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Abstract

We study the term structure of yield spreads between 
oating-rate and �xed-
rate notes of the same credit quality and maturity. Floating-�xed spreads
are theoretically characterized in some practical cases, and quanti�ed in a
simple model, in terms of maturity, credit quality, yield volatility, yield-
spread volatility, correlation between changes in yield spreads and default-
free yields, and other determining variables.
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1 Introduction

We study the term structure of yield spreads between 
oating-rate and �xed-
rate notes of the same credit quality and maturity. Floating-�xed spreads are
theoretically characterized in some practical cases, and quanti�ed in a simple
model, in terms of maturity, credit quality, yield volatility, correlation be-
tween changes in yield spreads and default-free yields, and other determining
variables.

We show that if the issuer's default risk is risk-neutrally independent
of interest rates, then the sign of 
oating-�xed spreads is determined by
the term structure of the risk-free forward rate. For example, if the term
structure of default-free rates is increasing up to some maturity, then spreads
on 
oating-rate debt are larger than spreads on �xed-rate debt. Conversely,
under the same independence assumption, if the default-free term structure
is inverted, then 
oating-rate spreads are smaller than �xed-rate spreads.

Intuitively, if the term structure is upward sloping, investors anticipate
that 
oating-rate coupons are likely to increase with time. Default risk for
a given issuer increases with time, for the issuer cannot survive to time t
unless it also survives to each time s < t. As the higher anticipated coupon
payments of later dates are also the more likely to be lost to default, investors
must be compensated by a 
oating spread that is slightly larger than the
�xed-rate spread.

In terms of magnitude, however, in most practical cases 
oating-�xed
spreads are small, typically a few basis points at most, as will be shown
by example.2 Our persistent queries to market practioners have generated
no examples in which market paricipants make a distinction between par

oating rate spreads and par �xed rate spreads, except for certain cases in
which one of these forms of debt is viewed as \more liquid" than another, an
issue that we do not pursue.

For example, consider an issuer whose credit quality implies a �xed-rate
spread on 5-year par-coupon debt of 100 basis points over the rate on default-

2Previous work on this topic by Cooper and Mello (1988) pointed to di�erences between
�xed- and 
oating-rate spreads that are at least an order of magnitude larger than found
here. One possible explanation is the arti�cial de�nition of a 
oating-rate note used for
illustration by Cooper and Mello. Longsta� and Schwartz (1995) provide some model
results for 
oating- and �xed-rate pricing, but not in a format that would allow a direct
calculation of the spread between 
oating- and �xed-rate debt of the same maturity and
issuer.
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free 5-year par-coupon �xed-rate debt. Suppose changes in credit quality are
not correlated with state prices (in a sense to be made precise). In a typ-
ical upward-sloping term-structure environment, based on the steady-state
behavior of a two-factor CIR model �tted3 to LIBOR swap rates recorded
during the 1990s, 
oating-rate debt of the same credit-quality and maturity
would be issued at a spread of roughly 101 basis points. This is of course
not to say that the issuer should prefer to issue �xed over 
oating debt, but
rather that a slightly higher credit spread is required to compensate investors
paying par for 
oating-rate debt.

As suggested by this example, the magnitude of the 
oating-�xed spread
associated with default risk is suÆciently small that one could safely attribute
any non-trivial di�erences that may exist in actual �xed and 
oating rates
of the same credit quality to institutional di�erences between the �xed-and

oating-rate note markets.

For our model, the 
oating-�xed spread is roughly linear in the issuer's
�xed-rate credit spread, roughly linear in the slope of the yield curve, roughly
linear in the level of the yield curve, and roughly linear in the correlation
between changes in default-free yields and �xed-rate yield spreads. The

oating-�xed spread is non-linear in maturity. There is essentially no depen-
dence in the level of the yield curve, holding slope constant. The 
oating-
�xed spread is greatest at high yield-spread volatility and high correlation
between yield spread and default-free yields.

Our methodology for valuing defaultable debt is that of DuÆe and Single-
ton (1999). Our numerical examples are based on three-factor term-structure
models. Two of the three state variables determine a default-free term struc-
ture model estimated from LIBOR swap data, while the expected default-loss
rate process is based on all three factors, allowing for correlation between
default risk and default-free rates. For purposes of studying the e�ects of
correlation between yields and credit spreads, we move from our multi-factor
CIR setting to a \quadratic-gaussian" credit-spread model.

2 Getting Started

We begin for simplicity in a discrete-time setting. We let �m;n denote the
time-m price of a default-free zero-coupon bond maturing at time n > m.

3The parameters of the model are as estimated by DuÆe and Singleton (1997).
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The one-period default-free 
oating rate coupon c(n) at time n is

c(n) = (�n�1;n)
�1 � 1:

The coupon rate C(N) at time 0 for �xed-rate par-valued default-free debt
maturing at time N is determined by

C(N) =
1� �0;NPN

n=1 �0;n

:

The in-n-for-1 forward rate for maturity n is de�ned by

f(n) =
�0;n�1 � �0;n

�0;n
=

�0;n�1

�0;n
� 1:

We will later use the relationship

NX
n=1

�0;n(f(n)� C(N)) = 0: (1)

We also let �(n) denote the state-price density4 for time-n contingent
claims, so that, for example, �0;n = E[�(n)].

For an issuer of given credit quality, Pye (1974) and, in a setting of
uncertain interest rates and credit quality, DuÆe and Singleton (1999), show
simple conditions under which one may price a defaultable claim by treating
the claim as default-free after an additional discountD0;n =

Qn�1
i=0 (1+s(n))

�1

for contingent cash 
ows at time n, where s(n) � 0 is the (state-dependent)
short default spread, conditional on information at time n.

For example, letting �m;n denote the price at time m of a zero-coupon
bond maturing at time n of the given issuer quality, we have

�0;n = E[D0;n�(n)]:

We adopt this defaultable valuation model here. For simplicity, we assume
that the short default spread s(n) does not vary among the claims of the given
issuer that we consider.5

4We �x a probability space. The existence of a state-price density, a positive random
variable sometimes called a state-price de
ator, or state-price kernel, is implied by the
absence of arbitrage and mild integrability conditions.

5This is an assumption of most reduced-form defaultable valuation models, such as
that of DuÆe and Singleton (1999) or Jarrow and Turnbull (1995).
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The spread k(N) at time zero on defaultable 
oating-rate debt of maturity
N is de�ned by matching to 1 the price of a defaultable note that obliges the
issuer, so long as solvent, to pay c(n) + k(N) at each time n < N , and to
pay 1 + c(N) + k(N) at time N . We then have

k(N) =
1� �0;N �

PN

n=1E[D0;n�(n)c(n)]PN

n=1 �0;n

: (2)

The �xed-rate spreadK(N) on defaultable debt of maturityN is similarly
determined by

K(N) =
1� �0;N � C(N)

PN

n=1�0;nPN

n=1�0;n

: (3)

The di�erence �(N) between the 
oating and �xed spreads is then

�(N) � k(n)�K(N) =

PN

n=1

�
�0;nC(N)� E[�(n)D0;nc(n)]

�
PN

1 �0;n

: (4)

Proposition: Suppose, for all n, that the state-price density �(n) and the
default discount D0;n are uncorrelated. Suppose, moreover, that there exists
some n0 such that f(n) � C(N) for n � n0 and f(n) � C(N) for n <
n0 � N . (It is enough for this that the forward rate f(n) is increasing in
n up to time N .) Then the 
oating-�xed spread �(N) is non-negative. If,
in addition, the short default spread s(n) is greater than 0 with positive
probability for each time n before default, and if f(n) is not constant in n,
then �(N) > 0.

We give a continuous-time version of the proposition, with a proof, in the
appendix. The proof of the above discrete version is similar. The intuition
for the result is given in the introduction. A similar result applies to obtain
a negative �(N) for an \inverted" forward-rate curve.

3 Floating-Rate Debt in an AÆne Setting

In order to work with an econometrically estimated model of the term struc-
ture and to provide for suÆcient analytical tractability, we move to a tra-
ditional continuous-time setting in which there a short-rate process r and a
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\risk-neutral" probability measure Q, de�ned by the property that any con-
tingent claim paying X at some time T has a price at any time t < T given
by

EQ
t

�
exp

�
�

Z T

t

rs ds

�
X

�
;

where EQ
t denotes expectation under Q conditional on information6 available

to investors at time t. For example, the default-free zero-coupon bond price
in this setting is given by

�0;n = EQ
0

�
exp

�
�

Z n

0

rt dt

��
: (5)

DuÆe and Singleton (1999) provide conditions under which, for the is-
suer's given credit quality, there is a default-risk-adjusted short-rate process
R � r such that the price at time t of a defaultable claim to X at time T is
given by

EQ
t

�
exp

�
�

Z T

t

Rs ds

�
X

�
:

That is, one can apply the standard formula for pricing default-free claims
to defaultable claims provided the default-free short rate r is replaced by the
risk-adjusted short rate R. For example, the defaultable zero-coupon bond
price is given by

�0;n = EQ

�
exp

�
�

Z n

0

Rt dt

��
:

The continuous-time analogue of the zero-correlation assumption given
in the above proposition is that the short spread process S = R � r is
independent of r under Q. We extend that proposition in the appendix, and
here will explore cases in which this assumption does not necessarily hold.

In order to tractably value 
oating-rate debt in a 
exible parametric
setting, we work with some \state" process X valued in IRk that (under
Q) is a k-dimensional aÆne jump-di�usion, in the sense of DuÆe and Kan
(1996). That is, X is valued in some appropriate domain D � IRk, with

dXt = �(Xt) dt+ �(Xt) dBt + dJt;
6Underlying the model is a probability space (
;F ; P ) and a �ltration fFt : t � 0g

satisfying the usual conditions, as stated for example in Protter (1990). The probability
measure Q is equivalent to P , and integrability is assumed as required for the analysis
shown. Expectation under Q given Ft is denoted E

Q
t . The short-rate process r is assumed

to be progressively measurable.
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where B is a standard brownian motion in IRd under Q, J is a pure jump
process with jump-arrival intensity under Q of f�(Xt) : t � 0g, and with
a jump-size distribution under Q of �, on IRk, and where � : D ! [0;1),
� : D ! IRk; and � � (��>) : D ! IRk�d are aÆne functions.7 We
delete time dependencies in the coeÆcients for notational simplicity only; the
approach outlined below extends to the case of time-dependent coeÆcients
in a stragihtforward manner.

A classical special case is the \multi-factor CIR state process" X valued
in D = IRk

+, for which X(1); X(2); : : : ; X(k) are Q-independent processes of
the \square-root" type8 introduced into term-structure modeling by Cox,
Ingersoll, and Ross (1985).

We can take advantage of the aÆne setting for pricing defaultable 
oating-
rate and �xed-rate debt if we suppose that the default-adjusted short rate
process R of a given issuer is of the aÆne form, in that

R(t) = A+B �X(t); (6)

where A is a real number and B 2 IRk. For analytical approaches based
on the aÆne structure just described, one can repeatedly use the following
calculation, regularity conditions for which are provided by Proposition 1 of
DuÆe, Pan, and Singleton (1999). For given times t and s > t, and given
coeÆcients a 2 IR and b 2 IRk, let

g(Xt; t) = EQ

�
exp

�Z s

t

�R(u) du

�
ea+b�X(s)

���� Xt

�
: (7)

Under technical conditions, there are ordinary di�erential equations (ODEs)

7This is made precise by de�ning the generator D for X , by

Df(x) = fx(x)�(x) +
1

2

X
ij

�ij(x)fxi xj
(x) + �(x)

Z
[f(x+ z)� f(x)] d�(z);

for any C2 function f with compact support. One may add time dependencies to these
coeÆcients. Conditions must be imposed for existence and uniqueness of solutions, as
indicated by DuÆe and Kan (1996). Generalizations are discussed in DuÆe, Pan, and
Singleton(1999).

8That is,

dX
(i)
t = �i(xi �X

(i)
t ) dt+ �i

q
X

(i)
t dB

(i)
t ;

for some given constants �i > 0, xi > 0, and �i.
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for � : [0; s]! IR and � : [0; s]! IRk such that

g(x; t) = exp (�(t) + �(t) � x) ; (8)

with boundary conditions �(s) = a and �(s) = b. Provided the Laplace
transform of the distribution of the jump size of X is given explicitly, the
ODEs for � and � are easily and routinely solved by numerical methods such
as Runge-Kutta. Details, with illustrative numerical examples and empirical
applications, can be obtained in DuÆe, Pan, and Singleton (1999). For the
special multi-factor CIR case, explicit closed-form solutions for � and � can
be deduced from Cox, Ingersoll, and Ross (1985).

Now, suppose there is a reference discrete-tenor 
oating rate, such as
LIBOR (the London Interbank O�ering Rate), on which an individual issuer's

oating-rate payments are based. For an inter-coupon time interval of length
Æ, such as one-half year, the reference rate L(t) paid at time t on 
oating rate
loans is the simple rate of interest set at time t� Æ for loans maturing at t,
de�ned by the fact that the price pL(t�Æ; t) of a zero-coupon reference-quality
bond sold at time t� Æ for maturity at time t satis�es

1 + L(t) =
1

pL(t� Æ; t)
: (9)

(We emphasize that L(t) is set at time t � Æ and paid at time t.) If the
default risk of an issuer of the reference (say LIBOR) quality is captured by
a default-adjusted short-rate process of the form RL = AL + BL �X, where
AL 2 IR and BL 2 IRk are �xed for simplicity, then

pL(t; s) = EQ

�
exp

�Z s

t

�RL(u) du

� ���� Xt

�
: (10)

Under the technical regularity conditions of DuÆe, Pan, and Singleton (1999),
Proposition 1, from (8) we have

pL(t� Æ; t) = e�L+�L�X(t�Æ);

for �xed coeÆcients �L and �L that are easily calculated. Then, from (9),

L(t) = e��L��L�X(t�Æ) � 1: (11)

Now, consider a non-reference issuer with default-adjusted short-rate pro-
cess R = A+B �X. Let V (t; Æ;K; n) denote the price at time t of a 
oating-
rate note, of the same inter-coupon period Æ as that of the reference rate L,
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with spread K to the reference 
oating rate, and with a time to maturity
of nÆ, for some integer number n � 1 of coupon periods. This 
oating-rate
note is a defaultable claim to a total coupon payment of L(t + Æj) + K at
coupon date t + Æj, for each j � n, and a claim to the principal of 1 at the
n-th (maturity) coupon date. We therefore have

V (t; Æ;K; n) = p(t; t+ nÆ) +
nX
j=1

q(t; t+ jÆ); (12)

where, for any s,

p(t; s) = EQ

�
exp

�Z s

t

�R(u) du

� ���� Xt

�

is the market value of a zero-coupon bond of this quality to maturity date s,
and

q(t; t+ jÆ) = EQ

�
exp

�Z t+jÆ

t

�R(u) du

�
[L(t + jÆ) +K]

���� Xt

�
(13)

is the market value at time t of the j-th 
oating-rate coupon.
We now show how to calculate p(t; s) and q(t; s) for any s, thereby pro-

viding a calculation of the value V (t; Æ;K; n) of the 
oating-rate note. From
(7)-(8),

p(t; s) = ec(s�t)+C(s�t)�X(t);

for some coeÆcients c(s � t) 2 IR and C(s � t) 2 IRd that depend only on
s� t. Substituting (11) into (13),

q(t; s) = (K � 1)p(t; s) + u(t; s)

where

u(t; s) = EQ

�
exp

�Z s

t

�R(u) du

�
e��L��L�X(s�Æ)

���� Xt

�
:

Now, by the law of iterated expectations,

u(t; s) = EQ

�
e
R
s�Æ

t
�R(u) duEQ

�
e
R
s

s�Æ
�R(u) due��L��L�X(s�Æ)

���� Xs�Æ

� ���� Xt

�
:
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Because

EQ

�
e
R
s

s�Æ
�R(u) due��L��L�X(s�Æ)

���� Xs�Æ

�
= e��L��L�X(s�Æ)p(s� Æ; s)

= ec(Æ)��L+(C(Æ)��L)�X(s�Æ);

another application of (7)-(8), again under the technical conditions of DuÆe,
Pan, and Singleton (1999), Proposition 1, implies that we can calculate new
coeÆcients ~�(t; s) and ~�(t; s) so that

u(t; s) = e~�(t;s)+
~�(t;s)�X(t):

Thus,

q(t; s) = (K � 1)ec(s�t)+C(s�t)�X(t) + e~�(t;s)+
~�(t;s)�X(t): (14)

Finally, both p(t; s) and q(t; s) are explicit (and easily calculated), and we
have V (t; Æ;K; n) from (12). The par-
oating rate spread at time t for a time
to maturity of nÆ is that spread K with the property that V (t; Æ;K; n) = 1.
That spread is normally expressed at the annualized rate K=Æ.

4 Computational Examples

In this section, we give a concrete example. The state processX = (X1; X2; X3)
0

is made up of 3 independent \CIR" processes. That is, for each i,

dXit = (�i�i � (�i + �i)Xit) dt+ �i
p
Xit dWit;

for given coeÆcients �i; �i; �i; and �i, where W = (W1;W2;W3) is standard
Brownian motion in R3 under9 Q. We assume that

r = X1 +X2 � �y;

and show in Table 1 estimates of the coeÆcients �i, �i, �i and �i for i 2 f1; 2g
that were estimated from LIBOR swap data at several maturities by DuÆe

9The risk-premium coeÆcients �1, �2, and �3 can be used to determine the behavior
under the original probability measure P , as in the conventional model of Cox, Ingersoll,
and Ross (1985), but we have no need for that here.
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Table 1: Parameters of the Model for Risk-Free Term Structure

�1 �1 �1 �1

0.544 0.374 0.023 {0.036

�2 �2 �2 �2

0.003 0.258 0.019 {0.004

and Singleton (1997) (The coeÆcient �y was estimated to be 0.58). As for the
short-spread process, we assume that

S = 
1X1 + 
2X2 + 
3X3;

where 
1, 
2, and 
3 are coeÆcients that we adjust, along with the coeÆcients
and initial condition of X3, in order to obtain various alternative credit-
spread behaviors.

As all zero-coupon default yields and yield spreads are in closed form for
this model, we can easily set up the model for given10

� 3-month zero-coupon yield (base case 10 percent).

� 10-year yield minus 3-month yield (\slope") (base case 1.5 percent).

� 5-year credit spread, the di�erence between the 5-year zero-coupon de-
faultable yield and the 5-year zero-coupon default-free yield (base case
100 basis points).

� Conditional volatility of 5-year credit spread (base case 48 %).

For the CIR model, one can compute par defaultable �xed and 
oating
rate spreads explicitly, as shown in an appendix. For the calculations that
follow, we have taken �xed and 
oating coupon payments to be made contin-
uously in time, so as to simplify the calculations, as shown in an appendix.
Our numerical results are roughly the same as for discrete coupon payments,
except for maturities close to zero. For these results, we have kept to the
base-case parameters described above, with the exception of the parameter
whose level is varied in each case.

10The base case parameters for S are 
1 = 0:005, 
2 = 0:01, 
3 = 1,�3 = 0, �3 = 0:01,
�3 = 0:005, �3 = 0:0015. We adjust X3(0) for the desired 5-year zero-coupon yield spread.
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Figure 1 shows the relation between maturity and the di�erential (
oating-
�xed) spread. As maturity goes to zero, the defaultable �xed and 
oating
spreads of course both approach the di�erence between the default-adjusted
short rate Rt and risk-free short rate rt, so the 
oating-�xed spread ap-
proaches zero. The long-maturity behavior in the �gure is determined essen-
tially by the shape of the default-free yield curve.

Figure 2 shows the dependence of the 
oating-�xed spread on the slope
of the yield curve. For changes in the level of the yield curve of up to
15%, holding slope constant, there is at most a 0.05 basis-point impact on
the 
oating-�xed spread. Figure 3 shows the dependence, which is close to
linear, on the 5-year zero-coupon yield spread of the issuer.

CIR models, in fact even general aÆne aÆne term-structure models of the
sort introduced by DuÆe and Kan (1996), have limited 
exibility with regard
to the correlation between yield spread and default-free yield. For example,
it appears that one cannot have this correlation negative, within this class,
while guaranteeing that yields and yield spreads remain positive. In order
to explore the implications of negative correlation for 
oating-�xed spreads,
and only for that purpose, we therefore use a \Quadratic-Gaussian" term-
structure model suggested by El Karoui, Myneni and Viswanathan (1992).
We take

rt = Y 2
1t + Y 2

2t � �y

and
St = Y 2

3t;

where the state process Y = (Y1; Y2; Y3)
0 is of the Ornstein-Uhlenbeck form

dYt = (� �BYt) dt+ � dWt;

where B is a diagonal 3� 3 matrix, � is a vector in R3 ; and

� =

0
@ �1 0 0

0 �2 0

�1�3 �2�3
p
1� �21 � �22�3

1
A ; (15)

for given �i and �i. For this model, zero-coupon yields and yield spreads of
maturity t are of the form

P
i[�0(t)+�1i(t)Yi(0)+�2i(t)Yi(0)

2], for �ji(t) (for
j = 0; 1; 2 and i = 1; 2; 3) solving ordinary di�erential Riccati equations in t

12



that are shown in an appendix.11

Figure 4 shows the relative impact of di�erential spread of the correlation
between credit spread and changes in the default-free yields. Increasing the
correlation between changes in the risk-free term structure and default risk
implies that, conditional on the event that the payment on 
oating debt
is high, the probability of default is high. The 
oating spread is therefore
increasing relatively to �xed, intuitively, in this correlation. This e�ect is
indicated in Figure 4, which also shows that the magnitude of the e�ect,
unsurprisingly, grows with the volatility of the default spreads and default-
free term structure. For example, increasing the correlation from 0 to 0.4
increases the 
oating-�xed spread by 6% of its base-case level, or by 22% of
its base-case level if the volatilities are also doubled. Our result is consistent
with that of Longsta� and Schwartz (1995), who �nd that the correlation
between default risk and the default-free interest rates has a signi�cant e�ect
on the properties of both 
oating and �xed spreads.

11The base-case parameters are �1 = 0:165, B1 = 0:504, �1 = 0:07, �2 = 0:0001, B2 =
0:001, �2 = 0:001, �3 = 0:01, B3 = 0:5, �3 = 0:05, and �1 = �2 = 0. These parameters
are chosen so as to match by \calibration" to our base-case CIR model. Since Y 2

i behaves
approximately like Xi, we choose �i for Yi to be half of the �i for Xi, Bi = �i + �i,
�i=Bi = (�i�i=(�i + �i))

2, and Yi(0) =
p
Xi(0).
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Figure 1: Di�erential spread as a function of maturity.
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Figure 2: Di�erential spread as a function of slope of yield curve.
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Figure 3: Di�erential spread as a function of default spread.

16



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−25

−20

−15

−10

−5

0

5

10

15

20

25

%
Im
p
ac
t
of
co
rr
el
at
io
n
on
d
i�
er
en
ti
al
sp
re
ad
(b
as
is
p
oi
n
ts
)

Correlation between 3-month yield and 5-year yield spread
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spread at zero correlation, at the base-case parameters. The dashed line shows the same

e�ect with the di�usion coeÆcients �1, �2, and �3 all doubled.

Figure 4: Di�erential spread as a function of correlation between the yield
and credit spreads.
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Appendix

A. Proof of the Proposition

We assume that both �(t) and f(t) exist, with instantaneous forward rate
f(t) de�ned by

f(t) = �
1

�(t)

d�(t)

dt
: (16)

The coupon rate C(T ) of a par default-free �xed-rate bond of maturity T is
de�ned by

C(T ) =
EQ

h
exp

�
�
R T
0
rs ds

�i

EQ

hR T
0
exp

�
�
R t
0
rs ds

�
dt
i :

We then haveZ T

0

�(t)(f(t)� C(T )) dt = 0: (17)

The 
oating-rate spread k(T ) for maturity T is given by

k(T ) =
1� �(T )� EQ

hR T
0
exp

�
�
R t
0
Rs ds

�
rt dt

i
R T
0
�(t) dt

: (18)

The �xed-rate spread K(T ) is given by

K(T ) =
1� �(T )� EQ

hR T
0
exp

�
�
R t
0
Rs ds

�
C(T ) dt

i
R T
0
�(t) dt

: (19)

The 
oating-�xed spread is then

�(T ) � k(T )�K(T ) =
EQ

hR T
0
exp

�
�
R t
0
Rs ds

�
(C(T )� rt) dt

i
R T
0
�(t) dt

: (20)

Proposition: Suppose there exists t0 such that f(t) � C(T ) for t � t0 and
f(t) � C(T ) for t > t0. (This is true if f is increasing on [0; T ].) If S is
independent of r under the risk-neutral probability measure Q, then �(t) � 0
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for all t � T . If, in addition, f is continuous and not constant on [0; T ] and
S is strictly positive, then �(t) > 0.

Proof: Because r and S are Q-independent,

EQ

�
exp

�
�

Z t

0

(rs + Ss) ds

�
(rt � C(T ))

�

= EQ

�
exp

�
�

Z t

0

rs ds

�
(rt � C(T ))

�
EQ

�
exp

�
�

Z t

0

Ss ds

��
:

(21)

We have

EQ

�
exp

�
�

Z t

0

rs ds

�
(rt � C(T ))

�
= �(t)(f(t)� C(T ))

and

EQ

�Z T

0

exp

�
�

Z t

0

rsds

�
(rt � C(T )) dt

�

=

Z T

0

�(t)(f(t)� C(T )) dt = 0: (22)

Because S � 0,

g(t) � EQ

�
exp

�
�

Z t

0

Ss ds

��

is decreasing in t. It follows that

EQ

�Z T

0

exp

�
�

Z t

0

(rs + Ss) ds

�
(rt � C(T )) dt

�

=

Z T

0

�(t)(f(t)� C)g(t)dt

=

�Z t0

0

+

Z T

t0

�
�(t)(f(t)� C(T ))g(t) dt:

We have assumed that f(t) � C(T ) for t � t0, and because S � 0, we know
that g(t) � g(t0) for t � t0, soZ t0

0

�(t)(f(t)� C(T ))g(t) dt �

Z t0

0

�(t)(f(t)� C(T ))g(t0) dt:
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Because, for t � t0, f(t) � C(T ) and g(t) � g(t0),Z T

t0

�(t)(f(t)� C(T ))g(t) dt �

Z T

t0

�(t)(f(t)� C(T ))g(t0) dt:

We therefore have

EQ

�Z T

0

exp

�
�

Z t

0

(rs + Ss) ds

�
(rt � C(T )) dt

�

�

�Z t0

0

+

Z T

t0

�
�(t)(f(t)� C(T ))g(t0) dt = 0:

If S is strictly positive, then g(t) is strictly decreasing. If, in addition, f(t)
is continuous and not constant, then at least one of the above inequalities is
strict, and we obtain �(T ) > 0.

B. The \Quadratic-Gaussian" Term-Structure Credit-Spread Model

We can write r = Y >�Y and R = Y >�Y , for diagonal12 � and �: We will
use the fact that the defaultable forward rate F (t) satis�es

F (t) = EQ

�
exp

�
�

Z t

0

Rs ds

�
y>t Æyt

�
;

for diagonal Æ. One can show that

�0;t = exp

�
Y >

t U(t)Yt + b(t)>Yt + a(t)

�

and that

F (t) =

�
Y >

t V (t)Yt + d(t)>Yt + c(t)

�
exp

�
a(t) + b(t)>Yt + Y >

t U(t)Yt

�
;

for time-dependent coeÆcients U , V , a, b, c, and d. Substituting the above
expressions into the PDE satis�ed by � and F gives the ordinary di�erential
equations

a0 = �>b +
1

2
b>��>b + tr(��>U)

b0 = �B>b + 2U>� + 2U��>b

U 0 = �(B>U + UB) + 2U��>U � �

12One can introduce terms linear in y and a constant term without any diÆculty.
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and

c0 = �>d+ b>��>d+ Tr(��>V )

d0 = �B>d+ 2V >� + 2(V ��>b + U��>d)

V 0 = �(B>V + V B) + 2(U��>V + V ��>U);

with the initial conditions

a(0) = b(0) = U(0) = c(0) = d(0) = 0 and V (0) = Æ:

(These di�erential equations are solved by Runge-Kutta methods for our
examples.)

In order to compute the correlations between the yields, we use the fact that

E(Yit) = �yit � exp(�Bit)Yi0 +
1

Bi

(1� exp(�Bit))�i;

where Bi denotes the i-th diagonal element of the diagonal matrix B, and

cov(Yt) =

Z t

0

exp(�B(t� s))��> exp(�B(t� s)) ds:

For our special example of �, this covariance matrix cov(Yt) � �Y (t) is
computed as

0
BBBBB@

�21e
�2B1t

2B1
0 �1�1�3(1�e�(B1+B3)t)

B1+B3

0
�22e

�2B2t

2B2

�2�1�3(1�e�(B2+B3)t)
B2+B3

�1�1�3(1�e�(B1+B3)t)
B1+B3

�2�1�3(1�e�(B2+B3)t)
B2+B3

�23(1�e
�2B3t)

2B3

1
CCCCCA
:

Let

w1(t) = Y >

t U(t)Yt + b(t)>Yt + a(t)

w2(t) = Y >

t V (t)Yt + d(t)>Yy + c(t):
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We then have, suppressing t from the notation,

cov(w1; w2) = 2 tr(U�Y V �Y ) + (2U �y + b)>�y(2V �y + d):

This allows the computation of yield correlations, and thus allows us to
\calibrate" coeÆcients to given yield correlations.
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