,

opsin expression, and synaptic properties—and therefore of

spike latency (e.g., Lee et al., 2010; Anikeeva et al., 2012; Ching

and Ritt, 2013). However, synchrony of experimental drive can

easily be increased where desired with high-intensity and briefer

light or diminished with reduced light intensity (Cardin et al.,

2009), or entirely eliminated in favor of subthreshold biasing of

excitability of the target population (which then fire asynchro-

nously as driven by native timing). The latter effect is readily

achieved by providing steady low-intensity light, or by using

step function bistable opsins (Yizhar et al., 2011b; Berndt

et al., 2009), which are now in wide use acrossmany laboratories

(e.g., Tanaka et al., 2012; Bepari et al., 2012; Haikala et al., 2013;

Carter et al., 2012; Schultheis et al., 2011). Beyond synchrony, in

general the level of induced population activity can be easily

parametrically mapped with high resolution, from undetectably

low to seizure levels, simply by varying light intensity and/or

pulse frequency while mapping behavior or physiology effects

in the same animal (as was carried out even in very early optoge-

netics studies; Adamantidis et al., 2007). It would not (a priori)

be clear if an experimental manipulation were providing more

or less synchrony, or greater or lower levels of activity, than

native dynamics which span a broad range of activity and syn-

chrony levels. However, in a unique advantage of optogenetics,

monitoring targeted neuron activity online and in closed-loop

fashion facilitates understanding the amount of activity, and level

of synchrony, produced by stimulation, thereby enabling the

experimenter to promote or diminish synchronous patterns or

activity level depending on the experimental goal.

Having a precise understanding of how individual cells, cir-

cuits and cell types influence local and brain-wide dynamics

and plasticity in real time is both central to understanding dis-

eases of brain circuitry and to developing smarter interventions

to improve or repair their function. Some of the first successful

closed-loop optogenetic experiments have been applied in clin-

ically motivated experiments to quickly thwart epileptiform activ-

ity using online analysis and optogenetic intervention (Paz et al.,

2013; Krook-Magnuson et al., 2014, 2015). Another important

application of closed-loop optogenetics will likely be in the

development and application of neuroprosthetics, to potentially

improve brain-machine interfaces and close the loop with sen-

sory feedback for neuroprosthetic devices (Shenoy and Car-

mena, 2014; O’Connor et al., 2013). Closed-loop optogenetics

may help improve circuit targeting for prosthetic devices to

help manage paralysis, given already intriguing progress based

on closed-loop electrical epidural stimulation to recover walking

behavior in paralyzed rats (Wenger et al., 2014). Moreover,

closed-loop optogenetics with single-cell resolution may be

able to track andmodulate learning and behavior even by target-

ing small numbers of neurons. Along these lines, a recent brain-

machine interface study relying on two-photon calcium imaging

in mice of dense populations of layer 2/3 motor and
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somatosensory cortical neurons showed rapid learning by the

mice to volitionally control the firing rate of specific, small sub-

sets of neurons (1–11 total neurons) selected by the experi-

menter a priori, in order to satisfy the task goal of varying the fre-

quency of an auditory stimulus and receive a reward (Clancy

et al., 2014).

Finally, though speculative, closed-loop optogenetics could

also play an essential role in determining precise circuit pertur-

bations that lead to effective treatments of psychiatric illness,

with side effects decreased by including appropriate feedback

to keep themminimized in themodel. Insights from optogenetics

have already been put forth in the form of strategies to design

novel nonoptogenetic interventions (Chen et al., 2013a; Creed

et al., 2015; Gradinaru et al., 2009). As is the case for a growing

number of illnesses, once relevant areas, cell types, pathways,

and basic activity patterns have been identified, functional circuit

models can be further refined and better tested with closed-loop

approaches. Together, the closed-loop and activity-guided ap-

proaches outlined here may help realize a promise of under-

standing and applying systems neuroscience to improve our

understanding of both normal brain function and neuropsychi-

atric disease symptoms by distilling circuit activity patterns

down to the most elemental but effective features and thereby

improving understanding of how any causal intervention

(including pharmacological, optogenetic, electrical or otherwise)

operates on the brain.
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Chen, J.L., Pfäffli, O.A., Voigt, F.F., Margolis, D.J., and Helmchen, F. (2013b).
Online correction of licking-induced brain motion during two-photon imaging
with a tunable lens. J. Physiol. 591, 4689–4698.

Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A.,
Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013c). Ultrasen-
sitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300.

Cheng, Q., Cannon, M., Kouvaritakis, B., and Evans, M. (2014). Stochastic
MPC for systems with both multiplicative and additive disturbances. In Pro-
ceedings of the 19th IFAC World Congress, E. Boje and X. Xiaohua, eds.,
pp. 2291–2296.

Ching, S., and Ritt, J.T. (2013). Control strategies for underactuated neural en-
sembles driven by optogenetic stimulation. Front. Neural Circuits 7, 54.

Cho, I.-J., WonBaac, H., and Yoon, E. (2010). A 16-site neural probe integrated
with a waveguide for optical stimulation. In 2010 IEEE 23rd International Con-
ference on Micro Electro Mechanical Systems (MEMS), pp. 995–998.

Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., Andalman, A.S., Da-
vidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., et al.
(2013). Structural and molecular interrogation of intact biological systems. Na-
ture 497, 332–337.

Chuong, A.S., Miri, M.L., Busskamp, V., Matthews, G.A.C., Acker, L.C., Søren-
sen, A.T., Young, A., Klapoetke, N.C., Henninger, M.A., Kodandaramaiah,
S.B., et al. (2014). Noninvasive optical inhibition with a red-shifted microbial
rhodopsin. Nat. Neurosci. 17, 1123–1129.

Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyuju-
kian, P., Ryu, S.I., and Shenoy, K.V. (2012). Neural population dynamics during
reaching. Nature 487, 51–56.

Clancy, K.B., Koralek, A.C., Costa, R.M., Feldman, D.E., and Carmena, J.M.
(2014). Volitional modulation of optically recorded calcium signals during neu-
roprosthetic learning. Nat. Neurosci. 17, 807–809.

Cohen, N., Yang, S., Andalman, A., Broxton, M., Grosenick, L., Deisseroth, K.,
Horowitz, M., and Levoy, M. (2014). Enhancing the performance of the light
field microscope using wavefront coding. Opt. Express 22, 24817–24839.

Conkey, D.B., Brown, A.N., Caravaca-Aguirre, A.M., and Piestun, R. (2012).
Genetic algorithm optimization for focusing through turbid media in noisy en-
vironments. Opt. Express 20, 4840–4849.

Cossart, R., Aronov, D., and Yuste, R. (2003). Attractor dynamics of network
UP states in the neocortex. Nature 423, 283–288.

Cotton, R.J., Froudarakis, E., Storer, P., Saggau, P., and Tolias, A.S. (2013).
Three-dimensional mapping of microcircuit correlation structure. Front. Neural
Circuits 7, http://dx.doi.org/10.3389/fncir.2013.00151.

Couchman, P.D., Cannon, M., and Kouvaritakis, B. (2006). Stochastic MPC
with inequality stability constraints. Automatica 42, 2169–2174.

Cox, I.J., and Sheppard, C.J.R. (1986). Information capacity and resolution in
an optical system. J. Opt. Soc. Am. A 3, 1152–1158.
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