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Outline: How do we understand frontier growth?

• A Discussion of Ideas

• Simple Model

• Full Model, and various resource allocations

• Applications

Romer (1990) and Jones (2005) – p. 3



A Discussion of Ideas
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Solow and Romer

• Robert Solow (1950s)

◦ Capital versus Labor

◦ Cannot sustain long-run growth

• Paul Romer (1990s)

◦ Objects versus Ideas

◦ Sustains long-run growth

◦ Wide-ranging implications for intellectual property,
antitrust policy, international trade, the limits to growth,
sources of “catch-up” growth

Romer’s insight: Economic growth is sustained by
discovering better and better ways to use the finite
resources available to us
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The Idea Diagram

Ideas → Nonrivalry →
Increasing

returns

Long-run

growth

Problems with
pure competi-

tion

ր

ց

Romer (1990) and Jones (2005) – p. 6



The Essence of Romer’s Insight

• Question: In generalizing from the neoclassical model to

incorporate ideas (A), why do we write the PF as

Y = AKαL1−α
(*)

instead of

Y = AαKβL1−α−β

• Does A go inside the CRS or outside?

◦ The “default” (*) is sometimes used, e.g. 1960s

◦ 1980s: Griliches et al. put knowledge capital inside CRS
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IRS and the Standard Replication Argument

• Familiar notation, but now let At denote the “stock of
knowledge” or ideas:

Yt = F (Kt, Lt, At) = AtK
α
t L

1−α
t

• Constant returns to scale in K and L holding knowledge
fixed. Why?

F (λK, λL,A) = λ× F (K,L,A)

• But therefore increasing returns in K, L, and A together!

F (λK, λL, λA) > F (λK, λL,A)

• Economics is quite straightforward:

◦ Replication argument implies CRS to objects

◦ Therefore there must be IRS to objects and ideas
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A Simple Model
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The Simple Model

Production of final good Yt = Aσt LY t

Production of ideas Ȧt = ν(At)LAt = νLAtA
φ
t

Resource constraint LY t + LAt = Lt = L0e
nt

Allocation of labor LAt = s̄Lt, 0 < s̄ < 1

φ > 0: Standing on shoulders

φ < 0: “Fishing out”
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Solving

(1) Yt = Aσ
t LY t

(2) Ȧt = ν(At)LAt = νLAtA
φ
t

(3) LY t + LAt = Lt = L0ent

(4) LAt = s̄Lt, 0 < s̄ < 1
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Discussion: gy =
σn
1−φ

• Growth rate is the product of (1) degree of increasing
returns and (2) rate at which scale is rising.

• More people ⇒more ideas ⇒more income per capita.

• But China is huge while Hong Kong is tiny?

• But Africa has fast population growth while Europe has
slow?

• What happens if s̄ permanently increases?
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From IRS to Growth

• Objects: Add one computer ⇒make one worker more
productive.

Output per worker ∼ # of computers per worker

• Ideas: Add one new idea ⇒make everyone better off.

– E.g. computer code for 1st spreadsheet or the software
protocols for the internet itself

Income per person ∼ the aggregate stock of knowledge,
not on the number of ideas per person.

But it is easy to make aggregates grow: population growth!

IRS ⇒bigger is better.
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Romer (1990) and Scale Effects

• Romer (1990) / Aghion-Howitt (1992) / Grossman-Helpman
(1991) have φ = 1

Ȧt
At

= νLAt = νs̄Lt

• Policy effect: ↑ s̄ raises long-run growth.

• Problem (Jones 1995): Growth in number of researchers (or
population) implies accelerating growth

◦ True over the very long run (Kremer 1993)

◦ But not in the 20th century for the United States.
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Researchers in Advanced Countries
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U.S. GDP per Person

Romer (1990) and Jones (2005) – p. 16



Scale Effects

• Strong versus weak (versus none)

◦ Strong: φ = 1 — scale affects the growth rate in LR

◦ Weak: φ < 1 — scale affects the level in LR

• Literature

◦ Young (1998), Peretto (1998), Dinopoulos-Thompson
(1998), Howitt (1999); discussed in Jones (1999 AEAPP)

• No role for scale? What about nonrivalry?
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What happens if φ > 1?
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What happens if φ > 1?

• Let φ = 1 + ǫ and assume population is constant.

Ȧt = νLA1+ǫ
t

• Integrating this differential equation from 0 to t gives

At =

(

1

A−ǫ
0 − ǫνLt

)1/ǫ

⇒ There exists a finite date t∗ when A becomes infinite!
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The Full Romer Model
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Overview of Romer Model

• All of the key insights regarding nonrivalry and increasing
returns.

• In addition, a significant troubling question was how to
decentralize the allocation of resources

◦ With increasing returns, why doesn’t one firm come to
dominate?

◦ Imperfect competition, a la Spence (1976), Dixit-Stiglitz
(1977), and Ethier (1982, production side)
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The Economic Environment

Final good Yt =
(

∫ At

0 xθit di
)α/θ

L1−α
Y t , 0 < θ < 1

Capital K̇t = It − δKt, Ct + It = Yt

Production of ideas Ȧt = νLλAtA
φ
t , φ < 1

Resource constraint (capital)
∫ At

0 xit di = Kt

Resource constraint (labor) LY t + LAt = Lt = L0e
nt

Preferences Ut =
∫∞
t Lsu(cs)e

−ρ(s−t) ds, u(c) = c1−ζ−1
1−ζ
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Allocating Resources

• Environment features

◦ 9 unknowns: Y,A, {xi}, LY , LA,K,C, I, L

◦ 6 1/2 equations (use
∫

xitdi = K to get x̄t below)

Need 2 1/2 more equations to complete

• A rule of thumb allocation in this economy features

It/Yt = s̄K ∈ (0, 1)

LAt/Lt = s̄A ∈ (0, 1)

xit = x̄t for all i ∈ [0, At].
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Balanced Growth Path

A balanced growth path in this economy is a situation in which

all variables grow at constant exponential rates (possibly zero)

forever.
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Result 1 (Rule of Thumb)

(a) Symmetry of capital goods implies

Yt = AσtK
α
t L

1−α
Y t , σ ≡ α(

1

θ
− 1)

(b) Along BGP, y depends on the total stock of ideas:

y∗t =

(

s̄K
n+ gk + δ

)
α

1−α

A
∗ σ

1−α

t .

(c) Along BGP, the stock of ideas depends on the number of
researchers

A∗
t =

(

ν

gA

)
1

1−φ

L
∗ λ

1−φ

At
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Result 1 (continued)

(d) Combining these last two results(b) and (c),

y∗t ∝ L∗γ
At = (s̄ALt)

γ , γ ≡
σ

1− α
·

λ

1− φ

(e) Finally, TLAD gives the growth rates

gy = gk =
σ

1− α
gA = γgLA

= g ≡ γn.
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The Optimal Allocation

• The optimal allocation features time paths {ct, sAt, {xit}}
∞
t=0

that maximize utility Ut at each point in time given the
economic environment.

• Using symmetry of xit:

max
{ct,sAt}

∫ ∞

0
Ltu(ct)e

−ρt dt

subject to

yt = Aσt k
α
t (1− sAt)

1−α

Ȧt = ν(sAtLt)
λAφt

k̇t = yt − ct − (n+ δ)kt
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The Maximum Principle in the Romer Model

• The Hamiltonian for the optimal allocation is

Ht = u(ct) + µ1t(yt − ct − (n+ δ)kt) + µ2tνs
λ
AtN

λ
t A

φ
t ,

where yt = Aσt k
α
t (1− sAt)

1−α.

• First order necessary conditions

∂Ht/∂ct = 0, ∂Ht/∂sAt = 0

ρ̄ =
∂Ht/∂kt
µ1t

+
µ̇1t
µ1t

, ρ̄ =
∂Ht/∂At
µ2t

+
µ̇2t
µ2t

lim
t→∞

µ1te
−ρ̄tkt = 0, lim

t→∞
µ2te

−ρ̄tAt = 0
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Result 2 (Optimal Allocation)

(a) All of Result 1 continues to hold.

◦ Same long-run growth rate!

(b) Optimal consumption satisfies the Euler equation

ċt
ct

=
1

ζ

(

∂yt
∂kt

− δ − ρ

)

(c) Optimal saving along BGP

sopK =
α(n+ g + δ)

ρ+ δ + ζg
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Result 2 (Optimal Allocation — continued)

(d) Optimal labor allocation equates marginal products

sopAt
1− sopAt

=

µ2t

µ1t
λȦt

(1− α)yt

Along the BGP, this implies

sopA
1− sopA

=

σYt/At

r∗−(gY −gA)−φgA
λȦt

(1− α)Yt
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Equilibrium in

the Romer Model
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Market Equilibrium with Imperfect Competition

• Increasing returns means a perfectly competitive
equilibrium does not exist.

• Romer (1990) adds infinitely lived patents on ideas to set up
an equilibrium with imperfect competition as in Spence
(1976), Dixit-Stiglitz (1977), Ethier (1982).

• Partial excludability associated with patents leads
individuals to exert effort to discover new ideas.

• We define the decision problems first and then the
equilibrium.
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Households: Problem (HH)

Taking the time path of {wt, rt} as given, HHs solve

max
{ct}

∫ ∞

0
u(ct)e

−ρ̄t dt

subject to

v̇t = (rt − n)vt + wt − ct, v0 given

lim
t→∞

vte
−

∫
t

0
(rs−n)ds ≥ 0

where vt is financial wealth, wt is the wage, and rt is the
interest rate.
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Final Goods Producers: Problem (FG)

• Perfectly competitive

• At each t, taking wt, At, and {pit} as given, the

representative firm chooses LY t and {xit} to solve

max
{xit},LY t

(
∫ At

0
xθit di

)α/θ

L1−α
Y t − wtLY t −

∫ At

0
pitxitdi.
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Capital Goods Producers: Problem (CG)

• Monopolistic competition — a patent gives a single firm the
exclusive right to produce each variety.

• At each t and for each capital good i, taking rt and x(·) as
given, a monopolist solves

max
pit

πit ≡ (pit − rt − δ)x(pit)

where x(pit) is the (constant elasticity) demand from the

final goods sector for variety i — from the FOC in Problem
(FG).
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Idea Producers: Problem (R&D)

• Perfectly competitive, seeing the idea production function as

Ȧt = ν̄tLAt

• The representative research firm solves

max
LAt

PAtν̄tLAt − wtLAt

taking the price of an idea PAt, research productivity ν̄t, and
the wage rate wt as given.
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Market Equilibrium

An equilibrium with imperfect competition is {ct, {xit}, Yt,Kt,
It, vt, {πit}, LY t, LAt, Lt, At, ν̄t}

∞
t=0 and prices {wt, rt,

{pit}, PAt}
∞
t=0 such that for all t:

1. ct, vt solve Problem (HH).

2. {xit} and LY t solve Problem (FG).

3. pit and πit solve Problem (CG) for all i ∈ [0, At].

4. LAt solves Problem (R&D).

5. (rt) The capital market clears: Vt ≡ vtLt = Kt + PAtAt.

6. (wt) The labor market clears: LY t + LAt = Lt.

7. (ν̄t) The idea production function is satisfied: ν̄t = νLλ−1

At
Aφ

t .

8. (Kt) The capital resource constraint is satisfied:
∫At

0
xitdi = Kt.

9. (PAt) Assets have equal returns: rt =
πit
PAt

+ ṖAt
PAt

.

10. Yt, At,Lt, It are determined by their production functions

(16 equations, 16 unknowns. Goods market clears by Walras’ Law: Ct + It = Yt)
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Result 3 (Market Equilibrium Allocation)

(a) All of Result 1 continues to hold:

◦ Same long-run growth rate!

(b) The same Euler equation characterizes consumption

ċt
ct

=
1

ζ
(reqt − ρ)

Note: Since the growth rate is the same and the Euler
equation is the same, req = r∗ (steady state).
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Result 3 (Market Equilibrium — continued)

(c) Capital goods are priced with the usual monopoly markup:

peqit = peqt ≡
1

θ
(reqt + δ)

As a result, capital is paid less than its marginal product:

reqt = αθ
Yt
Kt

− δ.

Same growth rate ⇒ same interest rate. Underpaying
capital leads to low K/Y :

seqK =
αθ(n+ g + δ)

ρ+ δ + ζg
= θsopK
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Result 3 (Market Equilibrium — continued)

(d) Free flow of labor equates marginal products

seqAt
1− seqAt

=
PAtȦt

(1− α)Yt

Along BGP

seqA
1− seqA

=

σθYt/At

req−(gY −gA)Ȧt

(1− α)Yt
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Compare sopA and seqA

seqA
1− seqA

=

σθYt/At

req−(gY −gA)Ȧt

(1− α)Yt
,

sopA
1− sopA

=

σYt/At

r∗−(gY −gA)−φgA
λȦt

(1− α)Yt

Three differences:

• λ < 1: Duplication externality

• φ 6= 0: Knowledge spillover externality

• θ < 1: Appropriability effect

Equilibrium may involve either too much or too little research.
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Summary

• More people ⇒more ideas ⇒more per capita income
(nonrivalry)

◦ Log-difference ⇒per capita growth is proportional to
population growth, where proportionality measures
increasing returns

• Long-run growth rate is independent of the allocation of
resources

◦ Subsides or taxes on research affect growth along the
transition path and have long-run level effects (like
Solow)

◦ In contrast, in Romer (1990), they lead to long-run
growth effects
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Applications
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Several Applications of this Framework

1. Endogenizing population growth

2. Growth over the very long run

3. The linearity critique

4. Growth accounting
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1. Endogenizing Population Growth (Jones 2003)

• Let fertility be a choice variable in a Barro and Becker
(1989) kind of framework.

◦ Converts this to a fully endogenous growth model

• But policy can have odd effects: a subsidy to research shifts
labor toward producing ideas but away from producing kids
⇒ lower long-run growth!

• A recent reference on some intriguing issues that arise
along this line of research is Cordoba and Ripoll, “The
Elasticity of Intergenerational Substitution, Parental
Altruism, and Fertility Choice” (REStud 2019)
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2. Growth over the Very Long Run

• Malthus: c = y = ALα, α < 1

◦ Fixed supply of land: ↑L ⇒ ↓c holding A fixed

• Story (Lee 1988, Kremer 1993):

◦ 100,000 BC: small population ⇒ ideas come very slowly

◦ New ideas ⇒ temporary blip in consumption, but
permanently higher population

◦ This means ideas come more frequently

◦ Eventually, ideas arrive faster than Malthus can reduce
consumption!

• People produce ideas and Ideas produce people

◦ If nonrivarly > Malthus, this leads to the hockey stick
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Population and Per Capita GDP: the Very Long Run
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3. The Linearity Critique

• The result of any successful growth model is an equation
like ẏt = ḡyt, with a story about ḡ.

• An essential ingredient to getting this result is (essentially)
some linear differential equation somewhere in the
economic environment:

Ẋt = Xt

• Growth models differ according to what they call the Xt

variable and how they fill in the blank.
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Catalog of Growth Models: What is Xt?

Solow yt = kα, k̇t = kαt − ct − δkt

Solow Ȧt = ḡAt

AK model Yt = ĀKt, K̇t = AKt − Ct − δKt

Lucas Yt = Kα
t (uthtL)

1−α, ḣt = (1− ut)ht

Romer (φ = 1) Ȧt = νLatAt

Romer (φ < 1) L̇t = n̄Lt
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4. Growth Accounting

• Jones (2002): “Sources of U.S. Economic Growth in a
World of Ideas”

• Puzzle (earlier graphs)

◦ A straight line fits log U.S. GDP per person quite well

◦ But human capital and R&D investment rates appear to
be rising

• Human capital: Completion rates for adult population

◦ 1940: 25% high school, 5% college

◦ 1993: 80% high school, 20% college

• U.S. science/eng researchers as a fraction of labor force:

◦ 1950: 1/4 of 1%

◦ 1993: 3/4 of 1%
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How to reconcile?

• Imagine a Solow model

◦ What happens if the investment rate grows over time?

• Same thing could be going on in an idea model with φ < 1
◦ Only it is human capital and R&D investment rates that

rise

◦ Implication for the long run...
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Key Equations of the Model

Production of final good Yt = AσtK
α
t H

1−α
yt

Production of ideas Ȧt = νHλ
atA

φ
t

Efficiency units of labor Hit = htLit, ht = eψℓht

Resource constraint Lyt + Lat = (1− ℓht)Lt

• Rewriting the production function

yt =

(

Kt

Yt

)
α

1−α

ℓythtA
σ

1−α

t

• Balanced growth path: gy = γn where γ ≡ σ
1−α · λ

1−φ
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Accounting for Growth (γ = 1/3), 1950–2007

• Educational attainment rises ≈ 1 year per decade. With
ψ = .06 ⇒about 0.6 percentage points of growth per year.

• Transition dynamics are 80 percent of growth.

• “Steady state” growth is only 20 percent of recent growth!

• Numbers from “The Future of U.S. Economic Growth” (with
Fernald)
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Growth Accounting in the U.S., 1950s to Today

Components of 2% Growth
in GDP per Person

K/Y: 0pp

Human capital

 per person:   

 0.5pp       

Employment-Pop 

Ratio: 0.2pp    
TFP: 1.3pp

Research 

 intensity:

 0.7pp   

Misallocation:

       0.3pp

Population

 growth: 0.3pp

Components of 1.3% TFP Growth

“The Past and Future of Economic Growth: A Semi-Endogenous Perspective”
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Alternative Futures?

The stock of ideas, A

                                                                      The shape of the idea production function, f(A)

The past

Today

Increasing
  returns

   GPT
"Waves"

Run out
of ideas
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IMPORTANT Lessons about Doing Research

• Start as simple as possible (or at least get there eventually!)

• Show entire economic environment (preferences +
technology) in one slide and in Table 1 of paper

• Allocating resources: always count equations and
unknowns

◦ Rule of thumb easiest (Solow)

◦ Optimal allocation / social planner: pretty easy and
where we’d like to begin

◦ Equilibrium: most complicated, and details matter (is
there an NSF?). Define it fully and carefully.

Romer (1990) and Jones (2005) – p. 56
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