YA A

Scalable Parallel Programming
with CUDA on Manycore GPUs

John Nickolls
Stanford EE 380 Computer Systems Colloquium, Feb. 27, 2008

<A

NVIDIA

Outline

® Transition to scalable parallel computing
® CUDA applications

® CUDA programming model

® SAXPY example

® Sparse matrix vector product

® Parallel sum reduction

® N-body physics

® Tesla GPU Architecture

® Summary

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

The Transition to Parallel Computing

NVIDIA

Is well along ... in unified graphics and computing processors

The GPU is a scalable parallel computing platform

® Thousands of parallel threads
® Scales to hundreds of parallel processor cores

® Ubiquitous — in laptops, desktops, workstations, servers

CUDA parallel programming model introduced in 2007

® Write C code for one thread
® Instantiate parallel thread blocks
® Tens of thousands of CUDA developers S0M

NVIDIA ships 1M CUDA-capable GPUs a week
® Over 50 M CUDA-capable GPUs shipped 25M

Unique opportunity to innovate and develop
widely-deployed parallel applications

Scalable Parallel Programming with CUDA 2/27/08

4
2006 2007

© NVIDIA Corporation 2008

Tesla GPU architecture <X

NVIDIA

Unifies graphics and computing
Scalable parallel computing platform NN AT
In laptops, desktops, workstations, servers >

8-series GPUs deliver 50 to 200 GFLOPS -
on compiled parallel C applications

GPU parallel performance pulled by the Nl |
insatiable demands of PC game market Tesla D870 |

—.

GPU parallelism doubling every 12-18 months
Programming model scales transparently

Programmable in C with CUDA tools

Multithreaded model uses data parallelism,
task parallelism, and thread parallelism

o
Tesla S870

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

threaded

Hii s &

i st

IIII@-
e] 1]]

llll@

B5E

mﬂﬂﬂnﬁn
BBl
o

_nnnnw-

IIII@-
SE]E]E1E]E]

NSt

llll@-
IEIEIE]E]E:

fii st

___nnnnw-

© NVIDIA Corporation 2008

Geometry Controller

12K threads

ly muit
5 GHz,

massive

Geometry Controller

d memory,
128 Elprocessor cores at 1
Interconnection Network

Geometry Controller

MT Issue

ing an

Scalable Parallel Programming with CUDA 2/27/08

Geometry Controller

=

MT Issue

Geometry Controller

Compute Work
Distribution

_nnnnw-

Sty

Scalable process
GeForce 8800

Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit
Tex L1 Tex L1 Tex L1 Tex L1 Tex L1 Tex L1 Tex L1 Tex L1

®
®
4
Geometry Controller

()
p -
-
-
Q
)
et
i e
O
p -
<[
(@)
-
=
-
Q.
S
O
O
-
ol
O
L
AN
)
T

GPU Computing Application Areas

— \ 2
Computational 3 \/*% ~. Computational

—

Geoscience 85 Chemistry

Computational _ Computational
Medicine - Modeling

Computational 4., Computational
Engineering

il Computational Image
Finance |4 4. Processing

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Dynamic Real-Time MRI <X

NVIDIA

e

Bioengineering Institute, University of Auckland, Zhi-Pei Liang's Research Group, Beckman Institute, UIUC
IUPS Physiome Project

Used with permission of Justin Haldar
http://www.bioeng.auckland.ac.nz/movies/database/

cardiovascular_system/textured-heart-beat.mpg

G80 GPU is 245x CPU

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Acceleware <X

NVIDIA

GPU Electromagnetic Field simulation

® 3D Finite-Difference and Finite-Element (FDTD)
® Cell phone irradiation
® MRI Design / Modeling Cell phone
® Printed Circuit Boards =Ml

® Radar Cross Section (Military)

45X

Pacemaker
with
Transmit
Antenna

Performance

2 GPUs 4 GPUs

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Manifold 8 GIS Application <3

NVIDIA

From the Manifold 8 feature list:

... applications fitting CUDA capabilities that might have taken tens of seconds or
even minutes can be accomplished in hundredths of seconds. ... CUDA will
clearly emerge to be the future of almost all GIS computing

From the user manual:

"NVIDIA CUDA ... could well be the most revolutionary thing to happen in
computing since the invention of the microprocessor

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

<A

NVIDIA

EvolvedMlachines

® 130X Speed up

® Simulate networks of brain neurons

® Solve differential equations of ion channels
® Sensory computing: vision, olfactory

S e R N S
= T LA g
S C D i
\ q by f (T
) h
SR Vi A0
VAN SN
) W A
M m> A 1Y
: | i
\\ katil | A) Y\)
\ AN ‘]] lll A
AN KAl e 4 dle

A0 00 L L)

‘ i/
S,
o ,\.Q\ .
S K .
|
|

>
A'¢ R N\
\ O\
\) \)
\
N\ \
\
W
| .
\ \

i

Scalable Parallel Programming with CUDA 2/27/08 © NVIDI{ Copofation 2008

Matlab: Language of Science <X

NVIDIA

17X with MATLAB CPU+GPU

http://developer.nvidia.com/object/matlab cuda.html

Pseudo-spectral simulation of 2D Isotropic turbulence
http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

Hanweck Associates

® VOLERA, real-time options implied volatility engine
® Accuracy results with single precision

® Evaluate all U.S. listed equity options in <1 second

B Hanweck Associates, LLC - Volera Demo v0.94 =1
D 0
[Expiry [Strike [Pic_ | Bia | Ask [voi% | Detta [Gammal Theta | vega | Rho |

EEEEEE H i put. [P e o \‘\
= []]
[Heatn el = | V'3
Diversiﬁ! nnnnnnnnn ‘i‘al ‘ ody.. [] | \
(www.hanweckassoc.com) e it
o FANWECK L []] mﬂ% e — e

4] ASSOCIATES,
g LLC B .
Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

VMD/NAMD Molecular Dynamics

® 100X VMD speedup

NVIDIA

THEORETICAL and COMPUTATIONAL

BiorHYSICS GROUP

® 240x ion placement
® Computational biology =

Graphics Viewer
NAMD bolecular
Dynamics
Simulator
BioCoRE
Collahoratory
Erviroriment
WD Senite Suit:
simictural Biology
e Database
Utationzl
’

Parallel GPUs with Multithreading;
705 GFLOPS /w 3 GPUs

IAMD

* One host thread 1s created for each CUDA GPU load VHD
* Threads are spawned and attach to their GPU based on their
host thread 1D e
— First CUDA call binds that thread’s CUDA context to that GPU for life

oratory
— Handling error conditions within child threads i1s dependent on the
thread library and, makes dealing with any CUDA errors somewhat
tricky, left as an exercise to the reader.... ©

* Map slices are computed cvclically by the GPUs
+ Want to avoid false sharing on the host memory system

— map slices are usvally much bigger than the host memory page size, so
this 1s usually not a problem for this application

* Performance of 3 GPUs is stunning!
+ Power: 3 GPU test box consumes 700 watts running flat out

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 21
ECE 498AL, University of Tllinois, Urbana-Champaign

NIH RESOURCE CROMOLECULAR MODELING AND BIOINFORMATICS
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

NAMD

Scalabl&-Molecular Dynamics

NAMD, recipient of a 2002 Gordon Bell Award, is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems:
Based on Charm++ parallel objects, NAMD scales to hundreds of processors on high-end parallel platforms and tens of processors an commaodity clusters using
gigabit ethernet. NAMD uses the popular molecular graphics program VMD for simulation setup and trajectory analysis, but is also file-compatible with AMBER,
CHARMM, and X-PLOR. NANMD is distributed free of charge with source code. You can build NAMD yourself or download binaries for a wide variety of platforms
Our tutorials show you how to use NAMD and VMD for biomalecular modeling

[NEw] High performance computing in bielogy: Multimillion atom simulations of nanoscale systems. K.Y, Sanbonmatsu and C.-S. Tung. Jouwrnal of Struciura
Biology, 157:470-480, 2007,

/NEW/ Supercomputer Simulations May Pinpoint Causes of Parkinson's, Alzheimer's Diseases (SDSC article referring to NAMD simulations on Blue Geneil
reported in Tsigelny et al., FEBS Journal, 274:1862-1877, 2007 .}

Single search: | Search NAMD web site and tutorials

Spotlight: Step Up to the BAR Domain (Apr 2007) Other Spotlights

PSC News Release: University of Utah chemist Gregory Voth and grad student Phil Blood are using PSC's Cray XT3 to
tackle a basic question of endocytosis—the life-sustaining process by which cells absorb material from outside the cell by
bending their membrane to form a "vesicle” and engulf it. All animal cells depend on endocytosis, which involves various steps,
but begins with curvature of the membrane:

BAR domains are a family of banana-shaped proteins shown to hind to cellular membrane as it curves. Experiments suggest
that BAR domains mald their concave surface to a section of membrane and induce a corresponding curvature. Voth and Blood £
undertook molecular dynamics simulations to look mare closely. With the XT3 they’'ve been able to run efficiently, using =
software called NAMD, with as many as 1,024 processors. 'The XT3 has been amazing," says Blood. "We haven’t found “i‘{‘
hard limit on scaling up the number of processors." e

They used TeraGrid systems at SDSC, NCSA and University of Chicago/Argonne to construct a model and to explore how long a stretch of membrane they
needed for curvature to occur. Their final simulations used the XT3 to include the protein with a 50-nanometer length of membrane—probably the longest patch of

http://www.ks.uiuc.edu/Research/vmd/projects/ece498/lecture
Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NAMD acceleration on GPU cluster

® GPU cluster:
® 1 HP DL320S (master)

® 8 HP DL140 (compute nodes) with
3.0Ghz Woodcrest CPU

® 8 Tesla D870

mCPU
m CPU+GPU

p

Num processors

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

nbody Astrophysics

3445 Gflops-. "

Astrophysics research

3 -'-.http:"/Vp.r(.)grape:j'p/és:/

1 GF on standard PC e _' i 5L ._ 3 .
300+ GF on GeForce 8800GTX

Faster than GRAPE-6Af custom simulation computer

15 Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

>y

NVIDIA

CUDA port of:
Jos Stam, "Stable Fluids", In SIGGRAPH 99 Conference Proceedings,
Annual Conference Series, August 1999, 121-128.

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

YA A

CUDA Programming Model

Examples courtesy of Michael Garland, Mark Harris, and
Massimiliano Fatica / NVIDIA

NVIDIA

CUDA Programming Model

Minimal extension of C and C++ languages
Write a serial program that calls parallel kernels

Serial portions execute on the host CPU

A kernel executes as parallel threads on the GPU device
® Kernels may be simple functions or full programs
® Many threads execute each kernel

Differences between CUDA and CPU threads

® CUDA threads are extremely lightweight
® Tiny thread creation overhead
® Zero-overhead thread scheduling

® CUDA uses 1000s of threads to achieve efficiency
® Multi-core CPUs can use only a few
® CUDA uses threads for fine-grained parallelism
® CUDA uses blocks of threads for coarse-grained parallelism

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Grids of Thread Blocks

Host GPU Device

| - - CPU
® Organize kernel threads into Grid 1

grids of thread blocks

Kernel Block | Block @ Block
(0,00 (1,00 (2,0)

® A thread block is an array of Block’
threads that can cooperate (0,1)
with each other by:

1

® Sharing data through
shared memory

® Synchronizing their
execution
Block (1, 1)

: : Thread|Thread|Thread|Thread|Thread
® Thread b_Iocks of a grid
execute independently
Thread|Thread|Thread|Thread|Thread
@D |G| @
Thread|Thread|Thread|Thread|Thread
0,2) | 1,2) | 2,2 | G2 | 42)

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

CUDA Hierarchy of thread groups

Thread ® Thread

® Computes result elements
® threadIdxis thread id number
Thread Block @ Thread Block
t0 t1 t2 ... tm ® Computes result data Block

® 1 to 512 threads per Thread Block
® blockIdxis block id number

® Grid of Blocks
® Computes many result blocks
® 1 to many blocks per grid

® Sequential Grids

Grid ® Compute sequential problem steps

Block 0| | Block 1| | Block 2 Block n

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Thread ID and Block ID

® Threads and blocks have IDs GPU Device

® Each thread selects Grid 1

what data to work on Block Block Block

® Using built-in variables 0,00 (1,0) | (2,0)
® 1D, 2D, 3D blocks and grids Block” | Block | Block

©4) || (1,1) 1\ (1)

® Block and thread IDs
® Built-in variables:
® blockIdx .x, .y

® threadrdx .x, .y, .z
Block (1, 1)

2 ok amrciors |
® Grid and block dimensions 0,0 | 1,0) | 2,0 | 3,0 | 40
® Built-in variables:
i oD | @y |en |G|

® gridbim .x, .y
4 Thread|Thread|Thread| Thread| Thread
® bIGEKDIN .x, .ys T3

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

Launching parallel CUDA kernels

 Declare kernel entry procedure as __global
» Extended function call syntax:

kernel<<<dimGrid, dimBlock>>>(... parameter list ...);
kernel<<<32, 256>>>(... parameter list ...);

Specify dimensions of grid in blocks

® Grid dimensions: x, y
dim3 dimGrid(16, 16);

Specify dimensions of the blocks in threads
® Unspecified dim3 dimensions are 1

® Thread-block dimensions: x, vy, z
dim3 dimBlock(16,16);

® Kernel function parametersin(...)

22
Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

SAXPY: y=ax+y in C, parallel CUDA

void saxpy_serial(int n, float a, float *x, float *y)

{
for (Ant 1 =0; 1 < n; ++1)
y[i] = a*x[1] + y[i];
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, X, y);

_global__
void saxpy_parallel(int n, float a, float *x, float *y)

{

int 1 = blockIdx.x*blockDim.x + threadIdx.x;

if (1 < n) y[i] = a*x[i] + y[i];
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, X, y);

23 Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA 2D Example: Add Arrays

C program CUDA C program

void addMatrix __global__ void addMatrixG
(float *a, float *b, float *c, int N) (float *a, float *b, float *c, int N)
: int i, j, idx; int i = blockldx.x*blockDim.x + threadldx.x;
for (i=0;1i< N;i++) { int] = blockldx.y*blockDim.y + threadldx.y;
for (j = 0; j < N; j++) { intidx =i + j*N;
idx =i + j*N; if (1<N&&j<N)
c[idx] = a[idx] + b[idx]; c[idx] = a[idx] + b[idx];

void main()
{
dim3 dimBlock (blocksize, blocksize);
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
addMatrix(a, b, ¢, N); addMatrixG<<<dimGrid, dimBlock>>>(a, b, ¢, N);
}

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Parallel Memory Sharing <X

NVIDIA

Thread ® Local Memory: per-thread
per-Thread ® Private per thread

Local Memory ® Auto variables, register spill

® Shared Memory: per-block

Thread Block ® Shared by threads of block

® Inter-thread communication
per-Block ® Barrier synchronlzatlon_ ;

Shared Memory ® Global Memory: per-application

® Shared by all threads

® Inter-Grid communication

® Inter-Kernel synchronization

Sequential
Grids
in Time

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Kernel Variable Qualifiers <X

NVIDIA

® _ _device__
® stored in global device memory (large, high latency)
® global memory accessible by all threads
® lifetime: application

® _ shared__

® stored in per-block shared memory (small, low latency)
® accessible by all threads in the same thread block
® lifetime: kernel thread block

® Unqualified variables:
® scalars and built-in vector types are in registers
® arrays are stored in per-thread device memory

26
Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

CUDA Synchronization

® Barrier synchronization among threads of block
Fast single-instruction barrier in Tesla GPUs
void __syncthreads();
Synchronizes all threads in a thread block

Once all threads have reached this point,
kernel execution resumes normally

® Use before reading shared memory written by another
thread in the same block
® Global synchronization between dependent kernels
® Waits for all thread blocks of kernel grid to complete
® Fast synchronization and kernel launch in Tesla GPUs

27
Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Atomic Integer Operations

® Atomic operations on integers in global memory:
® atomicAdd(int *pmem; int value)
® Associative operations on signed/unsigned ints
® add, sub, min, max, ...
® and, or, xor

® Requires Tesla 1.1 architecture or later GPU

® Eliminates last stage of a parallel reduction

® Useful for atomic data structure management

Scalable Parallel Programming with CUDA 2/27/08

NVIDIA

28

© NVIDIA Corporation 2008

CUDA Memory Management <X

NVIDIA

// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = O;
cudamalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute a kernel
kernel<<< N/blockSize, blockSize >>>(d_A, b);

// copy data from device back to host
cudamemcpy (h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory

cudaFree(d_A); ol

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

SpMV: Sparse Matrix-Vector Product

SpMV: y = Ax for sparse n x nmatrix A

Sparse n x n matrix A stores only m non-zero entries
Compressed Sparse Row (CSR) representation

Array Av [m] stores non-zero values of A

Array Aj [m] stores column index for corresponding Av[]
Array Ap[n+1] stores extent of prior row

Row 1 extends from Ap[1] up to but not including Ap[1+1]
Ap[0] == 0, Ap[n] ==

Row O Row 2 Row 3
Avi7]1 = {3 1)2 4 D1 1)}
Aj[7] {(fo 2)0 2 3)(0 3)}

Ap[5] {0 2 2 5 7 }

(a) Sample matrix 4 (b) CSR representation of matrix

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

SpMV: One row of y = AX

® Given sparse matrix Ain CSR form Av[], Aj[]
® Compute one row of y = Ax
® Identical C and CUDA code below

float mult_row(unsigned rowsize,
unsigned *Aj, // column indices for row

float *Av, // non-zero entries for row
float *x) // the RHS vector

float sum = 0O;
for (unsigned column=0; column<rowsize; ++column)

sum += Av[column] * x[Aj[column]];
return sum;

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

SpMV: Serial C Loop: y = Ax

® Serial code loops over all rows, calls mult_row();

void csrmul_serial (unsigned *Ap, unsigned *Aj,
float *Av, unsigned nrows, float *x, float *y)
{
for (unsigned row=0; row < nrows; ++row) {
unsigned row_begin = Ap[row];
unsigned row_end = Ap[row+1];
y[row] = mult_row(row_end-row_begin,
Aj+row_begin, Av+row_begin, X);

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

SpMV: Parallel CUDA kernel: y = AX

® CUDA parallel kernel code for one thread
® Each thread computes one row of vector y

_global__
void csrmul_kernel(unsigned *Ap, unsigned *Aj,
float *Av, unsigned nrows, float *x, float *y)
{
unsigned row = blockIdx.x*blockDim.x + threadIdx.x;
if (row < nrows) {
unsigned row_begin = Ap[row];
unsigned row_end = Ap[row+1];
y[row] = mult_row(row_end-row_begin,
Aj+row_begin, Av+row_begin, Xx);

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

SpMV: CUDA mainline <X

NVIDIA

® Copy sparse matrix data A and x to device memory
® cudamMemcpy(Q);

® Invoke parallel kernel on grid of thread blocks
® csrmul_kernel<<<dimg, dimb>>>(parameters);

® Copy result data y from device memory
® cudamMemcpy(Q);

unsigned blocksize = 128; // or any size up to 512
unsigned nblocks (nrows + blocksize - 1)/blocksize;

csrmul_kernel<<<nblocks,blocksize>>>(Ap, Aj, Av, nrows, X, Y);

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Parallel Sum Reduction <X

NVIDIA

® Reduction is a common data parallel operation
® Reduce vector to a scalar value
® Operator: +, *, min, max, AND, OR
® O(log, N) tree-based implementation

® Two stages of computation:
® Sum within each block
® Sum partial results from the blocks
® Final stage repeats kernel, or uses atomicAdd()

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Reduction Kernel execution <X

NVIDIA

Values (shared memory) -1

Step 1 —

Distance 8 threads ﬁ/

values 6|0

Step 2
Distance 4 threads ?/

values

Step 3

Distance 2 threads

values

Step 4

Distance 1 threads

values | 41

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Sum Reduction Kernel <X

NVIDIA

_global__ // reduce in shared mem
reduce(int *g_idata, for (int s = bd/2; s>0; s >>= 1)
int *g_odata) {
{ if (t < s)
s data[t] += data[t + s];
A __syncthreads(Q);

threadIdx.x; ¥

blockIdx.x;
blockDim.x; // global mem += block sum

b * bd + t; if (t == 0)
atomicAdd(g_odata, data[0]);

int t
int b
int bd
int 1

// load shared mem
data[t] = g_idatali];
__syncthreads();

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Reduction Kernel <X

NVIDIA

__global__ void sum_kernel(int *g_input, int *g_output)
{

extern __shared__ int s_data[]; // allocated at kernel Taunch

// read input into shared memory

unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
s_data[threadidx.x] = g_input[idx];

__syncthreads(Q);

// compute sum for the thread block
for (int dist = blockDim.x/2; dist > 0; dist /= 2)
{

if (threadIdx.x < dist)
s_data[threadIdx.x] += s_data[threadIdx.x + dist];
__syncthreads();

}

// write the block's sum to global memory
if (threadIdx.x==0)
g_output[blockIdx.x] = s_datal[0];

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Reduction Host Source Code (1) <X

NVIDIA
int main()

{
// data set size in elements and bytes
unsigned int n = 4096;
unsigned int nbytes = n*sizeof(int);

// launch configuration parameters
unsigned int block_dim = 256;
unsigned int nblocks = n / block_dim;

unsigned int smem_bytes = block_dim*sizeof(int);

// allocate and initialize the data on the CPU
int *h_a=(int*)malloc(nbytes);
for (int i=0; i < n; i++)

h_a[i]=1;

// allocate memory on the GPU device

int *d_a=0, *d_out=0;

cudamalloc((void**)&d_a, nbytes);
cudamalloc((void**)&d_out, nblocks*sizeof(int));

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Reduction Host Source Code (2)

// copy the input data from CPU to the GPU device
cudamemcpy(d_a, h_a, nbytes, cudamMemcpyHostToDevice);

// two stages of kernel execution
sum_kernel<<<nblocks, block_dim, smem_bytes>>>(d_a, d_out);
sum_kernel<<<l, nblocks, nblocks*sizeof(int)>>>(d_out, d_out);

// copy the output from GPU device to CPU and print
cudaMemcpy(h_a, d_out, sizeof(int), cudaMemcpyDeviceToHost);
printf("%d\n", h_a[0]);

// release resources
cudaFree(d_a);
cudaFree(d_out);
free(h_a);

return 0;

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

N-Body Simulation <X

Courtesy of Mark Harris

NVIDIA

® Numerically simulate evolution of system of N bodies
® Each body continuously interacts with all other bodies

® Examples:

® Astronomical and astrophysical simulation

® Molecular dynamics simulation

® Fluid dynamics simulation

® Radiometric transfer (Radiosity, multiple scattering, etc.)

® Minteractions to compute per time step
® For the brute force all-pairs approach we discuss here

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA N-Body Simulation

Scalable Parallel Programming with CUDA 2/27/08

o

niunm.
10B interactions / s

16K bodies

44 FPS

x 20 FLOPS / interaction
X 16K2 interactions /
frame

= 240 GFLOP/s

= 50x tuned CPU
implementation
on Intel Core 2 Duo

GeForce 8800 GTX GPU

Highly Parallel
High Arithmetic Intensity

© NVIDIA Corporation 2008

Papers about N-Body on CUDA >

NVIDIA

“Fast N-Body Simulation with CUDA”

® Nyland, L., Harris, M., and Prins, J.

® GPUGems3
"Accelerating Molecular Modeling Applications with Graphics
Processors"

® John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy,
Leonardo G. Trabuco, Klaus Schulten

® J. Comp. Chem. (Submitted)
“The Chamomile Scheme: An Optimized Algorithm for N-body
simulations on Programmable Graphics Processing Units”
® Hamada, T. and T. litaka.
® Submitted to NewAstronomy, 5 Mar, 2007
“High Performance Direct Gravitational N-body Simulations on
Graphics Processing Units — II: An implementation in CUDA”
® Belleman, R. G., J. Bedorf, S. Portegies Zwart.
® Accepted for publication in NewAstronomy
:I‘_Gr?phic-Card Cluster for Astrophysics (GraCCA) -- Performance
ests”
® Schive, H-Y, C-H Chien, S-K Wong, Y-C Tsai, T. Chiueh.
® Submitted to NewAstronomy, 20 July, 2007
® Cluster of 32 GeForce 8800 GTX GPUs: 7.1 TFLOP/s measured!

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Sequential N-Body Algorithm

foreach body 1 {

accel = 0;
pos_1 = position[i]
foreach body j {

pos_j = position[j]

accel +=

computeAcceleration(pos_i, pos_j)

}
// Leapfrog-verlet integration®
velocity[i] += accel * timestep
position[i] += velocity[1] * timestep

*Any integration scheme can be used

Scalable Parallel Programming with CUDA 2/27/08

NVIDIA

© NVIDIA Corporation 2008

Sequential N-Body Algorithm <X

NVIDIA

® Conceptual grid of interactions
between (i,)) pairs

Body j

ENEEEEEENIIEEEEEE
HEEEEEEENIIEEEEEE

> Outer Loop (i)

Interaction between
Inner Loop () Bodies iand j

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

Approach to N-Body Parallelism

® This is very parallel: one thread per body
® Acceleration on all bodies can be computed in parallel

® Bilocks of p threads process p bodies at a time

forall bodies i 7n parallel {
accel = 0;
pos_1 = position[i]
foreach body j {
pos_j = position[j]
accel +=
computeAcceleration(pos_i, pos_j)

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

Inefficient Parallel Approach

forall bodies 1 7n parallel ® Every thread loads all body

{ positions from off-chip memory
accel 0
pos_1 = position[i]
foreach body j
{

N?loads: Bandwidth bound

86 GB/s peak / 16 bytes per
position = 5.4B interactions/s
theoretical peak

accel += _ _ ® 108 GFLOP/s < 2what G80
computeAccel (pos_1,p0s_J); achieves on efficient n-body

} code

}

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Inefficient Parallel Implementation

® N threads
® N*N computations
® N*N loads Body |

Body i = Thread i Y > Outer Loop (i)
Parallel

Interactions between body i
Inner Loop ()) and all bodies j computed
Sequential by thread i

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Inefficient CUDA Implementation <3

NVIDIA

Body j
N/ p Thread Blocks
of p threads each

Outer Loop (i)
Parallel

Inner Loop ())
Sequential

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Shared Memory Solves B/W Bottleneckﬁ%ﬂ

® Use fast on-chip per-block shared memory
® Share blocks of body positions between threads
® Break grid into conceptual tiles

Body |

Body i = Thread i > Quter Loop (i)
Inner Loop ()

$‘E& Parallel
N
Sequential

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Tiled Parallel Approach

forall bodies 1 7n parallel {
accel = 0;
pos_i = position[i]
foreach tile g {
forall threads p in thread block in parallel {
= position[g*tile_size + p]
}

synchronize threads in block
foreach body 7 in tile q {

accel +=
computeAcceleration(pos_i, pos_j)
}

synchronize threads in block

}
}

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Tiled Parallel Approach <X

NVIDIA

® Sequential inner loop split into N/p sub-loops over tiles

® Threads in a block cooperatively load p positions
within a tile to shared memory

® Reduces # of loads to N2 /p
® Typically use p = 256 threads, so big savings!
® Compute bound, good performance

® 10B interactions / s = 205+ GFLOP/s

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Tiled Parallel Implementation <

Body j
N/ p Thread Blocks |
of p threads each

Outer Loop (/)
Parallel

Each thread loads one
body position into
shared memory
(p per block)

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Tiled Parallel Implementation <

Body
N / p Thread Blocks
of p threads each

Outer Loop (/)
Parallel

_Y_I
Inner Loop ()
Sequential

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

N-Body Physics on CUDA <3

NVIDIA

® All-pairs gravitational N-body physics of 16,384 stars
® 240 GFLOPS on NVIDIA GeForce 8800 — see GPU Gems 3

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUDA Software Development Kit <X

NVIDIA

CUDA Optimized Libraries: Integrated CPU + GPU
FFT, BLAS, ... C Source Code

NVIDIA C Compiler

NVIDIA Assembly

for Computing CPU Host Code

CUDA Debugger
Driver Profiler

Standard C Compiler

GPU

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUBLAS Library .

NVIDIA

® Self-contained BLAS library

® Application needs no direct interaction with CUDA driver

® Currently a subset of BLAS core functions
® Single/Real Routines, BLAS1 Complex, CGEMM

® Simple to use:

® Create matrix and vector objects in GPU memory
® Fill them with data

® Call sequence of CUBLAS functions

® Upload results back from GPU to host

® Column-major storage and 1-based indexing
® For maximum compatibility with existing Fortran apps

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

CUFFT Library N>

® Efficient FFT on CUDA

® Features
® 1D, 2D, and 3D FFTs of complex and real-valued signal data

® Batch execution for multiple 1D transforms in parallel
® Transform sizes (for 1D) in the range [2, 16M]
® Transform sizes (for 2D and 3D) in the range [2, 16384]

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Tesla Unifies Graphics & Computing

® Tesla unified computing and graphics architecture
® Tesla C870: 128 El Thread Processor cores at 1.35 GHz

Host Interface

Viewport / Clip /

Input Assemble Setupzé Eﬁsterl

Vertex Work Geometry Work Pixel Work Compute Work
Distribution Distribution Distribution Distribution

1 1 1 1 1
(Geometry Controtr | | [Geometry Controtr | [[eomety Controtr | | [Geometry Contrtir | [[eomety Contrlir |)| [Geomety Contrlir | | [Geometry Cortrotir | | [Geometry Contolier |
—T— [T— [——

o] “aee]| [|

[iriesue] wrssus | | Gssee]
Shared Shared

ry Memory ry ry Memory

Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit

Interconnection Network

e e]
MT Issue m

[}
&
&
8
s
3
[}
I
o
o
s
3

o
I
&
)
5
3
[}
I
&
)
5
H

~HOLO
B

HEBEB

FEIEEE
Hi s

@EEHE
HEEE

HE
HEBEB

HEBEEB
HEBEEB
E%EHHE

HEBEB
EEEEE
B s
H

P HEHBERE
EeE]

7 HEBEE
2

..
=
B
2
B

=
2o
-
]

ry M

5}

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

SM Multithreaded Multiprocessor <3

NVIDIA

SM ® SM has 8 SP Thread Processors
® 32 GFLOPS peak at 1.35 GHz
I-Cache ® |EEE 754 32-bit floating point
MT Issue ® 32-bit and 64-bit integer

® 8K 32-bit registers
C-Cache . . :
® SM has 2 SFU Special Function Units

® ScalarISA
® Memory load/store, texture fetch
® Branch, call, return
® Barrier synchronization instruction
® Multithreaded Instruction Unit
® 768 Threads, hardware multithreaded
® 24 SIMT warps of 32 threads
® Independent thread execution
® Hardware thread scheduling
® 16KB Shared Memory
® Concurrent threads share data
® Low latency load/store

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

[—
[—
[—

‘ [EEEE
[DEEE

H
H

SM SIMT Multithreaded Execution <X

Single-Instruction Multi-Thread

instruction scheduler

warp 8 instruction 11

VVVVVVVVVVVVVVVVY

warp 1 instruction 42

VVVVVVVVVVVVVVYY

warp 3 instruction 95

VVVVVVVVIVVIVVIVVVY

warp 8 instruction 12

VVVVVVVVVVVVVVVVY

warp 3 instruction 96

VVVVVVVVVVVVVVVY

Scalable Parallel Programming with CUDA 2/27/08

NVIDIA

Weaving: first parallel thread technology

Warp: the set of 32 parallel threads
that execute a SIMT instruction

SIMT: Single-Instruction Multi-Thread

SM hardware implements zero-overhead
warp and thread scheduling

Each SM executes up to 768 concurrent
threads, as 24 SIMT warps of 32 threads

Threads can execute independently
SIMT warp diverges and converges when
threads branch independently

Best efficiency and performance when
threads of a warp execute together

SIMT across threads (not just SIMD data)
provides easy single-thread scalar
programming with SIMD efficiency

© NVIDIA Corporation 2008

NVIDIA

Thread Processor Datapath

® Executes 32-bit IEEE floating point instructions:
® FADD, FMUL, FMAD, FMIN, FMAX, FSET, F2lI, I2F

® Performs 32-bit integer instructions:
® |IADD, IMUL24, IMAD24, IMIN, IMAX, ISET, I2I
® SHR, SHL, AND, OR, XOR

® Fully pipelined
® Latency and area optimized

® IEEE 754 compliant FADD, FMUL

® Round to nearest even, round toward zero
® Handles special numbers, NaNs, infinities properly
® Flushes denormal operands and results to zero

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Special Function Unit (SFU) <X

NVIDIA

® Executes transcendental function instructions
® RCP, RSQRT, EXP2, LOG2, SIN, COS
® 2 SFUs per SM yields Vs instruction throughput

® Evaluates function approximations

® Quadratic interpolation with
Enhanced Minimax Approximation

® Interpolates pixel attributes

® Accuracy ranges from 22.5 to 24.0 bits
® 1/xin the interval [1,2) is 24 bits, 1 ulp

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

Tesla C870 GPU Implementation

681 million transistors
470 mm?2 in 90 nm CMOS

128 thread processors
518 GFLOPS peak
1.35 GHz processor clock

1.5 GB DRAM

76 GB/s peak

800 MHz GDDR3 clock
384 pin DRAM interface

ATX form factor card
PCI Express x16
170 W max with DRAM

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

NVIDIA

Summary

® Transition to scalable parallel programming is being led by
unified graphics and computing GPUs

® CUDA scalable programming model
® Provides readily understood abstractions
Hierarchy of thread groups, shared memory, synchronization
Fine grained and coarse-grained parallelism
Productive environment for developing parallel software
Great for teaching scalable parallel programming
Maps to GPUs today, later to other parallel architectures

® CUDA and ubiquitous parallel GPUs are democratizing
parallel programming

/lwww.nvidia.com/CUDA

Scalable Parallel Programming with CUDA 2/27/08 © NVIDIA Corporation 2008

