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A theoretical formalism is developed for the quantum-state-specific photoelectron angular
distributions (PADs) from the direct photoionization of a diatomic molecule in which both the
ionizing state and the state of the ion follow Hund’s césecoupling. The formalism is based on

the molecular-orbital decomposition of the ionization continuum and therefore fully incorporates the
molecular nature of the photoelectron—ion scattering within the independent electron
approximation. The resulting expression for the quantum-state-specific PADs is dependent on two
distinct types of dynamical quantities, one that pertains only to the ionization continuum and the
other that depends both on the ionizing state and the ionization continuum. Specifically, the
electronic dipole-moment matrix element exp(i»,,) for the ejection of a photoelectron with
orbital angular momentum quantum numbemaking a projectiorh on the internuclear axis is
expressed a8, Uy, exp(mr, )M;, , whereU" is the electronic transformation matrix, is the

scattering phase shift associated with th¢gh continuum molecular orbital, anil ZA is the real

electronic dipole-moment matrix element that connects the ionizing orbital te,thecontinuum
molecular orbital. Because® and ?Qx depend only on the dynamics in the ionization continuum,

this formalism allows maximal exploitation of the commonality between photoionization processes

from different ionizing states. It also makes possible the direct experimental investigation of

scattering matrices for the photoelectron—ion scattering and thus the dynamics in the ionization
continuum by studying the quantum-state-specific PADs, as illustrated in the companion article on
the photoionization of NO. ©1996 American Institute of Physid$§0021-9606)00611-2

I. INTRODUCTION electronic dipole-moment matrix elements that connect the

_ ) ) NO A 25" (»=0) state to each partial wave in the ionization
Recent advances in theoretical and experimental techsgntinuum that yields the NOX 13 *(»"=0) ion, provide a

niques have enabled the dynamical study of moleculag,q; detajled description of this process and can also be
photoionization processes in unprecedented detail. Dn‘ferendireCtIy compared with the corresponding quantities that are

tial photoionization cross sections can now be calculated foEomputed irab initio calculations4 Although the above pro-

small mozlecules almost quanmauyely usingd Mo~ cedure has been applied so far only to the photoionization of
methods-? The development of experimental techniques ha%he NOA 25" state, it should be generally applicable to the

allowed for the resolution of individual quantum levels of the R . : .
molecular ioi~" as well as the photoelectron angular distri- study of photoionization dynamics of other small diatomic
molecules.

butions (PADs) associated with theff.'® The synergy be- o . .
( ) ynergy In the one-photon ionization of a diatomic molecule, the

tween these theoretical and experimental developments has

significantly increased our knowledge about the Iohotoioniza|_on|zat|on continuum that consists of a photoelectron and the

tion of molecules and has narrowed the gap between odJpolecular ion in a given rovibronic state is coupled to an
understanding of molecular and atomic photoionization, ~ 10Nizing state through the dipolar interaction between the
Perhaps the best example that illustrates the experimefiolecule and the ionizing photdin the limit of low ioniza-
tal progress in the dynamical study of molecular photoion-ion intensity. Therefore, the same final state is reached in
ization is the previous report of a complete quantum mefhe photoionization from different ionizing states when the
chanical description for the photoionization of the NO Photoelectron energy and the rovibronic state of the molecu-
A 23" (y=0) state using angle- and energy-resolved photolar ion are the same. Despite this commonality between dif-
electron spectroscop§'2By ionizing optically aligned NO  ferent photoionization pathways, the dipole-moment matrix
A23*(y=0) molecules in a specific quantum level using elements formulated based on the partial-wave decomposi-
resonance-enhanced multiphoton ionizaiBEMPI) and by  tion of the molecular ionization continuum pertain only to a
measuring the PADs associated with the production of eachhotoionization event from a given ionizing state and do not
rotational level of the NO X 3% (»"=0) ion, investigators give detailed insight into the dynamics of the ionization con-
have been able to deduce all the dynamical parametethuum. This situation is in contrast to that in atomic photo-
needed to describe the photoionization process from the N@nization, in which the relationship between dipole-moment
A 23" (»=0) state. The dynamical parameters, which are thematrix elements for distinct photoionization processes has
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The separation of the electronic configuration space into
the ion-core region and the asymptotic region is justified
because any multipolar potential that the photoelectron expe-
riences falls much faster with distance than the Coulombic

potential. The multipolar interaction can thus be considered
to be short range as long as the ion-core region is large

Ic:ggclzgr:e : enough to encompass a region of the photoelectron configu-

ration space where the bulk of multipolar interactions occur.
Because the ion-core region should be large, however, the
interaction between the photoelectron and the ion-core is not
uniform even inside the ion-core region, and the interaction
can be classified into two distinct types depending on the
distance between the photoelectron and the ion Tof.
When the photoelectron is inside the ion-core region but is
outside the perimeter of the bound molecular orbitals of the
ion core, the interaction between the photoelectron and the
ion core can be viewed roughly as that between the photo-
FIG. 1. A schematic illustration of the photoionization of a diatomic mol- €lectron and the multipoles located at the center of mass of
ecule. In the figure, designates a radial distance from the center of mass ofthe ion. We call this region of the configuration space the
the ion core to‘afictitious) surface that divides the ion-core region and the multipole-moment-interaction regioWhen the photoelec-
asymptotic region. N . .

tron is inside the perimeter of the bound molecular orbitals,

on the other hand, the interaction can no longer be viewed as

that of the photoelectron and the multipole. Instead, the ex-
been used to provide a unified description of the ionizatiorchange interaction between the photoelectron and the bound
continuum of an aton>~??Because the ionic potential under electrons in the core dominates the motion of the photoelec-
which the photoelectron moves is a central field within thetron. This region of the configuration space is designated as
independent electron approximation, the partial-wave charthe electron-exchange-interaction region
nels, each denoted by a definite electronic orbital angular In this paper, we present a theoretical formalism for the
momentuml, form a complete set of independent ionization quantum-state-specific PADs from the direct photoionization
channels in atomic photoionization. Consequently, the phasef a diatomic molecule based on the quantum scattering
difference between dipole-moment matrix elements for dif-theory formalism and angular momentum coupling algebra.
ferent partial-wave channels remains the same for photoioridnlike the partial-wave formalism that was the basis of our
ization processes from different electronic states of an atonprevious work**’ the present formalism treats explicitly the
The phase difference is in essence a characteristic of thmixing between different partial waves in the ion-core re-
ionization continuum of an atom, not the atomic energy levelgion, and it thus fully incorporates the molecular nature of
from which photoionization occurs. the problem within the independent electron approximation.

When the photoelectron is far from the ion core, whetherThe resulting expressions clearly show the commonality be-

the ion core is atomic or molecular, it moves principally tween different photoionization processes and provide the
under the influence of the Coulombic potential because ofelationship between the dipole-moment matrix elements that
the charge on the ion cofsee Fig. 12 This region of the couples different ionizing states to the same ionization con-
configuration space where the Coulombic potential domitinuum. We note that most of the theoretical elements that
nates the photoelectron motion is designated asaflyenp-  form the basis of the present article have already appeared in
totic region Because of the central nature of the Coulombicthe literature. The scattering theory formalism used in this
potential, the partial-wave description of the ionization con-article has been extensively developed to explain atomic Ry-
tinuum is appropriate in the asymptotic region. On the othedberg spectroscopy and photoionization by Seaton and
hand, the photoelectron feels the nature of the ionic coreo-worker$®in the framework of the multichannel quantum
when it is near the core, which we call then-core region®  defect theory (MQDT). MQDT has subsequently been
The dynamics of the photoelectron in this region is whatadapted to molecular problems through the pioneering efforts
differentiates the atomic and the molecular ionization con-of Fano, Jungen, Greene, and co-workéré:2¢2°The angu-
tinua. When the ion core is atomic, the photoelectron movetar momentum coupling expressions that appear in this ar-
under the central potential within the independent electrorticle are, on the other hand, mostly adapted from our previ-
approximation, although the potential is different from theous work?” and that of McKoy and co-workerS. The
Coulombic one because of the shielding caused by the prepresent formalism is unique in its coupling of these two theo-
ence of other electrons. When the ion core is molecular, theetical machineries that allows for a unified description of the
potential under which the photoelectron moves is noncentralirect photoionization of a molecule within the independent
even in the independent electron approximation, and the deslectron approximation.
scription of the ionization continuum based on partial waves  Because many of the dynamical parameters that appear
with definitel is not appropriate in the ion-core region. in this formalism pertain directly to the ionization continuum
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without reference to the ionizing states, they should be comphenomenoR? and the discussion becomes particularly
mon to photoionization processes from different ionizingtransparent. As will be seen, many of the quantities and ideas
states of a molecule as long as the same final state is reachetkfined for the atomic continuum wave function can be di-
that is, as long as the rovibronic state of the ion and theectly carried over to the discussion of the molecular con-
energy of the photoelectron are the same. Emphasis is givdinuum wave function.

to the clarification of basic physical ideas behind the theo- Because of the central nature of the ionic potential under
retical formalism within the independent electron frame-which the photoelectron moves, the final state for the photo-
work. The parallels between the ideas in this formalism andlectron in atomic photoionization can be expanded in partial
those used to describe atomic photoionization are also enwave$®?? that conform to the incoming-wave boundary
phasized. The expressions given in this article can be used mpnditior®

an experimentalist to extract dynamical information on the

molecular ionization continuum from the quantum-state- |kf>:2 i e’i"'Yf‘m(k’)\Iﬁm(r’;k). (1)
specific PADs; the procedure is illustrated in the companion fmx

article on the photoionization of N&.This formalism can Eq.(1), r’ is the position vector of the photoelectron in the

also be employed to predict experimental PADs based upopyyqratory(LAB) frame whose origin is located at the atomic

dynamical quantities obtained from theoretical calculauonsnudeus, and<’=kR’, wherek’ is the direction along which

or from the spectroscopy of high-lying Rydberg states. {he photoelectron is ejected in the LAB frame. The quantity
The, organization of th's article is as follows. In Sgc. I k is the magnitude of the asymptotic linear momentum of the

we outline the construction of the one-electron Cont'”““”bhotoelectron, which is related to the asymptotic photoelec-

molecular orbital for a photoelectron moving in the field of a5, energye, by

diatomic—ion core. Section Il begins with a brief discussion

about the one-electron atomic continuum wave function to _ k?

introduce the basic physical ideas and the machinery of scat- €= 2_me 2

tering theory. In Sec. lll, we present an expression for the

guantum-state-specific PADs of a diatomic molecule baseég\’hen_a Me _deagnatez thhe rehducecri]_ mas_sl of tge helectron.
on the continuum-molecular-orbital decomposition devel-! tomic units are used throughout this article, and the mean-

oped in Sec. Il. The spin part of various wave functions isn9gs of angular momentum quantum numbers that appear in

not explicitly considered in Secs. Il and Ill because we re-th'S article are listed in Table loj denotes the Coulomb

strict ourselves to states of diatomic molecules that follov\,phase shift, which is given by

Hund’s casgb) coupling. In Sec. IV, we discuss the appli- o=oa(k)=arg(1+1—im.Z/k), (3)
cability of the present formalism in retrieving information ) ) o
about the ionization continuum from experimental PADs. WeVNereZ is the net charge on the ion core. In photoionization
also discuss briefly in Sec. IV the possible extension of th@f Neutral speciesZ=1, but we retain the symbd in the
formalism to more general molecular photoionization prob-0llowing expressions because many of the ideas developed
lems. Appendix A contains a brief discussion about varioud” thiS section can be used to describe the ionization con-
matrices that appear in the main text; in Appendix B, wetinuum for multiply charged ions as well. Although is an

show the formal equivalence of the expressions in this articl€"€rgy-dependent quantity, as is clear in E).through its
and those in the open-continuum MQDT. dependence ok, we do not explicitly indicate its energy
dependence to make the notation more compact. In(gg.

Wm(r';k) is the energy-normalized wave function for the
II. CONTINUUM MOLECULAR ORBITALS continuum electron referenced to the scattering ampli§ide

: ’. ; ; 9,32
Photoionization can be considered as an absorption of 'ghe asymptotic form offin(r";k) is given by

photon followed by a half collision between the photoelec- e Im\ 12 1
tron and the ion. The final state reached by the photoabsorp¥,(r’;k) —— (H) >

tion is thus the collision state that describes the scattering

event between the photoelectron and the ion. In this section, x[eixl—SI*(k)e“XI]Ym(F’), 4
we construct the one-electron continuum wave function for a

photoelectron moving in a diatomic—ion field based on theVhere

scattering theory formalisAY. First, we briefly discuss the 1 m.Z
one-electron continuum wave function for a photoelectron  x,=kr— > | 77— e
moving in an atomic—ion field to lay the groundwork for the

discussion of the molecular continuum wave functions. BeWe also designatd,(r’;k) as the partial-wave basis func-
cause a photoelectron always moves under a central potentitbn because it is the basis function that appears in the partial
in the independent electron approximation in the case ofvave decomposition of the continuum state in Er. The
atomic photoionization, the orbital angular momentum quan<oefficients on the right-hand side of E@,) are chosen to
tum numbet for the photoelectron is a good quantum num-ensure the normalization oF,,(r’;k) per unit Rydberg en-
ber. Consequently, the scattering between the photoelectrargy interval. The scattering amplitu& designates the am-
and the ion becomes a so-called “single-channel”plitude ratio of the outgoing and incoming wave components

In(2kr)+ o . (5)
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TABLE I. Angular momentum quantum numbers used in the text.

Laboratory
Angular fixed Molecule-fixed
momentum projection projection Description
N My A Nuclear rotation plus orbital
angular momentum for the
ionizing state
N* M* A" Nuclear rotation plus orbital
angular momentum for the ion
N; M Ay Angular momentum transferred
between the photoelectron
and the ion
J M; A, Total angular momentum
(excluding nuclear and electronic
sping
| m N Photoelectron angular momentum
1 Mo " Photon angular momentum

for each value of 2° and it can be related to the scattering When the ion is hydrogenic, that is, when there are no other
phase shiftp,=p,(k) (modulo ), by the relation electrons except the electron being ionized in the ion-core
S (k)=e? ™. ©6) region, the poteqtial und.er which the. photoelectron moves _is
always Coulombic. In this case, the irregular Coulomb basis
The physical meaning g, will be discussed below. function, g,, cannot be a part of the acceptable continuum
Because the photoelectron moves under the Coulombigave function because of the boundary condition at the ori-
potential in the asymptotic region, the one-electron congin. When there are other electrons, howegecan be a part
tinuum wave function in that region can lexactlyrepre-  of ®,,(r’;k) outside the ion-core region because the bound-
sented as a linear combination of the regular and irregulaary condition at the origin is lifted; the ion-core region is
Coulomb basis functionsf, and g,, respectively. Heref,  effectively treated as a “black box,” and the boundary is
and g, are two linearly independent solutions of the radialmoved tor =r,. The complex interaction between the pho-
Schralinger equation for the Coulombic potential whosetoelectron and the other electrons in the ion-core region is
analytical properties are well documertédnd whose as- nevertheless wholly represented by the scattering phase shift

ymptotic forms are given i3 p (or equivalently the scattering amplitu& and the reac-
(o) 12 tion amplitudeK,) outside the ion-core regidi.The rela-
(1K) (ﬂke) sinx tionship betweenb,,(r";k) and¥,,(r";k) is given by

g i1 1K) =[ 14K (0] i1, (10

1o as can be shown easily from Edd) through(8). We note
Zme) COSX 7 that ®,,,(r";k) is not normalized per unit Rydberg energy
mk . interval and thus introduce another one-electron wave func-

r—oo

gi(r;k) —— —

We thus introduce a continuum wave function that is thellon Zim(f";k) that is properly normalized:
linear combination of, andg, in the asymptotic region =, (r k) =cog 7p) (1 :K). (11)
@ (1K) = i [f,(r:K)— K, (K) gy (r;K)]Yim(F") By substituting Eqs(9) to (11) into Eq. (1), we obtain the
v2r photoelectron final-state wave functidk’) expressed in

terms of 5,,(r";k).
(r>ro). (8 Before we proceed to a discussion of the final one-
Here,r, designates a radial distance from the atomic nucleuslectron state for the molecular photoionization, a comment
to a (fictitious) surface that divides the ion-core region andon the physical meanings of quantities that have been intro-
the asymptotic region. In Ed8), K, is called thereaction  duced so far is appropriate. The scattering phase ghtfar-
amplitudeand is given by ries information on how the ion-core short-range interaction
K,(K)=tar( p;) ) faffects each par_tial-waye channel in the asymptotic regiqn. It
: Py is also an analytic continuation of the quantum defect defined
The reaction amplitudé, represents the ratio ofy with  for the Rydberg states of the atdfhBecause the photoelec-
respect tof, in &,,(r';k). Note that the radial part of tron moves in the deep Coulomb well near the ion core with
®,,(r";k) is real, whereas that oF,,(r’;k) is complex. The a large associated kinetic energy, the dynamics inside the
fact thatg, appears i, (r';k) is a direct manifestation of ion-core region and thug, are not very sensitive to the as-
the presence of other electrons in the ion-core redfon. ymptotic photoelectron enerd§.The sensitivity ofp, to the
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photoelectron energy is roughly proportional to the ratio of(MF) frame. The coordinate systems are defined such that the
the energy variation to the ionization potential of the atom.z axis of the MF frame is along the internuclear axis of the
When the variation of the asymptotic photoelectron energy isnolecular ion and the origin of the MF frame coincides with
small, p; can therefore be approximated to be independent athat of the LAB frame at the center of ma&M) of the ion.
energy and can be compared with the quantum defect for th€hus the two frames are related to each other through a
high-lying Rydberg states of the atom. The complicated enframe rotation by a set of three Euler angkRsWhenever
ergy dependence of the one-electron continuum wave fundhere is no ambiguity, we adopt a convention that a vector
tions @,,(r";k) and E,,(r';k) that stems from the electronic with a prime is expressed in the LAB frame, whereas a vec-
motion in the asymptotic region is compactly represented byor without a prime is expressed in the MF frame. Compari-
the well-known properties of the regular and irregular Cou-son of Egs(1) and (12) shows that the rotation matrix ele-
lomb basis functiond, andg, and the Coulomb phase shift mentD'n’;A(R) appears in Eq(12) because the one-electron
gy 2429 wave function ¢, (r;k,R) is expressed in the MF frame.
The wave functiorE,(r';k) [and ¥, (r";k)] is the one-  Here, s, (r;k,R) is the energy-normalized one-electron wave
electron eigenfunction of both the orbital angular momentunfunction for the continuum electron referenced to the MF-
operator and the atomic Hamiltonian. Therefore, it can bd&rame scattering matrixS matrix). The asymptotic form of
identified as thecontinuum atomic orbitalsetting aside the y, (r;k,R) is given by®
asymptotic boundary condition that should be applied to it
through Egs(1) and(11). Several differences exist, however, —= mg\ Y2 1
between=,,(r';k) and bound atomic orbitals that are com- #;,(r;k,R) —— (H) >
monly encountered in electronic structure calculations.
Whereas a bound atomic orbital is defined only at a specific
o_rbital energy,=,,(r';k) is defined at every energy For a % 2 [eix|f5”,_S)\If(k,R)e—ixV]Yl,}\(F)_ (13)
given photoelectron energy, an infinite number of I"=\|
Him(r’;k) exist that are degenerate. Being a continuum wave ) ] ]
function, Z,,,(r";k) is normalized to the Dirac delta function, 1€ molecular wave functio,(r;k,R) is also ?eS'Qné}ted
that is, Z,,(r';k) is an improper vector in the physical Hil- @S the partial-wave basis function, just ¥g,(r"k) is in
bert spacé® For this reason, we cannot interpret atomic photoionizationsy,, is the (,1') element of theS
Ex.(r';k)E,m(r'";k) as representing the probability density matrix for a given value ok, which is thez-axis projection
of finding a photoelectron at a specific point in the configu-0f | in the MF frame. Thes matrix is the multichannel ana-
ration space, unlike the case for bound orbitals. These diffedog of the scattering amplitudes, defined in Eq.(4). To-
ences are manifestations of the fact tHat,(r’;k) is defined ~ gether with the incoming-wave boundary condition pre-
for the continuum electro(E>o)_ sented in Eq(12), the form of Eq(lS) ensures that for |al’ge
The expressions for the final state in molecular photo! the continuum wave function is composed of one outgoing
ionization can be obtained following a similar procedure.Coulomb wave withl and the incoming Coulomb waves
The fact that the molecular ion has a structure associateyith all 1”, consistent with the time-dependent representation
with it, however, introduces two important modifications in Of the photoionization proces§*
the resulting expressions. First, any one-electron wave func-  Inspection ofy;, (r;k,R) in Eq. (13) clearly reveals the
tion for the molecular ionization continuum should be refer-molecular nature of the continuum wave function despite its
enced to the molecule-fixedF) frame. Second, the poten- asymptotic form. Although the photoelectron experiences the
tial under which the photoelectron moves in the ion-corespherical Coulombic potential when it is in the asymptotic
region is noncentral, and the scattering between the photdegion, it moves under the nonspherical molecular potential
electron and the ion core becomes a “multichannel”When it is inside the ion-core region. Thuss not a good
problem? The photoelectron motion in the asymptotic re- quantum number in this region, and thenixing between
gion is nevertheless governed by the Coulombic potential adifferent partial waves, or equivalently thechanging colli-
discussed in Sec. I, and the one-electron final-state wav@on between the photoelectron and the ion core, can occur
function for the photoelectron in the photoionization of aWwhen the photoelectron emerges from the ion core. In the
diatomic molecule can be expanded in partial wa¥%&&hat  independent electron approximation, howewerjs still a
conform to the incoming-wave boundary condit®rjust as good quantum number because of the cylindrical nature of

for the one-electron final-state wave function for the photothe diatomic—ion-core potential. The possibility — of
electron in the atomic photoionization [-changing collisions within the samemanifold is indicated

in Eq. (13) by off-diagonal elements of th&' matrix,
S,A,,(I # 1"). TheS* matrix designates a portion of the fi8l
matrix that is block diagonal in. S\ gives the amplitude
ratio of the outgoing Coulomb wave withand incoming
Here,k’ ando; are defined in the same way as in the atomicCoulomb wave witH’ for each value oh. It is important to
photoionizationsee Egs(2) and(3)], andR is the internu- note thaﬁ}], being a continuum property, is a function of the
clear distance of the molecular ion. In E42), r designates asymptotic energy of the photoelectron and the internuclear
the position vector of the photoelectron in the molecule-fixeddistance only. Th&" matrix is a unitary matrix, and it com-

|k’;R>=% ile ioryx (KD (R)y(r;k,R). (12
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TABLE II. Glossary of terms used in the text.

Term
Atomic case Diatomic
(Spherical potential (Cylindrical potential Descriptiol
oi(k) a(k) Coulomb phase shift
| ay Electronic eigenchannel index;
Orbital index

Si(K) &y g”l,(k,R) (1,1") element of the scattering matrix

(for a given value of\)
Ky (k) &y KI"I,(k,R) (1,I") element of the reaction matrix

(for a given value of\)
Qi UI‘aA(k,R) (1,1") element of the electronic transformation matrix

((I,,) element for a given value of)
n(K) ™ Electronic eigenphase shift
k") |k’;|§) Photoelectron final-state wave function
Wim(r':k) Ui (rik,R) Continuum one-electron wave function referenced to the
scattering matrix;
Partial-wave basis function
Dy (r';k) on(r;k,R) Continuum one-electron wave function referenced to the
reaction matrix

Eim(r’;k) g’;A(r;k,R) Electronic eigenchannel wave function;

Continuum orbital

#The descriptions in parentheses apply only to diatomic molecules.

pletely specifies the asymptotic outcome of the collision beWhereas thes* matrix is a complex unitary matrix, thig*
tween the photoelectron and the ion core for a gixen matrix is a real symmetric matrita real Hermitian matrix

For the same reason as for the atomic continuum wavé&hus ¢, (r;k,R) has a real radial part whereas the radial part
function, the one-electron continuum wave function for theof i, (r;k,R) is complex. Using Eqs(13) through (15), it
molecule can be expressed as a linear combinatidp @fid  can be shown tha#, (r;k,R) and ¢, (r;k,R) are related to
g, in the asymptotic region. We thus introduce the continuumeach other by the following equalit§:**
wave function tha3t8 is referenced to the MF-frame reaction
matrix (K matrix),>® ¢, (r;k,R), which is the multichannel . _ -1 .
analog of®,,(r";k) for an atom wm(r,k,R)—lZ‘,M (K e (koR). (16)

Just asS, andK, defined for an atom do, both ti& and
K* matrices completely specify the asymptotic outcome of
the electron scattering from th@near) molecular ion core
—K} (KRG (KT (F) - (r>1). for a given\. The effect of the complex interactions that the
(14) photoelectron experiences inside the ion-core region is thus
wholly represented by th& matrix outside the ion-core re-
Once againy is a radial distance from the CM of the ion gjion. We emphasize that th€* matrix defined in Eqs(14)
core to a(fictitious) surface that divides the ion-core region and(15), like K, that appears in the atomic continuum wave
and the asymptotic regioh,is the unit matrix, an&* is the  function, characterizes only the short-range collision dynam-
MF-frame reaction matrix for a given. TheK matrix is the  jcs between the photoelectron and the ion core because of the
multichannel analog of the reaction amplitule that ap-  anisotropic molecular-ion-core potentf4?® Because the
pears in Eq(8). The full K matrix is block diagonal in\ for  electron moves in the deep Coulomb well near the ion core,
the same reason th® matrix is. The matrix elemerk),  the short-range dynamics and thus tematrix are rather
signifies the ratio of,, with respect tdf, in ¢, (r;k,R), and insensitive to the asymptotic photoelectron energy, just,as
it is a function of the photoelectron energy and internucleais insensitive. In many applications, thé matrix can be
distance only, just asfl, is. The relation between tfema-  treated to be approximately independent of energy.

1
Qol)\(r;kiR): F 2 [f|r(r;k)5||/

AN

trix and theK matrix is given b° To this point, the discussion reveals the nearly one-to-
one correspondence between various quantities defined for
> S (S KN ) = S tiKD,, (159  molecular and atomic photoelectronS}, K*, ¢, (r;k,R),
II

and ¢, (r;k,R) are the multichannel analogs &, K|,

W im(r':k), and®,,(r’;k), respectively. This correspondence
becomes more evident when we consider the scattering am-

)\_|+in (15b) plitude S, and the reaction amplitud&, defined for the
=ik atomic photoelectron as the diagonal elements of the scatter-

which can be rewritten in matrix notation as
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ing matrix and the reaction matrix, respectivégee Table

II). Because of the central nature of the atomic potential, the §2A(r;k,R)— E |,,
off-diagonal elements of these matrices are all zero in the "
a_ltomlc cas.e. Note, howe\{er, that the one-electron wave func- —gy(r:k)(sin 7_”_2 )Y (F)
tions ¢, (r;k,R) and ¢, (r;k,R) defined for the molecular A
photoelectron are not the eigenfunctions of the molecular

Hamiltonian in the ion-core region, as can be seen from th
off-diagonal elements of th8* andK* matrices. The atomic

counterparts of them r';k) and ®,,(r";k), are eigen- ) . .
P Wim(r":K) im(r":K) g (21) into Eq.(11), we can write the one-electron continuum

functions of the atomic Hamiltonian throughout the configu- h ‘ he i . bound di
ration space for the photoelectron in the independent electropiat® that conforms to the incoming-wave boundary condi-

approximation. Indeedy, (r;k,R) and ¢, (r;k,R) can be re-
written in terms of another set of one-electron wave func-
tions that are eigenfunctions of the short-range molecular
Hamiltonian based on the eigenchannel formulation of scat-
tering theorny?>244243The derivation is briefly outlined be-

fiu(r; k)(COS7TT )

(r>ry).

(22)
She wave functiorfﬁA(r;k,R) is designated as thadectronic
eigenchannel wave functigh*® Finally, by inserting Eq.

|k';R>=I2 i'e”ioiy¥ (k))DM (R)
mA

low.

Because th&™ matrix is real and symmetric, it can be

diagonalized by the unitary transformation

Kl)],=z Uf‘ tan7T7' )Ua ("
an
—2 U, (tan 77y )ul, (179
Equation(173 can be written in the matrix form
KM=UMtan 77)(UM)T, (17b

whereU" is anelectronic transformation matrithat diago-
nalizes theK* matrix, (UM)" is the transpose ob*, and
tan 77" is a diagonal matrix with the element tam), on the

ayth row. Becaus&™ is a real matrix, we may choos#" to
be a real orthogonal matrix. We designatg as theelec-
tronic eigenchannel indear the molecular orbital indexand
Tz)\ as theelectronic eigenphase shift

Using Eq.(17) and the real unitary property &f, it can
be easily shown that

[1+iK M 1=UNe 1™ cos ) (UM)T. (18)

Here, e ™ cosm is a diagonal matrix with
Y

e ', cosq-rrﬁA on the a,th row. Equation(18) can be in-

serted into Eq(16) to obtain

gk, R)=2, > U},

1"y

e " (cos 7 )
a

XU}, @ina(iKR). (19
Using Eq.(14) and the normalization properties bf,
N S AN —
§|: Ula}\u|a)’\_5a)\a;\v % Ula)\UI’a)\_&IIU (20)
we can rewrite Eq(19) as
Y
dn(rikR=2 U, e g, (rik,R), (29)
ay

Whereg’;k(r;k,R) is given by

xZ Ub, e gl (Nk.R). 23)
Before we proceed to the next section, we should inves-
tigate the physical meanings ofra , Um , and

gzx(r;k,R), which were designated as the electronlc eigen-

phase shift, the electronic transformation matrix element, and
the electronic eigenchannel wave function, respectively.
gzx(r;k,R) defined in Eq.(22) is an admixture off, and g,

with variousl just like ¢, (r;k,R) in Eqg. (14). Mathemati-
cally, thegzx(r;k,R) and theg), (r;k,R) are independent ba-

sis sets that are related to each other by the orthogonal trans-
formation matrixU* (aside from the factor com-’;x). Thef,

andg, that appear irgﬁk(r;k,R) are, however, weighted re-
gardless ofl with the same quantities, (:01371\)[A and
sin wﬂx, respectively, unlike those i@, (r;k,R). This obser-
vation indicates tha.fzx(r;k,R) is an eigenbasis that diago-
nalizes thek™ matrix?*%3 Because th&* matrix character-

izes the scattering process between the photoelectron and the
ion core for a givern, gﬁx(r;k,R) is the eigenfunction of the

collision process described by th€* matrix. In addition,
becausafﬁ,x(r;k,R) andfz,(r;k,R) (a) # ay) are not mixed
A

by the scattering of the electron from the ion core, there
should be no short-range interaction that couples
gzx(r;k,R) and 52,(r;k,R) 24 This lack of short-range mix-

A

ing means thaEZx(r;k,R) is also an eigenfunction of the

short-range MF-frame electronic Hamiltonian at a given as-
ymptotic energy of the photoelectron and the internuclear
distanceR.

Quantum mechanically, any linear combination of vari-
ous Coulomb basis functionk, andg, , with the same and
R can be considered an eigenfunction of the MF-frame elec-
tronic Hamiltonian as long as it conforms to the appropriate
boundary conditions because all of the linear combinations
are defined to be degenerate. They are related to each other
by an appropriate unitary transformation. Among these
eigenfunctions, however, the partial-wave basis function
¥in(r;k,R) and the electronic eigenchannel wave function
gzx(r;k,R) stand out because of their physical significance.

Uin(r;k,R) is the basis function for the partial-wave decom-
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position of the continuum wave functiofk’;R). Because described by Hund’s cage) coupling. The derivation given
asymptotically it is composed of the incoming and outgoingin this article can be easily extended to other Hund’s cou-
Coulomb waves, the physical boundary condition at infinitypling cases. The approximations made in the derivation are
that is appropriate for the photoionization process can balso discussed in detail in this section. We note that the same
easily applied tay;, (r;k,R). On the other handg’;k(r;k,R) approximations were used in the earlier literature on this sub-

is the eigenbasis for the collision between the photoelectroffct without explicit justificatiort*’

and the molecular-ion core that is described by the electronic  The wave function for an ionizing state that follows
K* matrix?#*31t is also the one-electron eigenfunction of the Hund's caseb) coupling is given by the Born—Oppenheimer
short-range electronic Hamiltonian at a fixed nuclear geomProduct

etry. 1/2 R

Considering that the short-range Hamiltonian is what |\PpyNAMN>:(W) |pA>XV(R)D,’\“,,1A(R). (29
characterizes the molecular nature of the scattering process,

§2x(r;k,R) can be appropriately designated as¢batinuum  Here, v is the vibrational quantum number for the ionizing
molecular orbital Just like the continuum atomic orbital, the State, andb represents quantum numbers needed to specify
continuum molecular orbitals have the following properties:the ionizing state completely. All the angular momentum

fzx(“k'R) is defined at every energy, For a given photo- quantum numbers are listed in Tabley|(R) is a vibrational
electron energye, there are infinite number of® (r,k,R) wave function in the ionizing state that we set to be real. The
) a, (1K,

that are degenerate. Becaude(r:k,R) is an improper vec- wave function for the composite state of the photoelectron
9 ) e prop and the ion that follows Hund'’s ca¢l) coupling can also be

tor in the physical Hilbert space, we cannot interpretyyitten as a similar Born—Oppenheimer type product using

§§:(r;k,R)§§x(r;k,R) as representing the probability den- the one-electron continuum wave functions given in @)

sity of finding the electron at a specific point of the configu- ON* 4+ 1

ration space. |V e ena e ) = | —g——
With the above interpretations @f;k(r;k,R) in mind, it 8w

is straightforward to assess the physical meaning@ghnd

1/2 . .
Xo+(RID 4 4+ (R)

x> ile 1Y (k) DI (R)

U,”ax. The electronic eigenphase-shiiftA is a scattering fm
phase shift associated with the electronic eigenchannel wave ~ ) -
function gﬁx(r;k,R) at a givenk andR. It carries informa- XAl (rikR)[PTAT)]. (25

tion about how the ion-core short-range potential acts orrere,»" represents the vibrational quantum number for the
each electronic eigenchanneﬁ,A is also an analytic continu- ion, p* represents the quantum numbers needed to specify

ation of the electronic quantum defect defined for the Ryd{he state of the ion completely, and-(R) represents a vi-
berg states of moleculé&Because of the insensitivity of the Prational wave function in the ion electronic statedesig-
short-range scattering dynamics to the energy of the photdlates the antisymmetrization operator.
electron,r’;h can be compared with the corresponding elec- Several approximations are implicit in writing the wave

tronic quantum defect of high-lying Rydberg states obtainec]unc“ons as in Eqs(24) and (25). The spin parts of both

from MQDT analysis of Rydberg specttaThe correspon- wave functions are not exphcnly written because the spms,
N ' ) are decoupled from the dynamics when we assume Hund’s
dence betweem, defined for molecules angl defined for

. ) . \ case(b) coupling. This choice is equivalent to assuming that
atoms can be recognized immediatéhee Table Il Ui, ., the spins remain coupled throughout the ionization process
which is defined to be the element of the electronic transforto the spin value of the ionizing stat&€The wave functions
mation matrix that diagonalizes ti€" matrix, can be inter- given for both the ionizing state and the final state are also
preted as the projection of a partial-wave wave function onttnot parity adapted. Because we do not consider the interac-
the eigenstate of the collisiofor of the short-range Hamil- tions that remove the degeneracy between different parity
tonian for a givenk andR. As for Tﬁx, U?aA can be com- states, the final results of our derivation remain the same
pared with the Rydberg-series mixing coefficient that can bavhen we use parity adapted wave functions, provided that
determined from the spectroscopy of Rydberg stétes. the incoherent sum over each parity component is performed
at the appropriate stage. Finally, by writing the final-state
wave function as Born—Oppenheimer products as in Eq.
(25), we are ignoring the coupling between nuclear vibra-
tional motion and the electron being ionized when it is near
The dynamics of one-photon ionization in the weak-fieldthe ion core. When the photoelectron is inside the ion-core
limit is governed by the electric dipole-moment matrix ele-region, the vibrational wave function for the composite state
ments that connect the ionizing state to the ionization conef the photoelectron and the ion can be slightly different
tinuum. Thus an expression for the quantum-state-specififrom that of the isolated ioff
PADs can be obtained from expressions for these dipole ma- The transition electric-dipole-moment matrix element
trix elements. In this section, we derive an expression for thehat connects the ionizing state and the final state in our
PAD when both the ionizing state and the state of the ion aréormalism is given by

Ill. DIPOLE-MOMENT MATRIX ELEMENTS AND
PHOTOELECTRON ANGULAR DISTRIBUTIONS
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<\pp+v+N+A+M+;k’|D;/.O|\PpVNAMN> frame, ands is an index that runs over all electrons in the
molecule.DM0 stands for the electric dipole-length operator,
v where uy=0 for linearly polarized light with its electric vec-
PYNAMy tor pointing along thez axis in the LAB frame, angk,=*1
for circularly polarized light that propagates along thaxis
E roYa, (F1) in the LAB frame. We can express the dipole-length operator
0 that appears in Eq26) in terms of the spherical harmonics
defined in the MF frame

E<\Pp+v+N+A+M+;k’

2 riE
s

A 1/2
?) <\I,p+V+N+A+M+;k/

X

4 (26)
prvNAM N> ’ - x A R

2 oY1, (F)=2 12 DL (R)Y1,(Fo). 27
wherer{ is the electronic coordinate expressed in the LAB : ® a
frame, €’ is the unit polarization vector of light in the LAB  Combining expressions in Eq&4) through(27), we obtain

(Wprpenrarm ik DV ponam,,)
4\ 12 : A N+ ~ ,\ A x A
:(?) W(2N+1)1/2(2N++1)1’2“% i"e'UlY,m(k’)JdQ Dy +(RID (RIDL (R)Dy A (R)
o

XJ dR XV+(R)[<¢|A(V;k.R)|<p+A+|A]ES rsY1.(T9)[PAYX(R). (28)

The first integral in Eq(28) can be evaluated readily Under the independent electron approximation, &4) is
using standard angular momentum algeBrand the result simplified to a one-electron integtal
can be found in the literatute?’
+ ~ ~ * A PN rl}\eiﬂl)\:J dRXV+(R)
f dQ Dy, +(RIDm(RIDS L (RIDY 4(R)
X (K R)[rY 1, ()] ¥(1) x(R). (32

In Eqg. (32), r is the coordinate of the electron being ionized,

= 8m2(2N,+1)
N
' and y(r) is a one-electron orbital of that electron in the ion-

(= DM —HgHA T N NT N izing state. By inserting Eq.19) into Eg. (32), we can ex-
My —-MT M, pressr,€' 7 in terms of the continuum eigenchannel quan-
titi

X( I 1 N, )(N N* Nt) Hes

-m -MJ\A —AT A : _

Mo t t r“\e”’“:E dR X,,+(R)U|)\a}\e”ﬂ};%<§2)\(r;kvR)|r

X( 1 N, 29 a

Ao AN XY 1, (D7) xu(R). (33

Here, N, designates the angular momentum transferred be-

. . As noted in the previous section, the continuum quanti-
tween fche _photoelectron and the ion with and A, denoting tiesU}, andr, are dependent on the internuclear distance
its projections along the LAB frame and the MF-frame A A

axes, respectively, R and formally cannot be .taken outsid_e. the integral. When

N the R dependence of continuum quantme%% and T)O\(}\ is
Ne=N"—N=1-1. (30 small and smooth over the range Bf where the overlap
The last integral in Eq(28) represents the vibrationally betweeny,+(R) and x,(R) is significant, Eq.(33) can be

averaged electronic dipole-moment matrix element that conwritten as

nects the ionizing state to the continuum partial wave with

angular momentum quantum numbeand its projection on roelm=S gr em?ﬁ M 34

the internuclear axia.>?"**We designate it as;, e 7 ' % ly ™ e 34

mem_f dR x,+ (R (¢ (r;k,R)[(p* A +|A] where

szzf dR x,+(RI(E) (K R)[IY 1, (F) (1) x,(R).

xg rsY1,(fs)|pPA)x.(R). (31) @5
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Here, sz represents the vibrationally averaged electronicextract detailed dynamical information pertaining to the ion-

dipole-moment matrix element that connects the ionizingZation continuum from molecular photoionization experi-
electronic orbital to thexth continuum molecular orbital for Ments.. _ _ _
each). It is important to note thal}, is real because the By inserting Eqs(29) and(34) into Eq.(28), we obtain

an expressmn for the transition electric-dipole matrix ele-
radial parts of electronic wave functlons are real and also

because the vibrational wave functions are chosen to be red "

In Eq. (34), U Iy and 7\ Ta, are the representative values of

Up,, andr, , respectively, over that range & where the (vt am | D gl Wponamy)
vibrational overlap is significant. The equality in E84) is

Y
exact ifU}, ande'""e, are monotonically varying functions 47\ 12
o e ey y vaying =(—) (2N+1)Y2(2N* +1)12S
in this range oRR, in which casely, and Ta, CaN be chosen 3 i
by the mean-value theoretfOtherwise, the equality should _ . —
be considered an approximatigreminiscent of the Franck— X (=)' ey, m(k") >, U?QAG'W%MQAE
Condon approximation for bound—bound transitiorand N N
A A ; ; ,
Uy, and7, can be taken as the vibrationally averaged val- X (— 1)k A el AMNM ) (36)

ues ofUX and Ta , respectively. The approximation that
the varlatlons ou} i, and rf;A with R are small and smooth . \va define

is physically reasonable when we consider the direct photo-
ionization of a bound state with small vibrational quanta. N
This approximation is likely to break down, however, when ptM* N N Ny
CUANMNMy)=(=D* "M 2N+ D| 0yt
some dynamical phenomena, such as a shape resonance, oc- t
curs in molecular photoionization. It can be seen from Eq. | 1 N, \(N  N* N,
(34) that the matrixU*, which is the vibrationally averaged ( )(A At A )
version of the electronic transformation mattii?, acts as a ‘
unitary matrix that causes the rotation between two complex x( I 1 N )
dipole lengthst, = {r & ™} andM* = {sze“”ix}. N op A
Equationg34) and(35) are the key results of this analy-
sis. These equations are important because they express thiee 34 symbols given in Eq(37) determine the selection
separation of the dipole-moment matrix elements that goverrules for the bound—free transitions when both the interme-
the photoionization dynamics into two parts: the quantitiediate and the final states are described by Hund’s ¢ase
that are the properties of the continuum wave functions onlycoupling. Because photoionization selection rules for various
and the quantities that depend on both the ionizing state andund’s coupling cases have already been discussed in the
the ionization continuum. In atomic and molecular physics literature?®*°we do not discuss them explicitly here.
extensive experimental work has been performed to deter- Note that in Eq(36), the summations ovdrand «, can
mine either continuum-related quantitiésuch as quantum be truncated at some finite val(gee Appendix A The sum-
defects determined from Rydberg spectrosgapyquantities mations ovem and\, which are qguantum numbers related to
that depend both on the ionizing state and the continuunh, are also truncated accordingly. The corresponding summa-
(such as electric dipole-moment matrix elements determinetions in the partial-wave expansion of the continuum wave
from photoelectron spectroscopyFor atomic photoioniza- function are not restricted in Eq12). Because of the light
tion, the relationship between these two types of quantitiegnass of the electron, the centrifugal barrier associated with
has been used extensively to interpret various experimentéhe electronic motion near the ion core is very large, and the
findings in a unified fashiof%18-23t has also been shown penetration of the photoelectron into the ion-core region is
that both the dipole-moment matrix elements and the scattepegligibly small wher is large. On the other hand, the elec-
ing matrix elements can be extracted by combining variougron density of the bound electronic orbital is concentrated in
experimental dat&**4"8 |n  molecular photoionization, the ion-core region. In addition, the single-center expansion
however, systematic attempts to relate experimental findingsf tightly bound molecular orbitals usually shows rapid con-
in photoionization with collisional parameters are fame-  vergence with. Consequently, the integrals in E(2) be-
spite the close relationship between electron—ion collisiorfome negligible whenl is very large. Because the
and photoionization, which has long been realized in thefy L(r:k,R) and they;, (r;k,R) are related to each other by
MQDT framework. This rarity stems from experimental andthe unitary transformatiot)®, «, is also restricted whehis
theoretical complexities inherent to the molecular problemrestricted.
For instance, whereas the partial wava® the collision The intensity of photoelectrons, or the rate of ejection of
eigenchannels in atomic photoionization in the central-fieldphotoelectrons, associated with the ionization event
approximation, this situation is not the case in molecules afp™»"N*A ")« |pvNA) and detected in the LAB-frame
discussed in the previous section. Equatied) permits usto  solid angle elemendQ=sin §d6 d¢ is given by’=°

-m ue —M

(37
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M* MMy

XD}LO|\PpVNAMN>
N
X<\vaNAM,’\‘|DMO|\Pp+v+N+A+M+;k’>pMNM,’\"

(39

Here, a4 is the fine structure constark, represents the pho-
ton flux of light with frequencyw, and p:‘ANM;\‘ designates

elements of the density matrix for the ionizing statthat
specifies not only the populations of the differévt, sub-

levels of a givenN level in the ionizing state but also the
coherences between these levels. Because we consider

tthg scattering phase shift§’;YA and g; . WhereasU
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e EhwS E —1)m

Im\ |'m
1/2 I K L
(—m m’ M)

(21+1)(21"+1)(2L+1)
X
41
I 1" L —}\
(O 0 0>7N+Im)\l/m I\ 2 Ula)\ I"a ’M)\
a)\a

,BLM:

NG

N = o
XM, el[ﬂ'f(TC,A Ta,xy)+lf| o]
N

In Eq. (43), B_u depends not only on the magnitudes of
electronic dipole-moment matrix eIemerM’;A , but also on

A
Loy and

(43

photoionization from a specific quantum level in the ionizing 7o, €an be assumed to be independent of energy, as dis-

state, the summation ovét is omitted in Eq.(38). For an
isotropic ensembleps,NM, is simply given by
N

1
N = = ’
PrMi T N T OMMy (39

cussed in the previous section, the Coulomb basis functions
and gy have a nontrivial dependence on the asymptotic pho-
toelectron energy. The value ofg, , is, however, much less
sensitive toe for two reasons. In contrast to their behavior at
the asymptotic regionf, and g, are quite insensitive t@
near the ion coré® Thus M2 , whose magnitude stems

a, !

When (n+1) REMPI is employed to study the photoioniza- mostly from the ion- core regl_on, is insensitive ¢dn most
tion from a specific quantum level in the intermediate statecases. Also, whereas; itself is strongly dependent og,

the specific form ofp,':',I WM for the intermediate state de-

o,— oy does not vary rapidly witle. Using the properties of
the gamma function and Stirling’s approximatitit can be

pends on the experlmental geometry. Various forms Ofshown that

pM M can be found in the literature for different methods by

Wh|ch the ionizing state is reach&t?’*°Inserting Eq.(36)
into Eq. (38) we obtain

Fﬁ 2 E YNHImAl m/ N\’

ImA 1"'m’\/

1(0, </>)—

XYim(K)Y (k) 2 UL, Uy, ,M“

LY)\LY

’ . ) '
% M)\r el[ﬂ(r};)\fra,)\,)+(r|7(r|/],

G

(40

where

Y marmoe = 2N+ 1) (2N +1)(—i)'!

x 2 22
MEMGMY NN, o
X C(INMNM yu)

XC(l'x'm'N{MW')pENM,N. (41)

>
In Eq. (40), 1(6,¢) can be recast in terms of the spherical Tay

harmonics using the Clebsch—Gordan séfié&s
1(0,0)= 2 2 BumYim(6,¢), (42
L=even M

where

™ ’ K ’ ' 2
= (1=1)+ 5 (=1 (141" + 1)+ O(K?),
(44)

For most small diatomic ion¥ varies typically less than
0.01 a.u. over the energy span of a few rotational levels
within the same vibrational manifold. HencMﬁ,h and g

remain approximately the same for different ion rotational
levels within the same vibrational manifold. The form of the
PAD for a given quantum level of the ion, which is described
by B.m, can also be approximated to be independent of en-
ergy over an energy range on the order of 100 meV.

g —0)=—

IV. DISCUSSION

We have derived in this article an expression for the
quantum-state-specific PADs from direct photoionization of
a diatomic molecule based on the molecular-orbital decom-
position of the ionization continuum. The resulting expres-
sion for the quantum-state-specific PADs is dependent on
two distinct types of dynamical quantities, one that pertains
to the ionization continuum and the other that depends both
on the ionizing state and the ionization continuuﬂﬁ" and
can be classified as the former, whereag cIearIy
belongs to the latter. Becausé\ andr descrlbe only the
dynamics in the ionization contmuum they should be com-
mon in photoionization processes from different ionizing
states when the asymptotic photoelectron energy and the
rovibronic state of the ion are the same. Hence, the present
formalism allows for the maximal exploitation of the com-
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monality between different photoionization processes in deeal parameters in Eq43) is to fit simultaneously quantum-

scribing the direct photoionization of a molecule. The state-specific PADs from two or more electronic states. As
present formalism also enables the experimental investigeemphasized repeatedly, the ionization continuum reached
tion of the ionization continuum by studying quantum-state-from different photoionization processes is the same as long
specific PADs. as the asymptotic photoelectron energy and the rovibronic

It is straightforward to employ the expression derivedstate of the ion produced are the same. TU[{)(%\ and ?ZA

here to predict experimental PADs based on the dynamicalhgyig e the same for photoionization processes from dif-
quantities obtained from theoretical calculations. It has beefarant electronic states when the above conditions are met,

shown that the dynamical quantities that pertain to the mo\'/vhereasMﬁ is specific for a given electronic state being
A

lecular ionization continuum, as well as the dipole-moment

matrix elements that couple an ionizing state to the ionizalomzed' Consequently, the number of independent param-

tion continuum. can be found @b initio calculations within eters in the simultaneous fit of experimental PADs from mul-
the independe,nt electron approximatBiZ-%6 Once these tiple electronic states increases much more slowly than the

ab initio results are available, they can be substituted into thgumt?;r oLlndepende(;nt datg pqlnts ][n Tlhehm’ dWh'Ch, mlakes
expressions given in this article to yield quantum-state-poss' e the unique determination of all the dynamical pa-

specific photoionization cross sections and PADs associatdg Meters necessary to specify the photoionization dynamics
with each quantum level of the ion. of multiple electronic stateand the dynamics in the ioniza-

Equations(42) and (43) can also be used to fit experi- tion continuum. This procedure is illustrated in the compan-
mental PADs to obtain the dynamical parametétd ion article for the photoionization of the N@ 23 (y=0)
_ \’

25+ 1
\ N o andD 23" (v=0) states’
U'ax’ and To The quantum-state-specific PADs from a In this study, we have derived a theoretical expression

single electronic state of a molecule are not, however, suffitor quantum-state-specific PADs from direct photoionization
cient to retrieve all the dynamical parameters that appear igf 5 diatomic molecule in which both the ionizing state and
Eq. (43). As shown in our previous report of the complete he state of the ion follow Hund’s cage) coupling. The
guantum-mechanical description for the photoionization Ofpresent formalism, which is based on the independent elec-
the NOA 3" (v=0) state;"~*?magnitudes and phases of the approximation, can be compared to the “single-
electronic dipole-moment matrix elements that CONNect gpannel” partial-wave formalism for atomic photoionization
given ionizing state to each partial wave in the |on|zat|on(See Sec. Il and Table)# and should be regarded as the

gonltlnqum, Wr;Ch are dleS|g|1nated % ;md ﬂ%' TeSPEC-  starting point for theoretical improvements to include more
tively, in Eq. (31), completely specify the photoionization .,hex" nhotoionization phenomena. It nevertheless pro-

Qynamlcs from the lo,mzm% sta@;\. The dy_rlamlcal pgrametergides a unified description for the direct photoionization of a
in the present fgrmahsnM ay+ Ule,» and Tay conta_ln,.on_ diatomic molecule that explicitly incorporates the molecular
the other hand, information on the dynamlcs in the IOnlzatIOI'hature of the pr0b|em_ It also provides a theoretical frame-

continuum in addition to dynamical information on the work for the experimenta| Study of the dynamics in the mo-
photoionization from a given ionizing state. Consequently)ecular ionization continuum.

H P N . . .
whereas we can uniquely determing and », from M;, , It is relatively straightforward to extend the present for-
U,”ax, and?ZA using Eq.(34), the reverse is not possible.  malism to the photoionization of a diatomic molecule that

One solution for this indeterminacy is to use the infor-follows other Hund's coupling cases by employing one-

mation obtained from the spectroscopy of high-lying Ryd_electron continuum wave functions that explicitly account
o . (=7 -

berg states in fitting experimental PADs and reduce the nunfor the electron spifi! The present formalism can also be

ber of fitting parameters. As discussed in Sec.GiaA and 9eneralized to describe photoionization of polyatomic mol-

— . . o ecules using the final-state one-electron wave functions that
T, can be approximated by the Rydberg-series mixing co- .
A depend on molecular geometry. For linear molecules, the for-

efficients and the electronic quantum defects of high-lyingn, 5jism presented in this article can be directly extended pro-
Rydberg states, respectivéfyassuming that we ignore their \iged that the ion is also linear. For symmetric-top mol-
weak energy dependence and provided that the vibrationglo,jes \ in the present formalism should be interpreted as
quantum nur_nber of the Rydberg statgs IS th.e same as that e projection ofl on the molecular figure axi§. The one-
the residual ion produced after photoionization. Under thes,q tron continuum wave function for a symmetric-top mol-

conditions, the remaining dynami;:al pargmeters in the fit ar&.ule should be symmetry adapf8d°as is the bound mo-

only a set of real parameterMax, which can then be lecular orbital.

uniquely determined from quantum-state-specific PADs from  To describe various autoionization phenomena, the more

a Single ioniZing state. From a practical Standeint, this fit i%enera| MQDT formalism that exp||c|t|y accounts for the

easier to perform than the fit of experimental PADs with  closed channel contribution should be emplo§&tf:®* In

and #, as fitting parameters. Admittedly, however, this thjs case, however, the concept of a one-electron orbital that

method works only when the approximation is valid thatparametrically depends on the molecular geometry should be

U}, and7, are energy independent and when the spectrodiscarded because the breakdown of the Born—Oppenheimer

scopic data are available for high-lying Rydberg states.  approximation in the asymptotic region should be fully taken
The more satisfactory solution to obtain all the dynami-into account.

J. Chem. Phys., Vol. 104, No. 12, 22 March 1996

Downloaded-06-Jan-2011-t0-171.64.124.91.-Redistribution-subject-to-AlP-license-or-copyright;-see-http:/jcp.aip.org/about/rights_and_permissions



4566 H. Park and R. N. Zare: Photoelectron spectroscopy. |. Formalism

ACKNOWLEDGMENTS toelectron is less than 2 eV, the inclusion of ugf (b=3) or

H.P. is grateful for a Franklin Veatch Memorial Fellow- g(1=4) waves in the ionization continuum is shown to be

. . . . 1-13,62,63
ship from Stanford University. We acknowledge the supportSUﬁcICIent to explain experimental daita:

)\ . . B
of the National Science Foundation under Grant No. PHY- The yalue Oflma determines the sizes Of various scatter-
9320356. ing matrices because the number of partial-wave channels

involved in the scattering process for a givens given by
IN=1)..—[\|. The MF-frame scattering matrig" and the
MF-frame reaction matriX* arel}x |3 matrices. The elec-

In this Appendix, we discuss the specific form of varioustronic transformation matrixJ* is also anlyx|} matrix.
scattering matrices that appears in the main text. As disGeometrically,U* is an I3x 1} orthogonal matrix that de-
cussed in Sec. Ill, the summations in E86) can be trun-  scribes a rotation if3-dimensional spac¥.Because a rota-
cated. In theoretical calculations, the value of maxiniuim tion in the|3-dimensiona| space can be decomposed into a

the summation| ..., can be determined by variational sta- combination of theb,,=I}(13—1)/2 elementary rotations,

bility of the summations as a function of the numberlof we can writeU* in the following form:
channels included The value ofl},, can also be deter- N

mined from the maximumAN(=N"—N) observed in the Pmax
rotationally resolved photoelectron spectrum based on the U= [T RL(Oh). (A1)
angular momentum constrairftsn photoionization of most bh=1

small molecules for which the energy of the asymptotic phoHere,b" is an index defined by the following convention:

APPENDIX A: SCATTERING MATRICES

b*= 1 2 N | 1> b} (A2)
(L= (NMINFD (ANLIN+2) o (mad (IMFLIA+2) o (a1 ) (A3)
and
1) (2) (i) () (B)
(1) 1 0 0 0 0
(2) o 1 0
: : o - : R : R :
(i) 0 cos{}b)\ 0 sin{}bA 0
Ra(Op)=| . . 0 1 0 ) (A4)
() 0 —Sil’lﬁg)\ 0 COS'&E}\ 0
(|é) 0O - e 0 0 1
|
Here, ﬁgk stands for the mixing angle between ttth and In molecular MQDT, the asymptotic ionization channels
the jth partial-wave channels for each value)of are related to the short-range eigenchannels by a set of frame
transformations, that is, the electronic, vibrational, and rota-
APPENDIX B: RELATIONSHIP BETWEEN OUR tional frame transformatior®:?® In the discussion of mo-
FORMALISM AND MQDT lecular Rydberg spectroscopy and various autoionization

phenomena, introduction of the frame transformation has
proven especially beneficial because it allows for the descrip-
tion of complex rovibrational interactions among Rydberg

rederiving the expression for quantum-state-specific PADéevels_ . |n6 terms O.f a few. short?range .e|genchapnel
from MQDT, we point out here that the theoretical elementsq”am't'esz' For the direct photoionization that is the subject

of the MQDT can indeed be retrieved from our formalism. Of the present study, however, the concept of the frame trans-
Specifically, we show that various frame transformation maformation is not as significant.

trix elements that are central in the molecular MQDT The electronic frame transformation matrix is repre-
formulatior?® can be found in our expressions. The rest ofsented in our formalism by the matri#*. The vibrational

the proof relies on angular momentum coupling algebra thaframe transformation matrix elements are the vibrational
involves the coupling of the ionizing photon and the mol-wave functions of the iony,+(R). The rotational frame
ecule. transformation matrix elements are contained in the first in-

In this Appendix, we discuss the equivalence of the for-
malism presented in this article to the so-called “open-
continuum” MQDT2® Instead of showing the equivalence by
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