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with limited data, a standard epidemiological model of COVID-19. We allow for a time- 
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with social distancing. We simulate the model forward to consider possible scenarios for 

various countries, states, and cities, including the potential impact of herd immunity on 

re-opening. 
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1. Introduction 

The sudden arrival of COVID-19 in the winter of 2020 highlighted the importance of estimating a standard epidemiolog- 

ical model of the epidemic quickly and with limited data. In this paper, we show how to tackle this challenge. We use data

on deaths in New York City, Madrid, Stockholm, and other world cities as well as in various U.S. states, countries, and re-

gions around the world during the first half of 2020 to estimate a SIRD model of COVID-19. Relative to existing frameworks,

our contributions are: 

• We do not use data on cases or tests because of differential selection in testing in different cities, states, and countries.

Instead we only use data on deaths. 

• We invert a standard SIRD epidemiological model and use the daily death series to recover a time-varying the basic re-

production number (i.e., the expected number of infections generated by one infection when all individuals are suscep- 

tible to infection) R 0 t ≡ βt /γ to capture changes in behavior and policy that occur at different times and with different

intensities in different locations. In essence, we apply a Solow residual approach: we assume the model fits the data 

exactly and back out the implied values of βt that make it so. 
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• We show how simulating our model after a location has reached a peak in the number of daily deaths results in very

stable results going forward in time. In contrast, simulations of the future before a location reaches its peak are extremely 

noisy and sensitive to daily shocks. 

• For simulations of future outcomes, we allow for feedback from daily deaths, d t , to future behavior according to

R 0 t = Constant · e −αd t as suggested by Cochrane (2020) . We estimate α from data for each country. There is tremen-

dous heterogeneity across countries, so this parameter is not well-identified in our data. We estimate an average value 

of about α = 0 . 05 so that R 0 changes by 5% when daily deaths change by one and use this value in simulations of future

outcomes. 

• Our models allow us to back out the percentage of people who were infectious at the end of our sample as well as

those who were ever infected versus those still susceptible; therefore, we can estimate the extent to which herd immu- 

nity effects are large. Given the epidemiological situation in mid-May 2020, we find moderate effects in New York City, 

noticeable effects in Italy, Sweden, and Spain, and negligible effects in New York state outside of New York City and in

places like California. 

We study a standard model of COVID-19 using common tools in econometrics, and then we analyze its main quantitative 

implications in ways that resemble how economists study other dynamic models. Our exercise can help us understand 

where a simple SIRD model has difficulties fitting observed patterns in the data and points out avenues for improvement 

while maintaining the virtues of simplicity and parsimony. 

In the interest of space, we will report a very short summary of our results, up to mid-May 2020. By the end of May, the

first wave of the epidemic was over in many cities, regions, and countries. Later waves of the epidemic need, to be analyzed

in more detail, using models with time-varying parameters, such as the one in Arias et al. (2021) , and, consequently, much

more powerful econometric techniques. Nonetheless, we have an online dashboard, https://web.stanford.edu/ ∼chadj/Covid/ 

Dashboard.html , that reports data extended until October 9, 2020 for around 100 cities, states, and countries. 

2. Literature review 

Much of the mathematical study of the spread of infectious diseases starts from the classic compartmental models of 

Kermack and McKendrick (1927) and Kermack and McKendrick (1932) . These models divide the population into several dif- 

ferent compartments (e.g., susceptible, infective, recovered, deceased,...) and specify how agents move across the separate 

compartments over time. The SIRD epidemic model that we analyze in this paper is one of the simplest of these compart-

mental models. Hethcote (20 0 0) presents a useful overview of this class of models and some of their theoretical properties

and Morton and Wickwire (1974) show how to apply optimal control methods to them. 

The acute economic impact of the COVID-19 pandemic has generated a gigantic literature that we cannot review here 

except for pointing out a few papers that have particularly influenced our thinking (see Stock, 2020 , and Avery et al., 2020 ,

for two general surveys of how economists have addressed this topic). 

First, economists have argued that many of the parameters controlling the move among compartments are not structural 

in the sense of Hurwicz (1962) , but depend, instead, on individual decisions and policies. For example, the rate of contact

that determines the number of new infections is a function of the endogenous labor supply and consumption choices of 

individuals. Hence, the rate of contact is amenable to being studied with standard decision theory models. See, for instance, 

Eichenbaum et al. (2021) and Farboodi et al. (2021) . Also, the recovery and death rates are not just clinical parameters, but

can be functions of policy decisions such as expanded hospital capacity or priorities regarding the allocation of scarce ICU 

resources. Similarly, the case fatality ratio, a key figure to assessing the severity of the epidemic, is a complex function of

clinical factors (e.g., the severity of a virus) and demographic and selection-into-disease mechanisms, which are themselves 

partly the product of endogenous choices ( Korolev, 2020 ). 2 Our paper builds on these ideas by allowing the infection rates

to be influenced by social distancing and by letting many parameters vary across countries, states, and cities, which can 

proxy for demographic and policy heterogeneity. 

Second, economists have been concerned with the identification problems of compartmental models. Many of these 

models are unidentified or weakly identified, with many sets of parameters that fit the observed data so far equally well

but have considerably different long-run consequences. Atkeson (2020) and Korolev (2021) document this argument more 

carefully. Our findings corroborate this result and highlight the need to develop alternative econometric approaches. 

Third, some researchers have dropped the use of compartmental models completely. Instead, they have relied on time- 

series models from the econometric tradition. See, for instance, Li and Linton (2021) and Liu et al. (2021) . 

Let us close this section by pointing out that economists are pushing the study of compartmental models in a multi-

tude of dimensions. Acemoglu et al. (2021) , Alvarez et al. (2021) , and Chari et al. (2020) characterize the optimal lockdown

policy for a planner who wants to control the fatalities of a pandemic while minimizing the output costs of the lockdown.

Berger et al. (2020) analyze the role of testing and case-dependent quarantines. Bodenstein et al. (2021) combine a compart-

mental model with a multisector dynamic general equilibrium model to capture key characteristics of the U.S. Input-Output 

Tables. Garriga et al. (2021) , Hornstein (2020) , and Toda (2020) study a variety of containment policies. More papers are

appearing every day. 
2 More precisely, the case fatality ratio is not the average treatment effect on the treated (ATET), a more explicitly “causal” concept. 
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3. A SIRD model with social distancing 

We follow standard notation in the literature. There is a constant population of N people, each of whom may be in one

of five states: 

S t + I t + R t + D t + C t = N. 

The states –in temporal order– are 

S t = Susceptible, 

I t = Infectious, 

R t = Resolving, 

D t = Dead, 

C t = ReCovered. 

A susceptible person contracts the disease by coming into “adequate” contact with an infectious person, assumed to occur 

at rate βt I t /N, where βt is a time-varying contact rate parameter. The starting value of βt , β0 , reflects how the infection

would progress if individuals behaved as they did before any news of the disease had arrived. We think of β0 as capturing

characteristics of the disease, fixed attributes of the region such as density, and basic customs in the region. 

Over time, βt varies depending on how strong are the social distancing and hygienic practices that different locations 

adopt, either because of policy or simply because of voluntary changes in individual behavior. We will explain below how 

we recover βt from the data but, at this moment, we are not imposing any structure on its evolution. 3 

The total number of new infections at a point in time is βt I t /N · S t . Infectiousness resolves at Poisson rate γ , so the

average number of days a person is infectious is 1 /γ : e.g., if γ = 0 . 2 , a person is infectious on average for 5 days. 

After the infectious period is over, a person is in the “Resolving” state, R . A constant fraction, θ , of people exit this state

each period, and the case is resolved in one of two ways: 

Death: fraction δ, 

Recovery: fraction 1 − δ. 

In preliminary work, we found it important to have a model that distinguishes between the infectious and the recovering 

periods. This distinction was key to matching the data with biologically plausible parameter values when we were putting 

restrictions on the time path of βt . It appears that the infectious period lasts on average about 4 to 5 days while cases take

a total of about 2 to 3 weeks or even longer to resolve ( Bar-On et al., 2020 ). 4 If one assumes people are infectious for this

entire period, the model has trouble fitting the data. 

The laws of motion related to the virus are then given by 

�S t+1 = −βt S t I t /N ︸ ︷︷ ︸ 
new infections 

(1) 

[6 pt]�I t+1 = βt S t I t /N ︸ ︷︷ ︸ 
new infections 

− γ I t ︸︷︷︸ 
resolving infectious 

(2) 

[6 pt]�R t+1 = γ I t ︸︷︷︸ 
resolving infectious 

− θR t ︸︷︷︸ 
cases that resolve 

(3) 

[6 pt]�D t+1 = δθR t ︸ ︷︷ ︸ 
die 

(4) 

[6 pt]�C t+1 = (1 − δ) θR t ︸ ︷︷ ︸ 
reCovered 

. (5) 

We assume the initial stocks of deaths are set equal to zero. The initial stocks of infections and resolving cases, I(0) and

R (0) , are parameters that we will estimate. 
3 In a previous version of this paper, we assumed that βt decayed at an exponential rate, as in Chowell et al. (2016) . We also tried alternative specifi- 

cations, including discrete jumps at the time of the introduction of shelter-in-place orders. As we will see below, it turns out that we can dispense with 

those assumptions and be much more flexible in recovering βt from observables. 
4 We can also consider the transition to the resolving compartment as reflecting, in part, quarantine measures. While some authors prefer to add a 

“quarantine” compartment, we did not find we needed it to account for the dynamics of the data. 

3 
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3.1. Basic properties of a standard SIRD model 

Here we review the basic properties of this model when βt = β and the difference equations are replaced by differential

equations ( Hethcote, 20 0 0 ). A convention in epidemiological modeling is to recycle notation and let R 0 denote the basic

reproduction number, that is, the expected number of infections generated by the first ill person when s 0 ≡ S 0 /N ≈ 1 : 

R 0 = β × 1 /γ . 

# of infections from one sick person # of lengthy contacts per day # of days contacts are infectious 

More generally, if R 0 s 0 > 1 , the disease spreads; otherwise, it declines quickly. One can see from this simple equa-

tion why R 0 > 1 is so natural: if people are infectious for 5 days and have lengthy contacts with even just two new people

per day, for example, then R 0 = 10 . 

The initial exponential growth rate of infections is β − γ = γ (R 0 − 1) . Another useful result concerns the long-run num- 

ber of people who ever get infected (and therefore the fraction δ of these gives the long-run death rate). As t → ∞ , the total

fraction of people ever infected, e ∗, solves (assuming s 0 ≈ 1 ) 

e ∗ = − 1 

R 0 

log (1 − e ∗) . 

In other words, with a constant β , the long-run number of people ever infected is pinned down by R 0 ; the parameters γ
and θ only affect the timing, holding R 0 constant. The long-run death rate is then δe ∗, which also depends only on R 0 (and

δ). 

This explains why modeling the changing β associated with social distancing and better hygienic practices is so impor- 

tant. With a constant β , the initial explosion rate of the disease implies a value for β and then all the variables in the

differential system are determined at that point. Instead, a changing β permits the initial exponential growth rate of deaths 

to be different from the long-run properties of the system, which is the point of adopting behavioral changes in society. 

4. Recovering βt and R 0 t 

It turns out that recovering βt , a latent variable, from the data is straightforward without resorting to any complex 

filtering device. 

We adopt the following timing convention. D t+1 is the stock of people who have died as of the end of date t + 1 , so that

�D t+1 ≡ d t+1 is the number of people who died on date t + 1 (daily deaths, in our estimating exercise). 

We begin by using Eq. (4) to solve for various series involving R t+1 and its differences in terms of daily deaths: 

R t = 

1 

δθ
�D t+1 = 

1 

δθ
d t+1 (6) 

�R t+1 = 

1 

δθ
( d t+2 − d t+1 ) = 

1 

δθ
�d t+2 . (7) 

Next, we use (3) and the expressions we just derived for R t+1 to solve for I t and its differences: 

I t = 

1 

γ
( �R t+1 + θR t ) 

= 

1 

γ

(
�d t+2 

δθ
+ d t+1 /δ

)

= 

1 

δγ

(
�d t+2 

θ
+ d t+1 

)
, (8) 

and applying the difference operator gives: 

�I t+1 = 

1 

δγ

[
�d t+3 − �d t+2 

θ
+ �d t+2 

]

= 

1 

δγ

(
��d t+3 

θ
+ �d t+2 

)
, (9) 

where ��d t+3 ≡ �d t+3 − �d t+2 . 

Taking the ratio of (9) to (8) gives: 

�I t+1 

I t 
= 

1 
θ
��d t+3 + �d t+2 

1 
θ
�d t+2 + d t+1 

. (10) 
4 
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Now, we can go back to our original SIRD model in Eq. (2) and rewrite it as 

�I t+1 

I t 
= βt 

S t 

N 

− γ . 

Solve this equation for βt by using Eq. (10) above to get: 

βt = 

N 

S t 

(
γ + 

�I t+1 

I t 

)

= 

N 

S t 

(
γ + 

1 
θ
��d t+3 + �d t+2 

1 
θ
�d t+2 + d t+1 

)
. 

This is one of the key equations in recovering βt . Notice, however, that this equation depends on S t . But since we have an

initial condition for S 0 , we can use the SIRD model to get the updating equation for �S t+1 and we will be done. From (1) and

using (8) to substitute I t : 

�S t+1 = −βt S t 
I t 

N 

= −βt S t 
1 

δγ N 

(
1 

θ
�d t+2 + d t+1 

)
, 

or 

S t+1 = S t 

(
1 − βt 

1 

δγ N 

(
1 

θ
�d t+2 + d t+1 

))
. 

Now, we only need to collect the last two equations together: 

βt = 

N 

S t 

(
γ + 

1 
θ
��d t+3 + �d t+2 

1 
θ
�d t+2 + d t+1 

)
, (11) 

and: 

S t+1 = S t 

(
1 − βt 

1 

δγ N 

(
1 

θ
�d t+2 + d t+1 

))
. 

With these two equations, an observed time series for daily deaths, d t , and an initial condition S 0 /N ≈ 1 , we iterate

forward in time and recover βt and S t+1 . Basically, we are using future deaths over the subsequent 3 days to tell us about 

βt today. While this means our estimates will be 3 days late (if we have death data for 30 days, we can only solve for β for 

the first 27 days), we can still generate an informative estimate of βt . 

We can perform many exercises with the recovered βt . We can, for instance, simulate the model forward using the most

recent value of βT and gauge where a region is headed in terms of the infection. And we can correlate the βt with other

observables to evaluate the effectiveness of certain government policies such as mandated lockdowns. 

Note, also, that βt determines the basic reproduction number, R 0 t = βt × 1 /γ under the prevailing social distancing and 

hygienic practices. We should be careful to distinguish this basic reproduction number from the effective reproduction num- 

ber (i.e., the average number of new infections caused by a single infected individual at time t), which we will denote by

R et . The latter considers the fraction of the population that is still susceptible. Since: 

R et = R 0 t · S t /N, 

our procedure can also recover the effective reproduction number. This finding is interesting because this effective repro- 

duction number is often reported by researchers due to the ease with which it can be estimated with standard statistical

packages such as EpiEstim in R . 

5. Estimation: Countries and states 

Now, we take our model to the data. The following parameters are assumed to be primarily biological and, therefore, 

fixed over time and the same in all countries and regions: 

• γ = 0 . 2 : In the continuous-time version of this model, the average length of time a person is infectious is 1 /γ , so 5 days

in our baseline. This choice is consistent with the evidence in Bar-On et al. (2020) . We also consider γ = 0 . 15 (7 day

duration). The γ = 0 . 2 fit slightly better in our earlier work with more restrictions on βt , but it was not particularly well
5 
identified. 

5 Note that γ also incorporates choices of individuals. Therefore, it is not merely pinned down by clinical observations. If an individual experiences 

symptoms or suspects that she might be infectious, hence withdrawing herself from effective contacts with susceptible individuals, we can consider her 

case has resolved for the purposes of the dynamics of the model, even if she is still under a clinical condition. 

5 
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• θ = 0 . 1 : In the continuous-time version of this model, the average length of time it takes for a case to resolve, after the

infectious period ends, is 1 /θ . With θ = 0 . 1 , this period averages 10 days. Combined with the 5-day infectious period,

this implies that the average case takes a total of 15 days to resolve. The implied exponential distribution includes a long

tail that can be thought of as capturing the fact that some cases take longer to resolve. 

• α = 0 . 05 : For simulations of future outcomes, we allow for feedback from daily deaths per million people, d t , to future

behavior according to R 0 t = Constant · e −αd t as suggested by Cochrane (2020) . We estimate αi from data for each location

i . There is tremendous heterogeneity across locations in these estimates, so a common value is not well-identified in our

data. We estimate an average value of about α = 0 . 05 so that R 0 t changes by 5% when daily deaths change by one.

This is the value we use in simulations of future outcomes. More specifically, the mean value of ˆ αi in location-specific

regressions is 0.0 6 6 and the median value is 0.045. However, the standard deviation of ˆ αi across locations is a very high

0.15. We report results with both α = 0 –i.e., assuming no feedback so that the final value of R 0 t that we estimate in the

data is assumed to hold in the future– as well as with α = 0 . 05 . The presence of feedback is very clear in our estimation

and strikes us as helpful to incorporate, so our baseline results below assume α = 0 . 05 . 

• δ = 1 . 0% : This parameter is crucial, and it would be great to have a precise estimate of it. Case fatality rates are not

helpful, as we do not have a good measure of how many people are infected. Random testing for antibodies to detect

how many people have ever been infected is quite informative about this parameter. We explain below how we use such

data. 

Seroepidemiological surveys The most comprehensive evidence from the early stages of the COVID-19 epidemic we are 

aware of comes from a seroepidemiological national survey undertaken by the Spanish government from April 27 to May 11, 

2020, to measure the incidence of SARs-CoV-2 in Spain. The survey was large, with 60,983 valid responses from individuals 

stratified in two stages. Combining the results from this survey with the measured sensitivity and specificity of the test, 

we conclude that the mortality rate of SARs-CoV-2 in Spain was between 1% and 1.1%. Because many of the early deaths

in the epidemic were linked with mismanagement of care at nursing homes in Madrid and Barcelona that could have been

avoided, we pick 1% as our benchmark value. 

Since mortality rates are affected by the demographic composition of the population (with COVID-19 mortality rates in- 

creasing sharply with age), we obtained data on age distributions across countries from the U.N. population division. We 

decomposed the Spanish mortality rate by age, given the age-specific measured incidence of infection rates, and applied 

those age-mortality rates to the population shares of each country. To control for differences in life expectancy (and, hence, 

for the possibility that the age-specific mortality rate of an 80-year-old individual in a high life-expectancy country is equiv- 

alent to the age-specific mortality rate of a 70-year-old individual in a low life-expectancy country), we applied a correction 

based on the ratio of the life expectancy of each country with respect to Spain’s life expectancy. 

We found that, for most of the countries in our sample, the estimated mortality rate clusters around 1% (with or without

the correction for life expectancy). For example, for the U.S., we found a death rate of 0.76% without correcting for life

expectancy and 1.05% correcting for it. Therefore, and parsimoniously, we selected 1% as our baseline parameter value. 

Other studies suggest similar values of δ. For instance, on April 23, 2020, Governor Andrew Cuomo announced prelim- 

inary results suggesting that 21% of New York City residents randomly tested from supermarkets and big-box stores had 

antibodies for COVID-19. According to the New York Department of Health (2020) , it takes 3-4 weeks for these antibodies to

form, so this suggests that around April 1, 21% of NYC residents were “ever infected.” This infection rate is consistent with

back-of-the-envelope calculations of death rates of around 0.8%-1.2%. Thus, we will report robustness results using death 

rates of 0.8% and 1.2%. 6 

Data Our data are taken from the GitHub repository of Johns Hopkins University CSSE (2020) , which reports cumulative

death numbers daily for countries, states, counties, and provinces throughout the world. The exception is for the interna- 

tional cities/regions of Lombardy, London, Madrid, Stockholm, and Paris. We obtain data for these locations from the various 

national vital statistics agencies. 

Our sample for the results reported in this paper goes from the start of the epidemic until May 19, 2020. By the end

of May, the first wave of the epidemic was over in many countries. When deaths are close to zero, our procedure often

delivers negative values of R 0 t : for example, small random changes from 1 death to 2 deaths a day imply second and third

differences of the daily deaths that the standard SIRD model cannot rationalize. Also, our simple approach would need to 

be enriched to account for the repeated waves that arrived after the summer of 2020. This was done in follow-up research

by one of us in Arias et al. (2021) . Nonetheless, our online dashboard reports data extended until October 9, 2020. 

We manipulate the data in three important ways before feeding them into the model. First, on April 15, 2020, New

York City added more than 3,500 deaths to its counts, increasing the total by more than 43%. We apply this same factor

of proportionality (1.4325) to the deaths before April 15, 2020, to get a consistent time series for New York City. Second,

The Economist (2020) reports that similar adjustments need to be made in other countries. In particular, vital statistics 

records in countries including Spain, Italy, England, France, and Sweden suggest that “excess deaths” relative to an average 
6 Evidence from the second half of 2020 and 2021 suggests that 0.8%-1.0% is a realistic death rate for a country with the age structure of the U.S.. 

However, these death rates incorporate some of the advances in medical protocols for treating patients that appeared after our sample finished. 

6 
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Fig. 1. New York City: Estimates of R 0 t = βt /γ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

over past years exceed deaths officially attributed to COVID-19 by a large margin. Hence, we increase deaths in all non-New

York City locations by 33% for all dates. 7 Finally, there are pronounced “weekend effects” in the raw data: there are days,

often on the weekend or on a holiday, in the middle of the pandemic when a country reports zero deaths, only to make

up for this with a spike in deaths in subsequent days. We initially ran the model with the raw data, and the model works

fine. However, applying a 5-day centered moving average to the data produces more stable results, so we make this final

adjustment. 

Guide to Graphs In the interest of space, we only report a small subset of our results. We invite the reader to check our

detailed results on our online dashboard. In general, we will report cumulative deaths through the latest date, daily deaths 

(data and simulating forward), and cumulative deaths simulating forward. Data are shown as circles or bars, and simulations 

are solid lines. Each graph may have several lines, typically for one of two reasons. In some graphs, we show the simulations

adding data from the last 7 days of our sample. This provides an intuitive assessment of how sensitive the simulations are

to one or two recent observations. In other graphs, we show alternatives for baseline, “high,” and “low” values of certain 

parameters. 

5.1. Baseline estimation results 

Figure 1 shows the estimates of R 0 t = βt /γ for New York City. For the baseline parameter values, the estimates suggest

that New York City began with R 0 = 2 . 7 , so that each infected person passed the disease to nearly three others at the start.

This estimate agrees with other findings and it is particularly plausible for such a high-density metropolitan area as New 

York City. 8 Social distancing is estimated to have reduced this value to below 0.5 by mid-April. After that, R 0 t seems to

fluctuate around 1.0. 

It is worth briefly reviewing the data that allow us to recover R 0 t . As discussed in Section 4 , we invert the SIRD model

and use the death data to recover a time series for R 0 t such that the model fits the death data exactly. This inversion reveals

that R 0 t can be recovered from the daily number of deaths ( d t+1 ), the change in daily deaths ( �d t+2 ), and the change in

the change in daily deaths ( ��d t+3 ). 

Figure 2 shows the data (bars) for daily deaths together with an HP filter of those data (with smoothing parameter 200),

in a solid line. Figure 3 then shows the change in the HP-smoothed daily deaths, while Fig. 4 shows the double difference.

It is these HP-filtered data that are used in the construction of R 0 t in Fig. 1 . Because the HP filter has problems at the end

of the sample (e.g., there are fewer observations so noise becomes more important, and double differencing noise reduces 

precision), the latest estimate of R 0 t we have for each location corresponds to May 9, 2020, even though our death data run

through May 19, 2020: we lose 2 observations for the moving average, 3 observations for the double differencing, and then

truncate by an additional 5 days to improve precision. 
7 Katz and Sanger-Katz (2020) suggest that the excess deaths in New York City could be even larger than the already-adjusted numbers revealed so far: 

they report 20,900 excess deaths by April 26, 2020, compared to 16,673 in the official counts. 
8 For instance, Sanche et al. (2020) estimate an even higher median R 0 value of 5.7 during the start of the epidemic in Wuhan. 
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Fig. 2. New York City: Daily Deaths and HP-Filtered Deaths. 

Fig. 3. New York City: Change in Smoothed Daily Deaths. 

 

 

 

 

 

 

 

 

 

 

 

Our estimation also allows us to recover the fraction of the population that is estimated to be infectious at each date.

These results are shown for New York City in Fig. 5 . For our baseline parameter values, this fraction peaks around April 1,

2020, at 5.7% of the population. By May 9, 2020, it is estimated to have declined to only 0.43% of the population. 

Figure 6 shows the time path of R 0 t for several locations. There is substantial heterogeneity in the starting values, but

they all fall and cluster around 1.0 once the pandemic is underway. By the end of our sample, the values of R 0 for Atlanta

and Stockholm are noticeably greater than 1.0. 

Figure 7 shows the time path of the percentage of the population that is currently infectious, I t /N, for several locations.

The waves crest at different times for different locations, and the peak of infectiousness varies as well. 

Table 1 summarizes these and other results for a broader set of our locations. The full table, together with around 39

pages of graphs for each location, is reported on our dashboard. Now is a good time to make a couple of general remarks

about our estimation. First, as the number of daily deaths declines at the end of a wave –say for Paris, Madrid, and Hubei

in the table– the estimation of R 0 t can become difficult and dominated by noise. In the extreme, for example, once total

deaths are constant, our procedure gives βt = 0 / 0 . One sign of such problems is that “today’s” value of R 0 can fall to equal

0.20 –this is a lower bound that we impose on the estimation. When a location hits this lower bound, our routine ignores
8 
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Fig. 4. New York City: Change in Change in Smoothed Daily Deaths. 

Fig. 5. New York City: Percent of the Population Infectious. 

 

 

 

 

 

 

 

 

subsequent days of results because the model yields inconsistent result (e.g., negative new infectious). The notation “today”

in the table refers to the last day for which we have results. Typically it is May 9, 2020, but in some cases it is earlier. 

Next, we turn to some general comments about the results. First, notice that the initial values for R 0 range from around

1.5 or lower in places like Minnesota, California, Norway, and Mexico to high values of 2.5 or more in major cities throughout

the world. Second, the fraction of the population that is infectious at the peak is greater than 2% in the hardest-hit areas,

but only reaches a maximum of 5.7% in New York City. Third, the fraction that is infectious at the end of the sample is

typically lower. It has fallen below 0.4% in New York City (plus), Lombardy, Madrid, Paris, and Detroit but is greater than

0.7% in places including New Jersey, Stockholm, Philadelphia, and Chicago. It is even lower –below 0.1%– in the SF Bay Area,

Washington state, and Germany. Finally, there is enormous heterogeneity in cumulative deaths per million people (“Total 

(pm) Deaths” in the table), both at the end of the sample and in the forward simulation for 30 days in the future (t+30). 

5.2. Baseline simulations 

Figures 8 , 9 , and 10 show how the model fits the New York City data for three values of δ: 0.01, 0.008, and 0.012. The

main lesson is that the model fits the data very well with each of these parameter values: our procedure just adjusts the
9
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Fig. 6. Estimates of R 0 t = βt /γ . 

Fig. 7. Percent of the Population Infectious. 

 

 

 

 

 

 

 

 

number of infected people to account for the same observed deaths. For example, with δ = 1 . 0% , our model implies that

this number for April 1, 2020, was 17%. This compares very well with the observation that –as of April 20, 2020– about

21% of New York City residents tested positive for antibodies of COVID-19 ( New York Department of Health, 2020 ). Because

antibodies only appear 3 to 4 weeks after infection, these antibody tests really tell us what the ever-infected rate was 3 to

4 weeks earlier. 

The supertitle lines for these three figures also report the “%Infected” at different dates. These are the percentage of 

people who are estimated to have ever been infected with the virus. For New York City, the numbers as of early May

2020 are 26% percent, and then in 30 days they are estimated to equal 27%, with a slightly higher value at the end of our

simulation (the third number). We return in Section 7 to the implications of these high infection rates for herd immunity

and re-opening. Our dashboard reports similar exercises for many other locations. 

5.3. Seven days of simulations 

When we simulate the model for many countries and regions, we find two results. First, once countries or regions reach

the peak and deaths start to decline, the forecasts converge well. Second, however, before that happens, the forecasts are 
10 
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Table 1 

Summary of Results across Locations. 

Total (pm) — R 0 — R 0 · S/N % Infectious Total (pm) 

Deaths, t initial today today peak today Deaths, t + 30 

NYC (only) 2482 2.71 0.77 0.57 5.67% 0.43% 2650 

NYC (plus) 2116 2.60 0.36 0.28 4.85% 0.35% 2238 

Lombardy, Italy 2050 2.51 0.92 0.72 3.50% 0.32% 2236 

New York 1451 2.62 0.68 0.57 3.23% 0.36% 1606 

Madrid, Spain 1782 2.58 0.20 0.15 3.97% 0.19% 1841 

Detroit 1691 2.43 0.50 0.41 2.88% 0.32% 1841 

New Jersey 1551 2.61 1.11 0.91 2.44% 0.87% 2137 

Stockholm, SWE 1499 2.61 1.17 0.97 2.44% 0.73% 2027 

Boston 1198 2.12 0.72 0.62 2.63% 0.65% 1568 

Paris, France 1003 2.39 0.20 0.01 1.99% 0.17% 1052 

Philadelphia 885 2.46 0.88 0.78 1.68% 0.72% 1291 

Michigan 809 2.35 0.69 0.62 1.37% 0.25% 932 

Spain 786 2.41 0.53 0.49 1.59% 0.12% 844 

Chicago 738 2.17 0.93 0.84 1.10% 1.01% 1144 

D.C. 723 1.99 0.94 0.85 1.28% 0.78% 1105 

Italy 702 2.22 1.01 0.93 1.07% 0.15% 808 

United Kingdom 679 2.37 0.96 0.88 1.16% 0.29% 845 

France 567 2.17 1.15 1.07 1.26% 0.17% 682 

Sweden 486 2.07 0.90 0.84 0.75% 0.39% 661 

Pennsylvania 476 2.06 0.84 0.78 0.89% 0.38% 673 

United States 362 2.02 0.91 0.87 0.52% 0.24% 478 

NY excl. NYC 264 1.98 1.10 1.06 0.39% 0.39% 456 

Miami 275 1.83 0.68 0.66 0.49% 0.23% 354 

U.S. excl. NYC 266 1.77 0.95 0.91 0.37% 0.23% 378 

Mississippi 239 1.61 0.93 0.89 0.48% 0.26% 369 

Los Angeles 192 1.62 1.01 0.98 0.31% 0.20% 294 

Minnesota 193 1.54 0.83 0.80 0.36% 0.25% 291 

Atlanta 183 1.81 1.46 1.42 0.24% 0.18% 378 

Iowa 178 1.44 0.89 0.86 0.35% 0.34% 307 

Washington 177 1.56 0.32 0.31 0.26% 0.08% 199 

Virginia 170 1.91 0.80 0.77 0.40% 0.16% 230 

Germany 127 1.66 0.20 0.18 0.21% 0.04% 135 

California 110 1.45 1.04 1.02 0.16% 0.13% 174 

Brazil 102 1.26 1.13 1.10 0.28% 0.28% 240 

Hubei, China 101 1.40 0.20 0.01 0.23% 0.08% 102 

SF Bay Area 77 1.26 0.98 0.97 0.12% 0.04% 97 

Mexico 54 1.31 1.12 1.10 0.15% 0.15% 128 

Norway 57 1.57 0.20 0.11 0.12% 0.04% 55 

Fig. 8. New York City: Cumulative Deaths per Million People ( δ = 1 . 0% / 0 . 8% / 1 . 2% ). 
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Table 2 

Why Random Testing Would Be So Valuable. 

— Percent Ever Infected (today) —

δ = 0 . 5% δ = 1 . 0% δ = 1 . 2% 

New York City (only) 51 26 22 

New York City (plus) 44 22 19 

Lombardy, Italy 43 22 19 

New York 31 16 13 

Madrid, Spain 36 18 15 

Detroit 36 18 15 

New Jersey 37 19 16 

Stockholm, Sweden 36 18 15 

Connecticut 33 17 14 

Boston + Middlesex 29 15 12 

Massachusetts 29 15 12 

Paris, France 21 11 9 

Philadelphia 23 12 10 

Michigan 18 9 8 

Spain 17 8 7 

Chicago 21 11 9 

District of Columbia 20 10 8 

Italy 15 8 7 

United Kingdom 16 8 7 

France 13 6 5 

Illinois 13 7 6 

Sweden 12 6 5 

Pennsylvania 12 6 5 

United States 9 5 4 

New York excluding NYC 8 4 3 

Miami 7 3 3 

U.S. excluding NYC 7 4 3 

Ecuador 6 3 3 

Los Angeles 5 3 2 

Minnesota 5 3 2 

Atlanta 5 3 2 

Iowa 6 3 2 

Florida 3 2 1 

Germany 3 1 1 

California 3 2 1 

Brazil 4 2 2 

Mexico 2 1 1 

Norway 1 1 0 

Fig. 9. New York City: Daily Deaths per Million People ( δ = 1 . 0% / 0 . 8% / 1 . 2% ). 
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Fig. 10. New York City: Cumulative Deaths per Million (Future, δ = 1 . 0% / 0 . 8% / 1 . 2% ). 

Fig. 11. New York City (7 days): Daily Deaths per Million People. 

 

 

 

 

 

 

very noisy. This makes sense: we are trying to forecast 30 to 60 days into the future based on 3 to 4 weeks of data using a

very nonlinear model. 

We illustrate these points with the next two figures, Figs. 11 and 12 , which show results at the end of our sample for New

York City, now broadly defined to include the surrounding counties of Nassau, Rockland, Suffolk, and Westchester (which we 

call “New York City (plus)” in the graphs). In each figure, we see seven lines of forecasted daily and cumulative deaths. Each

line corresponds to the forecast using one more day of observations. In both figures, the more recent observations push the

forecast down (i.e., the top lines use fewer observations) and lowers its variance from day to day. This convergence of the

forecast reflects how the first wave of COVID-19 was winding down in New York by late May 2020. 

Recall the role of the α feedback parameter. In the baseline simulation results, we assume R 0 t = Constant · e −αd t where 

α = 0 . 05 . This implies that if daily deaths rise, people adjust their behavior to reduce contacts, which reduces R 0 t . Con-

versely, if daily deaths fall, people are more likely to go out and interact, which raises R 0 t . 
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Fig. 12. New York City (7 days): Cumulative Deaths per Million (Future). 

Fig. 13. New York City (plus): Daily Deaths per Million People. 

 

 

 

 

 

 

 

 

6. Problems with geographic aggregation 

A point that is important to appreciate is that aggregating up from the city or county to the state and to the national

level can be misleading. SIRD is a nonlinear model, so the results at the state level are not the same as the average of the

results at the county level. 

This point is easy to illustrate using data from New York. We report results for several different geographic regions. “New

York City (plus)” includes New York City plus the four surrounding counties of Nassau, Rockland, Suffolk, and Westchester, 

with a total population of about 12 million. New York state is self-explanatory and has a population of about 20 million.

And “New York excluding NYC” is the difference between these other two: New York state excluding the NYC (plus) area, 

with a population of about 8 million. 

Now compare the results for these three regions, shown in Figs. 13–15 . The results in New York state as a whole are

driven entirely by New York City. For example, imagine (counterfactually) that there were no deaths outside of New York 

City. In this hypothetical case, deaths per million for New York state would look exactly like deaths per million for New York

City, except scaled down by a factor of 12/20. Because of the lower deaths per million, the model would behave slightly

differently. And yet New York outside of New York City could look very different. In fact, as the deaths in New York City
14 
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Table 3 

Using Percent Susceptible to Estimate Herd Immunity, δ = 1 . 0% . 

Percent R 0 (t+30) Percent 

Susceptible with no way back 

R 0 R 0 t t + 30 outbreak to normal 

New York City (only) 2.7 0.8 73.5 1.4 30.3 

New York City (plus) 2.6 0.4 77.5 1.3 41.5 

Lombardy, Italy 2.5 0.9 77.5 1.3 23.4 

New York 2.6 0.7 83.8 1.2 26.4 

Madrid, Spain 2.6 0.2 81.5 1.2 43.2 

Detroit 2.4 0.5 81.6 1.2 37.6 

New Jersey 2.6 1.1 78.3 1.3 11.4 

Stockholm, Sweden 2.6 1.2 78.3 1.3 7.2 

Boston + Middlesex 2.1 0.7 84.9 1.2 32.9 

Massachusetts 2.1 1.0 83.3 1.2 21.3 

Paris, France 2.4 0.2 89.4 1.1 42.0 

Philadelphia 2.5 0.9 87.2 1.1 17.0 

Michigan 2.4 0.7 90.6 1.1 25.0 

Spain 2.4 0.5 91.5 1.1 29.8 

Chicago 2.2 0.9 87.0 1.1 18.0 

District of Columbia 2.0 0.9 87.9 1.1 19.0 

Italy 2.2 1.0 91.5 1.1 6.8 

United Kingdom 2.4 1.0 91.0 1.1 10.0 

France 2.2 1.1 91.9 1.1 -6.0 

Illinois 2.0 0.9 91.2 1.1 15.3 

Sweden 2.1 0.9 92.7 1.1 15.2 

Pennsylvania 2.1 0.8 93.0 1.1 19.5 

United States 2.0 0.9 94.7 1.1 13.1 

New York excluding NYC 2.0 1.1 92.8 1.1 -2.3 

Miami 1.8 0.7 96.3 1.0 31.0 

U.S. excluding NYC 1.8 0.9 95.6 1.0 11.8 

Ecuador 1.5 0.8 95.7 1.0 30.8 

Los Angeles 1.6 1.0 96.2 1.0 5.4 

Minnesota 1.5 0.8 96.7 1.0 28.7 

Atlanta 1.8 1.5 86.2 1.2 -84.9 

Iowa 1.4 0.9 96.1 1.0 27.2 

Washington 1.6 0.3 98.0 1.0 56.3 

Florida 1.6 0.9 98.0 1.0 15.3 

Germany 1.7 0.2 98.6 1.0 55.8 

California 1.5 1.0 97.5 1.0 -3.4 

Brazil 1.3 1.1 95.0 1.1 -54.7 

SF Bay Area 1.3 1.0 98.8 1.0 10.3 

Mexico 1.3 1.1 97.3 1.0 -45.8 

Norway 1.6 0.2 99.4 1.0 58.9 

Fig. 14. New York State: Daily Deaths per Million People. 
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Table 4 

Herd Immunity with a Much Lower Death Rate, δ = 0 . 5% . 

Percent R 0 (t+30) Percent 

Susceptible with no way back 

R 0 R 0 t t + 30 outbreak to normal 

New York City (only) 2.7 1.6 46.6 2.1 51.1 

New York City (plus) 2.6 0.7 56.1 1.8 56.6 

Lombardy, Italy 2.5 1.5 54.4 1.8 30.6 

New York 2.6 1.0 67.5 1.5 28.1 

Madrid, Spain 2.6 0.3 64.1 1.6 55.9 

Detroit 2.4 1.0 63.5 1.6 41.3 

New Jersey 2.6 1.9 49.1 2.0 20.1 

Stockholm, Sweden 2.6 1.8 52.1 1.9 11.6 

Boston + Middlesex 2.1 1.4 61.8 1.6 33.7 

Massachusetts 2.1 1.5 58.9 1.7 37.2 

Paris, France 2.4 0.3 79.3 1.3 46.5 

Philadelphia 2.5 1.3 66.9 1.5 13.2 

Michigan 2.4 0.9 80.8 1.2 22.1 

Spain 2.4 0.6 83.3 1.2 31.5 

Chicago 2.2 1.1 71.3 1.4 30.1 

District of Columbia 2.0 1.2 72.0 1.4 26.7 

Italy 2.2 1.2 82.7 1.2 4.6 

United Kingdom 2.4 1.2 80.8 1.2 7.2 

France 2.2 1.2 84.3 1.2 -5.7 

Illinois 2.0 1.0 81.4 1.2 21.7 

Sweden 2.1 1.0 84.6 1.2 16.1 

Pennsylvania 2.1 1.1 83.4 1.2 12.5 

United States 2.0 1.0 89.0 1.1 11.8 

New York excluding NYC 2.0 1.1 87.7 1.1 6.7 

Miami 1.8 0.8 92.4 1.1 29.8 

U.S. excluding NYC 1.8 1.0 90.8 1.1 11.2 

Ecuador 1.5 0.9 91.2 1.1 36.1 

Los Angeles 1.6 1.0 92.4 1.1 6.7 

Minnesota 1.5 0.9 93.1 1.1 28.5 

Atlanta 1.8 1.4 87.5 1.1 -77.7 

Iowa 1.4 0.9 92.2 1.1 33.9 

Washington 1.6 0.3 96.0 1.0 57.4 

Florida 1.6 1.0 96.0 1.0 14.1 

Germany 1.7 0.2 97.3 1.0 56.5 

California 1.5 1.0 95.3 1.0 0.7 

Brazil 1.3 1.1 92.5 1.1 4.4 

SF Bay Area 1.3 1.0 97.7 1.0 11.0 

Mexico 1.3 1.1 95.7 1.0 -17.4 

Norway 1.6 0.2 98.9 1.0 58.9 

Fig. 15. New York excluding NYC: Daily Deaths per Million People. 
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decline, a potential rise in deaths outside of New York City could cause the state death numbers to exhibit a flattening or

even a second peak. 

Another version of this same kind of geographic aggregation bias seems likely to occur for the United States itself. To see

this, imagine 50 states that sequentially pass through the peak of daily deaths. The U.S. national number can be driven by

New York (City!) for the first several weeks, then by New Jersey and Michigan, and then by Massachusetts and Pennsylvania.

The U.S. graph may show a rise and then a very flat profile of deaths that persists for a long time before declining, as new

regions within the country suffer through their peaks sequentially. 

7. Herd immunity and re-opening the economy 

An important question at any stage of a pandemic is when to re-open the economy. The estimation we have conducted

has something helpful to contribute to this point. 

First, Table 2 reports the estimated fraction of the population that had ever been infected as of May 9, 2020, for different

countries and regions. Numbers for three different values of δ are also reported, with the baseline case of δ = 1 . 0% in the

center column. Two key things stand out in the table. First, consider the baseline. As we discussed above, we estimate that

26% of New York City had ever been infected by late May 2020. 

In contrast, only 4% of people in New York state outside of New York City and only 2% of Californians have ever been

infected. There is enormous heterogeneity in ever-infected rates. Where do these numbers come from? In our model, the 

fraction δ of those infected eventually die, with the timing determined by γ and θ , but essentially suggesting that deaths 

at time t reflect infections from 15 days earlier. With an assumed death rate of δ = 1 . 0% , for each death, there are approx-

imately 100 other people who have been infected. The large differences in the number of deaths per million in New York

versus California then translate into these differences in infection rates. Interestingly, rates in Norway and South Korea are 

similarly very low, while ever-infected rates in Italy, Spain, and France are estimated to be around 6 to 8%. 

The second point is that these numbers are –in an obvious way– very sensitive to the assumed value of δ. If you double

the death rate, you (roughly) halve the ever-infected rate. If you halve the death rate, you (roughly) double the infected rate.

And as we discuss in more detail next, in thinking about herd immunity and re-opening the economy, knowing the fraction

ever-infected is crucial, at least under the important assumption that antibodies give rise to immunity for an extended 

period of time. 

There is an important complementarity here. We would like the death rate to be low, not just because it means that

fewer people die, but also because it means that lots of people will already have been infected. For example, if the true

death rate is 5 in 10 0 0 rather than 10 in 10 0 0, it means that 51% of New Yorkers had already been infected and the herd

immunity effects would be very strong. In this sense, the finding that only 21% of New York City was ever infected as of

April 1, 2020, was doubly bad news: it pushes up the death rate and means we are far from herd immunity, even in the

place with the largest number of infections. 

As Atkeson (2020) , Stock (2020) , and others have emphasized, random testing would have been extremely helpful in 

identifying which of these cases was relevant. Moreover, the table suggests that it was much more important to test in New

York City than in California. So few people were likely infected in California that it would have been very hard to distinguish

statistically between the different death rates, whereas even a few thousand random tests would have been very informative 

in New York City. This is a crucial point to remember for future epidemics. 

7.1. How far can we relax social distancing? 

This brings us to the next reason why knowing the percentage ever infected would be so useful. The complement of

this number is the percentage of the population that is still susceptible to the virus at any given moment in time. Call this

fraction s (t) ≡ S(t) /N (or better might be S(t ) / (N − D (t )) but D (t) is so low that it makes no difference). 9 

Recall from the basic SIR model that the virus will die out as long as R 0 (t) s (t) < 1 , that is, if R 0 t ≡ βt /γ is smaller than

1 /s (t) . The term s (t) is herd immunity. The fewer people who are susceptible and the more people who are recovered and 

hence immune, the less our random interactions result in infections. In particular, we can relax social distancing –increase 

βt and R 0 t – to the critical value such that R 0 t s (t) is just below one. That would mean that infected people infect fewer

than one person on average, so herd immunity keeps the virus from re-surging. 

Table 3 shows these calculations for one month from the end of our sample ( t + 30 ) given the baseline estimates from

the model. For example, from the middle column, it is estimated that at t + 30 , 78% of New York City (plus surrounding

counties) would have still been susceptible. This means we could relax social distancing to the point where R 0 would rise

to 1 / 0 . 78 = 1 . 3 . This compares to the estimate for New York City at the end of the sample of 0.4 and the initial estimate of

2.6. In other words, New York City could move 41% ([1.3-0.4]/[2.6-0.4]) of the way back to normal and see no resurgence of

the virus ( Table 4 ). 

The rest of the state of New York, in contrast, is estimated to still have had 93% of the population susceptible a month

from the end of our sample. So outside of the city, New York needed to maintain its R at 1.1 –also its level at the end of
0 

9 Notice, however, that our very stylized SIRD model is silent about how you map concrete policy decisions (i.e., should we o should we not open 

non-essential businesses) into changes in R 0 t . 
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our sample– to keep the virus from spreading. New York City and the rest of New York state needed different policies if the

fraction of the population that remains susceptible was as different as these estimates imply. 10 

Places with values of R 0 < 1 could have relaxed somewhat and still have kept the virus in check. But the basic news

from this table is that with a death rate of 1%, there was very little accumulated herd immunity and that our scope for

relaxing social distancing was limited (as shown by the later waves of the epidemic). 

Finally, note that the SIRD model has “momentum.” Even if an area has reached the threshold R 0 (t) s (t) < 1 , we will

continue to accumulate infections and deaths before the epidemic dies out fully. The number of these “overshoot” infections 

and deaths will depend on the number of infectious individuals when we reach R 0 (t) s (t) < 1 . This observation is not a

minor point. In a conventional SIRD model where R 0 (t) gives you herd immunity at 60% of the population, if we reach

s (t) = 0 . 4 too fast, we can end up with over 90% of the population ever infected, that is, with an extra 30% of infections

over those required to achieve herd immunity. 

This means that we want to reach the threshold R 0 (t) s (t) < 1 or stay around it with very few infectious individuals to

minimize “overshoot” infections. While setting up and solving an optimal control problem of the COVID-19 epidemic in the 

tradition of Morton and Wickwire (1974) to get to such an objective is beyond the scope of our paper, our empirical results

can help to calibrate re-opening scenarios such as those quantitatively explored in Baqaee et al. (2020) . 

8. Conclusions 

Our paper has presented a fast procedure to estimate a SIRD model with limited data. This exercise is particularly useful

at the start of an epidemic, when a fast policy response is required and we cannot wait for months to implement more

sophisticated econometric methods such as those in Arias et al. (2021) . 

Relative to the standard SIRD model in the literature, we include a time-varying β , and therefore a time-varying R 0 . We

invert the SIRD model to back out the daily values of R 0 t that fit the death data. We see this as important for capturing

behavioral changes by individuals in response to the pandemic as well as policy changes related to social distancing. We 

also include an additional “recovering” state that is consistent with the medical evidence that cases seem to be infectious 

for four to five days while taking a total of several weeks or more to resolve. These changes better connect the model

to the epidemiology of the virus and are important in improving the model’s ability to fit the data. Finally, we follow

Cochrane (2020) and include feedback between R 0 t and daily deaths in modeling the future of the epidemic. We hope that

our empirical estimates will prove useful to others in thinking about the possible path that COVID-19 may take at different

locations and in analyzimg future epidemics. 
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