
Chapter 1

Lempel-Ziv Compression

1.1 Universal Lossless Compression

We first set the benchmark using the performance of an optimal compressor
that knows the source statistics, and construct a universal compression scheme
that doesn’t know the source statistics but is asymptotically optimal.

Consider the problem of compressing a source sequence xn with some source
code. For the sake of brevity, we will consider the most common case that the
source code outputs a binary sequence. Our conclusions carry over to non-binary
alphabets easily.

Definition 1.1.1. A source code for an n-block source sequence, Cn, is defined
as a mapping from a source sequence xn to a binary sequence of finite length,
i.e.

Cn : Xn → {0, 1}∗. (1.1)

More explicitly,

Cn(xn) = b1, b2, · · · , bln , (1.2)

where ln = ln(x
n) is a length of the output sequence which depends on the input

sequence, and bi ∈ {0, 1}, i = 1, · · · , ln.

Definition 1.1.2. A source code Cn for an n-block source sequence is said
to be “lossless”, or “non-singular” [5], if Cn(xn) ̸= Cn(x̃n) for all xn ̸= x̃n.
Furthermore, a source code Cn is said to be uniquely decodable (UD) if all its
extensions, i.e. the concatenations of successive blocks, are still non-singular.

For any random source sequence Xn and any UD source code, we know the
following bounds on the minimum achievable average description length

H(Xn) ≤ min
∀Cn:UD

Eln(Xn) ≤ H(Xn) + 1 (1.3)
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Thus, when we consider a source process X, and look at the average per-symbol
description length, we have

lim
n→∞

min
∀Cn:UD

E
[
1

n
ln(X

n)

]
= lim

n→∞

1

n
H (Xn) (1.4)

, H (X) , (when the limit exists) (1.5)

where H (X) is the entropy rate of the random process X.

Exercise 1.1.3. For a stationary random process X, show that

(a) limn→∞
1
nH (Xn) exists.

(b) limn→∞
1
nH (Xn) is equal to limk→∞ H

(
X0|X−1

−k

)
.

(c) limk→∞ H
(
X0|X−1

−k

)
is also equal to H(X0|X−1

−∞) (only for those who
have taken measure theoretic probability).

Exercise 1.1.3 implies that the limit exists for any stationary random process
X. Furthermore, it is well-known that Huffman code can achieve the minimum
in (1.5). However, such a code strongly depends on the distribution of the source
sequence. What if we do not know the distribution of the source sequence?

Definition 1.1.4. A (sequence of) scheme(s) is universal if

lim
n→∞

E
[
1

n
ln(X

n)

]
= H (X) (1.6)

for every stationary source X.

Clearly, Shannon code and Huffman code do not fall into this category due
to their dependence on the source distribution. Also, note that it is not a priori
clear that to show any such a scheme exists. However, we will see one celebrated
example of such a scheme: the Lempel-Ziv (LZ) compressor. Among various
LZ compression schemes, we will focus, for concreteness, on the version known
as “LZ78”.

1.2 Lempel-Ziv Compression

The main idea of LZ compression is:

• parse the source sequence into phrases such that each phrase is the shortest
phrase not seen earlier (incremental parsing)

• describe (encode) each new phrase by describing the index of the phrase
from the past that forms its prefix and the new symbol at the end of the
phrase.
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Figure 1.1: LZ tree associated with xn

Example 1.2.1. Suppose we want to compress the bit stream

xn : 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 · · · xn

Then, we parse xn into phrases as

xn : 0,1,1 0,1 1,0 1,1 1 0,0 1 0,1 1 0 0,0 · · · xn

Since this operation is basically adding one new symbol to a previously encoun-
tered phrase, it naturally induces the tree in Figure 1.1.

Given the complete parsed phrases, LZ encoding is simply to index the previ-
ously encountered phrase with the additional symbol comprising the new phrase.
Let the index of the empty string be zero. Then, the LZ code for xn is given by

(0,0),(0,1),(2,0),(2,1),(1,1),(4,0),(5,0),(6,0), · · · .

While there are many tweaks that can be applied to boost performance in
practice, we will stay with this basic LZ compression scheme for concreteness
and ease of analysis.

1.3 The Universality of the LZ Compression

Let NLZ = NLZ(x
n) be the number of phrases in the LZ parsing of xn. We can

describe the length of the source sequence n, and the total number of phrases
NLZ with no more than log n and logNLZ bits, respectively. Since the LZ
compressor encodes each phrase with the index of the phrase from the past that
forms its prefix and the new symbol at the end of the phrase, we can describe
xn with a number of bits per source symbol no larger than

1

n
[log(n) +NLZ(logNLZ + 1)]

=
1

n
NLZ logNLZ + o(1), (1.7)

where we use the fact that NLZ ≤ n
(1−ϵn) logn where ϵn → 0 as n → ∞ [5].
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Definition 1.3.1. A “Markov Kernel” of order k is a mapping

Q : X k → M(X ),

where M(X ) is the simplex of probabilities on X .

This Q corresponds to a Markov source of order k. We write

Q(xn|x0
−(k−1)) = Πn

i=1Q(xi|xi−1
i−k). (1.8)

Let Mk denote the class of all Markov kernels of order k.

Theorem 1.3.2. For ∀n, k, and any individual sequence xn
−(k−1)

1

n
NLZ(x

n) logNLZ(x
n) ≤ min

Q∈Mk

1

n
log

(
1

Q(xn|x0
−(k−1))

)
+ ϵ(k)n , (1.9)

where ϵ
(k)
n is independent of the underlyng sequence xn, and satisfies ϵ

(k)
n

n→∞−→ 0.

Before proving Theorem 1.3.2, we state and prove the main result about the
LZ’s universality in the stochastic setting.

Theorem 1.3.3. The LZ scheme is universal, i.e.,

lim
n→∞

1

n
ElLZ(Xn) = H(X) for every stationary process X. (1.10)

We first prove Theorem 1.3.3 based on Theorem 1.3.2. In order to use
Theorem 1.3.2, we have to define the conditional empirical entropy.

Definition 1.3.4. The conditional empirical entropy of order k associated with
xn
−(k−1) is defined as:

Hk(x
n
−(k−1)) = H(Uk+1|Uk), (1.11)

where H(Uk+1|Uk) is the conditional entropy of random variable Uk+1 given Uk

with joint distribution PUk+1(uk+1) = 1
n |{1 ≤ i ≤ n : xi

i−k = uk+1}|.

The following exercise shows two important properties of Hk:

Exercise 1.3.5. Show That

(a) minQ∈Mk

1
n log 1

Q(xn|x0
−(k−1)

)
= Hk(x

n
−(k−1))

Hint: The proof follows closely the way to prove minQ∈M0

1
n log 1

Q(xn) =

H0(x
n).

(b) For any stationary process X, EHk(X
n
−(k−1)) ≤ H(X0|X−1

−k).
Hint: Jensen’s inequality.
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Now, let us prove Theorem 1.3.3.
Proof

lim sup
n→∞

1

n
ElLZ(Xn) = lim sup

n→∞

1

n
ENLZ(X

n) logNLZ(X
n)

(i)

≤ lim sup
n→∞

E

[
min

Q∈Mk

1

n
log

1

Q(Xn|X0
−(k−1))

]
(ii)
= lim sup

n→∞
E
[
Hk(X

n
−(k−1))

]
(iii)

≤ H(X0|X−1
−k),

(1.12)

where (i) comes from Theorem 1.3.2, (ii) is because of Exercise 1.3.5 Part (a),
and (iii) is due to Exercise 1.3.5 Part (b).

Let k → ∞ on the right hand side. It implies that

lim sup
n→∞

1

n
ElLZ(Xn) ≤H(X) (1.13)

Obviously, the LZ code is a lossless so

lim inf
n→∞

1

n
ElLZ(Xn) ≥ H(X), (1.14)

which completes the proof.

Let us introduce a few more notations before proving Theorem 1.3.2. Denote
yi as the ith phrase in the LZ parsing of xn, e.g.

xn = x1︸︷︷︸
y1

, x2x3︸︷︷︸
y2

, x4...︸︷︷︸
y3

, ..., ...xn−1xn︸ ︷︷ ︸
yNLZ

Let vi denote the index of the start of the ith phrase, and therefore yi = x
vi+1−1
vi .

We append an arbitrary k-tuple x0
−(k−1) to xn in order to prevent an edge effect.

Denote cl,uk as the number of phrases with length l and left context uk, i.e.,

cl,uk = |
{
1 ≤ i ≤ NLZ : |yi| = l, xvi−1

vi−k = uk
}
|,

where |yi| denotes the length of phrase yi.

Theorem 1.3.6 (Ziv’s Inequality). For any xn
−(k−1), and Q ∈ Mk, the follow-

ing inequality holds:∑
l,uk

cl,uk log cl,uk ≤ log
1

Q(xn|x0
−(k−1))

. (1.15)



6 CHAPTER 1. LEMPEL-ZIV COMPRESSION

Proof

logQ(xn|x0
−(k−1)) = logQ(y1, y2, ..., yNLZ

|x0
−(k−1))

=

NLZ∑
i=1

logQ(yi|yi−1, x0
−(k−1))

=
∑
l,uk

cl,uk

∑
i:|yi|=l,x

vi−1

vi−k=uk

1

cl,uk

logQ(yi|xvi−1
vi−k)

(i)

≤
∑
l,uk

cl,uk log

 1

cl,uk

∑
i:|yi|=l,x

vi−1

vi−k=uk

Q(yi|xvi−1
vi−k)


(ii)

≤
∑
l,uk

cl,uk log

(
1

cl,uk

)
,

(1.16)

where (i) comes from Jensen’s inequality and the concavity of log, and (ii) comes
from the fact that yi are distinct.

Remark

• Since
∑

l,uk cl,uk = NLZ, we have
∑

l,uk

c
l,uk

NLZ
= 1. Thus

c
l,uk

NLZ
can be

interpreted as a probability mass function on a pair (L,Uk).

• Since
∑

l,uk lcl,uk = n, we have
∑

l,uk

c
l,uk

NLZ
l = n

NLZ
. Thus EL = n

NLZ
.

Exercise 1.3.7. (a) Let L be a nonnegative integer-valued random variable
with EL ≤ µ, then

H(L) ≤ (µ+ 1) logµ− µ logµ

Hint: Prove that equality is attained when L has a geometric distribution.

(b) Show that

NLZ ≤ K
n

logn
,

where K is a constant independent of n and xn.
Hint: the lengths of the phrases are growing so one cannot pack too many
of them in a sequence of length n.

(c) Show that
NLZ

n

∑
l,uk

cl,uk

NLZ
log

NLZ

cl,uk

≤ ϵ(k)n ,



1.4. LZ78 AND INDIVIDUAL SEQUENCES 7

where ϵ
(k)
n is independent of xn and limn→∞ ϵ

(k)
n = 0.

Hint:
∑

l,uk

c
l,uk

NLZ
log NLZ

c
l,uk

= H(L,Uk) ≤ H(L)+H(Uk) ≤ H(L)+k log |X |,
and now use the previous two parts.

Now we are ready to prove Theorem 1.3.2.
Proof The idea is to show that 1

nNLZ logNLZ is close to 1
n

∑
l,uk cl,uk log cl,uk

so that we can use Ziv’s Inequality to finish the proof.∑
l,uk

cl,uk log cl,uk =NLZ

∑
l,uk

cl,uk

NLZ
log

cl,uk

NLZ
+NLZ

∑
l,uk

cl,uk

NLZ
logNLZ

≥−nϵ(k)n +NLZ logNLZ,

(1.17)

where the inequality comes from Exercise 1.3.7 Part 3 and the fact
∑

l,uk

c
l,uk

NLZ
=

1. Thus

1

n
NLZ logNLZ ≤ 1

n

∑
l,uk

cl,uk log cl,uk + ϵ(k)n

≤ log
1

Q(xn|x0
−(k−1))

+ ϵ(k)n ,

(1.18)

where the second inequality comes from Ziv’s Inequality. The proof is complete
by the arbitrariness of Q ∈ Mk.

1.4 LZ78 and Individual Sequences

We have considered the performance of the LZ in expectation sense and we
proved that it is universal in stochastic setting. In this section, we will show
that the LZ is as good as any finite-state encoder for any individual sequence.

A finite-state encoder E is characterized by a triplet (S, g, f).

• S is a finite set of states.

• g : S × X → S is a state-update function.

• f : S × X → {0, 1}∗ is an encoding function.

Let En(s) be the set of all lossless (for n-blocks) finite-state encoders for
which |S| ≤ s. The compression rate of a sequence xn by an encoder E be

defined as ρE(x
n) = l(xn)

n .
Define ρs(x

n) = minE∈En(s) ρE(x
n), which is the best compression rate

for seqeunce xn among all s-state compressors. We further define the per-
formance for an infinite sequence x∞ in a limit supremum sense: ρs(x

∞) =
lim supn→∞ ρs(x

n). Finally, by allowing the number of states to grow we define
the finite-state compressibility of a sequence: ρ(x∞) = lims→∞ ρs(x

∞). Observe
that this limit exists because ρs(x

∞) is both nonincreasing in s and bounded.
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One can characterize ρ(x∞) as the best asymptotic compression possible
within the set of finite-state encoding schemes — even when a scheme is designed
specifically for the given sequence xn. The following theorem is then somewhat
surprising.

Theorem 1.4.1. Let ℓLZ(x
n) be the description length of a sequence xn by the

LZ78 encoder. Then for any infinite sequence x∞,

lim sup
n→∞

1

n
ℓLZ(x

n) ≤ ρ(x∞).

Proof See the proof of Theorem 2 in [6].

1.5 A bit about Sliding Window Compression
(LZ77)

This alternative to LZ78 was actually introduced earlier, in [7]. The structure
of the algorithm is quite similar, but the method of parsing (and referring to
previous encodings) is slightly different.

Suppose x1 through xn have already been parsed. In LZ78, the next phrase
xn+ℓ
n would be chosen so as to be the shortest phrase that has not yet been

selected as a phrase. In LZ77, it is instead the shortest phrase that has not
occurred as a subsequence anywhere in xn. This procedure can be formally
defined as follows.

Define

L(n, x∞) = min
{
ℓ ̸= 0 : xn+ℓ

n+1 ̸= xi+ℓ
i+1 for any i ∈ {0, . . . , n− ℓ− 1}

}
.

The kth phrase in the LZ77-parsing of a sequence x∞ is then given by

x
Nk+L(Nk,x

∞)
Nk

where N1 = 1 and Nk+1 = Nk+L(Nk, x
∞)+1. In the remaining

discussion, we will refer to the kth phrase length L(Nk, x
∞) as Lk.

The encoder encodes xNk+Lk

Nk
by specifying the following:

(a) “Where” in the past (xNk−1
1 ) the unoriginal component xNk+Lk−1

Nk
of the

new phrase xNk+Lk

Nk
appeared.

(b) The length of the phrase Lk.

(c) The “novel” component xNk+Lk
of the new phrase xNk+Lk

Nk
.

We first quantify the number of bits expended for encoding the kth phrase.
The first component costs no more than logNk bits (since this is an inte-
ger between 1 and Nk). The second component costs no more than logLk +
O(log logLk) bits (since, as one can show, any integer i can be losslessly repre-
sented with length no greater than log i + O(log log i)). The third component
requires only log(|X | − 1) bits.
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The number of bits expended per source symbol is then given by (in the
limit of large Lk and Nk

bits expended

source symbol
=

logNk

L(Nk, x∞)
.

In a perfect world, whenever the source is drawn from a stationary/ergodic
process X, we would like this quantity to approach the entropy rate H(X) as
k grows. Lempel and Ziv demonstrated the following fact, which isn’t quite as
powerful a statement, but close.

Theorem 1.5.1. For any stationary and ergodic process X,

log n

L(n,X)

n→∞→ H(X).

Proof See Theorem 1 in [8].
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