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A theoretical formalism is developed for the quantum-state-specific photoelectron angular
distributions ~PADs! from the direct photoionization of a diatomic molecule in which both the
ionizing state and the state of the ion follow Hund’s case~b! coupling. The formalism is based on
the molecular-orbital decomposition of the ionization continuum and therefore fully incorporates the
molecular nature of the photoelectron–ion scattering within the independent electron
approximation. The resulting expression for the quantum-state-specific PADs is dependent on two
distinct types of dynamical quantities, one that pertains only to the ionization continuum and the
other that depends both on the ionizing state and the ionization continuum. Specifically, the
electronic dipole-moment matrix elementr ll exp(ih ll) for the ejection of a photoelectron with
orbital angular momentum quantum numberl making a projectionl on the internuclear axis is
expressed asSal

Ū lal

l exp(ipt̄al

l )Mal

l , whereŪl is the electronic transformation matrix,t̄al

l is the

scattering phase shift associated with thealth continuum molecular orbital, andMal

l is the real

electronic dipole-moment matrix element that connects the ionizing orbital to thealth continuum
molecular orbital. BecauseŪl and t̄al

l depend only on the dynamics in the ionization continuum,

this formalism allows maximal exploitation of the commonality between photoionization processes
from different ionizing states. It also makes possible the direct experimental investigation of
scattering matrices for the photoelectron–ion scattering and thus the dynamics in the ionization
continuum by studying the quantum-state-specific PADs, as illustrated in the companion article on
the photoionization of NO. ©1996 American Institute of Physics.@S0021-9606~96!00611-2#

I. INTRODUCTION

Recent advances in theoretical and experimental tech-
niques have enabled the dynamical study of molecular
photoionization processes in unprecedented detail. Differen-
tial photoionization cross sections can now be calculated for
small molecules almost quantitatively usingab initio
methods.1,2 The development of experimental techniques has
allowed for the resolution of individual quantum levels of the
molecular ion3–7 as well as the photoelectron angular distri-
butions ~PADs! associated with them.8–13 The synergy be-
tween these theoretical and experimental developments has
significantly increased our knowledge about the photoioniza-
tion of molecules and has narrowed the gap between our
understanding of molecular and atomic photoionization.

Perhaps the best example that illustrates the experimen-
tal progress in the dynamical study of molecular photoion-
ization is the previous report of a complete quantum me-
chanical description for the photoionization of the NO
A 2S1~n50! state using angle- and energy-resolved photo-
electron spectroscopy.10–12By ionizing optically aligned NO
A 2S1~n50! molecules in a specific quantum level using
resonance-enhanced multiphoton ionization~REMPI! and by
measuring the PADs associated with the production of each
rotational level of the NO1 X 1S1~n150! ion, investigators
have been able to deduce all the dynamical parameters
needed to describe the photoionization process from the NO
A 2S1~n50! state. The dynamical parameters, which are the

electronic dipole-moment matrix elements that connect the
NO A 2S1~n50! state to each partial wave in the ionization
continuum that yields the NO1 X 1S1~n150! ion, provide a
most detailed description of this process and can also be
directly compared with the corresponding quantities that are
computed inab initio calculations.14Although the above pro-
cedure has been applied so far only to the photoionization of
the NOA 2S1 state, it should be generally applicable to the
study of photoionization dynamics of other small diatomic
molecules.

In the one-photon ionization of a diatomic molecule, the
ionization continuum that consists of a photoelectron and the
molecular ion in a given rovibronic state is coupled to an
ionizing state through the dipolar interaction between the
molecule and the ionizing photon~in the limit of low ioniza-
tion intensity!. Therefore, the same final state is reached in
the photoionization from different ionizing states when the
photoelectron energy and the rovibronic state of the molecu-
lar ion are the same. Despite this commonality between dif-
ferent photoionization pathways, the dipole-moment matrix
elements formulated based on the partial-wave decomposi-
tion of the molecular ionization continuum pertain only to a
photoionization event from a given ionizing state and do not
give detailed insight into the dynamics of the ionization con-
tinuum. This situation is in contrast to that in atomic photo-
ionization, in which the relationship between dipole-moment
matrix elements for distinct photoionization processes has
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been used to provide a unified description of the ionization
continuum of an atom.15–22Because the ionic potential under
which the photoelectron moves is a central field within the
independent electron approximation, the partial-wave chan-
nels, each denoted by a definite electronic orbital angular
momentuml , form a complete set of independent ionization
channels in atomic photoionization. Consequently, the phase
difference between dipole-moment matrix elements for dif-
ferent partial-wave channels remains the same for photoion-
ization processes from different electronic states of an atom.
The phase difference is in essence a characteristic of the
ionization continuum of an atom, not the atomic energy level
from which photoionization occurs.

When the photoelectron is far from the ion core, whether
the ion core is atomic or molecular, it moves principally
under the influence of the Coulombic potential because of
the charge on the ion core~see Fig. 1!.23 This region of the
configuration space where the Coulombic potential domi-
nates the photoelectron motion is designated as theasymp-
totic region. Because of the central nature of the Coulombic
potential, the partial-wave description of the ionization con-
tinuum is appropriate in the asymptotic region. On the other
hand, the photoelectron feels the nature of the ionic core
when it is near the core, which we call theion-core region.24

The dynamics of the photoelectron in this region is what
differentiates the atomic and the molecular ionization con-
tinua. When the ion core is atomic, the photoelectron moves
under the central potential within the independent electron
approximation, although the potential is different from the
Coulombic one because of the shielding caused by the pres-
ence of other electrons. When the ion core is molecular, the
potential under which the photoelectron moves is noncentral
even in the independent electron approximation, and the de-
scription of the ionization continuum based on partial waves
with definite l is not appropriate in the ion-core region.

The separation of the electronic configuration space into
the ion-core region and the asymptotic region is justified
because any multipolar potential that the photoelectron expe-
riences falls much faster with distance than the Coulombic
potential. The multipolar interaction can thus be considered
to be short range as long as the ion-core region is large
enough to encompass a region of the photoelectron configu-
ration space where the bulk of multipolar interactions occur.
Because the ion-core region should be large, however, the
interaction between the photoelectron and the ion-core is not
uniform even inside the ion-core region, and the interaction
can be classified into two distinct types depending on the
distance between the photoelectron and the ion core.25,26

When the photoelectron is inside the ion-core region but is
outside the perimeter of the bound molecular orbitals of the
ion core, the interaction between the photoelectron and the
ion core can be viewed roughly as that between the photo-
electron and the multipoles located at the center of mass of
the ion. We call this region of the configuration space the
multipole-moment-interaction region. When the photoelec-
tron is inside the perimeter of the bound molecular orbitals,
on the other hand, the interaction can no longer be viewed as
that of the photoelectron and the multipole. Instead, the ex-
change interaction between the photoelectron and the bound
electrons in the core dominates the motion of the photoelec-
tron. This region of the configuration space is designated as
theelectron-exchange-interaction region.

In this paper, we present a theoretical formalism for the
quantum-state-specific PADs from the direct photoionization
of a diatomic molecule based on the quantum scattering
theory formalism and angular momentum coupling algebra.
Unlike the partial-wave formalism that was the basis of our
previous work,11,27 the present formalism treats explicitly the
mixing between differentl partial waves in the ion-core re-
gion, and it thus fully incorporates the molecular nature of
the problem within the independent electron approximation.
The resulting expressions clearly show the commonality be-
tween different photoionization processes and provide the
relationship between the dipole-moment matrix elements that
couples different ionizing states to the same ionization con-
tinuum. We note that most of the theoretical elements that
form the basis of the present article have already appeared in
the literature. The scattering theory formalism used in this
article has been extensively developed to explain atomic Ry-
dberg spectroscopy and photoionization by Seaton and
co-workers28 in the framework of the multichannel quantum
defect theory ~MQDT!. MQDT has subsequently been
adapted to molecular problems through the pioneering efforts
of Fano, Jungen, Greene, and co-workers.23,24,26,29The angu-
lar momentum coupling expressions that appear in this ar-
ticle are, on the other hand, mostly adapted from our previ-
ous work11,27 and that of McKoy and co-workers.30 The
present formalism is unique in its coupling of these two theo-
retical machineries that allows for a unified description of the
direct photoionization of a molecule within the independent
electron approximation.

Because many of the dynamical parameters that appear
in this formalism pertain directly to the ionization continuum

FIG. 1. A schematic illustration of the photoionization of a diatomic mol-
ecule. In the figurer 0 designates a radial distance from the center of mass of
the ion core to a~fictitious! surface that divides the ion-core region and the
asymptotic region.
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without reference to the ionizing states, they should be com-
mon to photoionization processes from different ionizing
states of a molecule as long as the same final state is reached,
that is, as long as the rovibronic state of the ion and the
energy of the photoelectron are the same. Emphasis is given
to the clarification of basic physical ideas behind the theo-
retical formalism within the independent electron frame-
work. The parallels between the ideas in this formalism and
those used to describe atomic photoionization are also em-
phasized. The expressions given in this article can be used by
an experimentalist to extract dynamical information on the
molecular ionization continuum from the quantum-state-
specific PADs; the procedure is illustrated in the companion
article on the photoionization of NO.31 This formalism can
also be employed to predict experimental PADs based upon
dynamical quantities obtained from theoretical calculations
or from the spectroscopy of high-lying Rydberg states.

The organization of this article is as follows. In Sec. II,
we outline the construction of the one-electron continuum
molecular orbital for a photoelectron moving in the field of a
diatomic–ion core. Section II begins with a brief discussion
about the one-electron atomic continuum wave function to
introduce the basic physical ideas and the machinery of scat-
tering theory. In Sec. III, we present an expression for the
quantum-state-specific PADs of a diatomic molecule based
on the continuum-molecular-orbital decomposition devel-
oped in Sec. II. The spin part of various wave functions is
not explicitly considered in Secs. II and III because we re-
strict ourselves to states of diatomic molecules that follow
Hund’s case~b! coupling. In Sec. IV, we discuss the appli-
cability of the present formalism in retrieving information
about the ionization continuum from experimental PADs. We
also discuss briefly in Sec. IV the possible extension of the
formalism to more general molecular photoionization prob-
lems. Appendix A contains a brief discussion about various
matrices that appear in the main text; in Appendix B, we
show the formal equivalence of the expressions in this article
and those in the open-continuum MQDT.

II. CONTINUUM MOLECULAR ORBITALS

Photoionization can be considered as an absorption of a
photon followed by a half collision between the photoelec-
tron and the ion. The final state reached by the photoabsorp-
tion is thus the collision state that describes the scattering
event between the photoelectron and the ion. In this section,
we construct the one-electron continuum wave function for a
photoelectron moving in a diatomic–ion field based on the
scattering theory formalism.29 First, we briefly discuss the
one-electron continuum wave function for a photoelectron
moving in an atomic–ion field to lay the groundwork for the
discussion of the molecular continuum wave functions. Be-
cause a photoelectron always moves under a central potential
in the independent electron approximation in the case of
atomic photoionization, the orbital angular momentum quan-
tum numberl for the photoelectron is a good quantum num-
ber. Consequently, the scattering between the photoelectron
and the ion becomes a so-called ‘‘single-channel’’

phenomenon,29 and the discussion becomes particularly
transparent. As will be seen, many of the quantities and ideas
defined for the atomic continuum wave function can be di-
rectly carried over to the discussion of the molecular con-
tinuum wave function.

Because of the central nature of the ionic potential under
which the photoelectron moves, the final state for the photo-
electron in atomic photoionization can be expanded in partial
waves29,32 that conform to the incoming-wave boundary
condition29

uk8&5(
lml

i le2 is lYlm* ~ k̂8!C lm~r 8;k!. ~1!

In Eq. ~1!, r 8 is the position vector of the photoelectron in the
laboratory~LAB ! frame whose origin is located at the atomic
nucleus, andk85kk̂8, wherek̂8 is the direction along which
the photoelectron is ejected in the LAB frame. The quantity
k is the magnitude of the asymptotic linear momentum of the
photoelectron, which is related to the asymptotic photoelec-
tron energy,e, by

e5
k2

2me
, ~2!

where me designates the reduced mass of the electron.
Atomic units are used throughout this article, and the mean-
ings of angular momentum quantum numbers that appear in
this article are listed in Table I.sl denotes the Coulomb
phase shift, which is given by

s l[s l~k!5argG~ l112 imeZ/k!, ~3!

whereZ is the net charge on the ion core. In photoionization
of neutral species,Z51, but we retain the symbolZ in the
following expressions because many of the ideas developed
in this section can be used to describe the ionization con-
tinuum for multiply charged ions as well. Althoughsl is an
energy-dependent quantity, as is clear in Eq.~3! through its
dependence onk, we do not explicitly indicate its energy
dependence to make the notation more compact. In Eq.~1!,
Clm~r 8;k! is the energy-normalized wave function for the
continuum electron referenced to the scattering amplitudeSl .
The asymptotic form ofClm~r 8;k! is given by29,32

C lm~r 8;k! ——→
r→` Sme

pkD
1/2 1

2ir

3@eixl2Sl* ~k!e2 ixl#Ylm~ r̂ 8!, ~4!

where

xl5kr2
1

2
lp2

meZ

k
ln~2kr !1s l . ~5!

We also designateClm~r 8;k! as the partial-wave basis func-
tion because it is the basis function that appears in the partial
wave decomposition of the continuum state in Eq.~1!. The
coefficients on the right-hand side of Eq.~4! are chosen to
ensure the normalization ofClm~r 8;k! per unit Rydberg en-
ergy interval. The scattering amplitudeSl designates the am-
plitude ratio of the outgoing and incoming wave components
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for each value ofl ,29 and it can be related to the scattering
phase shift,r l[r l(k) ~modulop!, by the relation

Sl~k!5e2ipr l. ~6!

The physical meaning ofrl will be discussed below.
Because the photoelectron moves under the Coulombic

potential in the asymptotic region, the one-electron con-
tinuum wave function in that region can beexactly repre-
sented as a linear combination of the regular and irregular
Coulomb basis functions,f l and gl , respectively. Here,f l
and gl are two linearly independent solutions of the radial
Schrödinger equation for the Coulombic potential whose
analytical properties are well documented28 and whose as-
ymptotic forms are given by24

f l~r ;k! ——→
r→` S 2me

pk D 1/2 sin xl
and

gl~r ;k! ——→
r→`

2S 2me

pk D 1/2 cosxl . ~7!

We thus introduce a continuum wave function that is the
linear combination off l andgl in the asymptotic region

F lm~r 8;k!5
1

&r
@ f l~r ;k!2Kl~k!gl~r ;k!#Ylm~ r̂ 8!

~r.r 0!. ~8!

Here,r 0 designates a radial distance from the atomic nucleus
to a ~fictitious! surface that divides the ion-core region and
the asymptotic region. In Eq.~8!, Kl is called thereaction
amplitudeand is given by

Kl~k!5tan~pr l !. ~9!

The reaction amplitudeKl represents the ratio ofgl with
respect to f l in Flm~r 8;k!. Note that the radial part of
Flm~r 8;k! is real, whereas that ofClm~r 8;k! is complex. The
fact thatgl appears inFlm~r 8;k! is a direct manifestation of
the presence of other electrons in the ion-core region.33

When the ion is hydrogenic, that is, when there are no other
electrons except the electron being ionized in the ion-core
region, the potential under which the photoelectron moves is
always Coulombic. In this case, the irregular Coulomb basis
function, gl , cannot be a part of the acceptable continuum
wave function because of the boundary condition at the ori-
gin. When there are other electrons, however,gl can be a part
of Flm~r 8;k! outside the ion-core region because the bound-
ary condition at the origin is lifted; the ion-core region is
effectively treated as a ‘‘black box,’’ and the boundary is
moved tor5r 0. The complex interaction between the pho-
toelectron and the other electrons in the ion-core region is
nevertheless wholly represented by the scattering phase shift
rl ~or equivalently the scattering amplitudeSl and the reac-
tion amplitudeKl! outside the ion-core region.29 The rela-
tionship betweenFlm~r 8;k! andClm~r 8;k! is given by

C lm~r 8;k!5@11 iK l~k!#21F lm~r 8;k!, ~10!

as can be shown easily from Eqs.~4! through~8!. We note
that Flm~r 8;k! is not normalized per unit Rydberg energy
interval and thus introduce another one-electron wave func-
tion Jlm~r 8;k! that is properly normalized:

J lm~r 8;k!5cos~pr l !F lm~r 8;k!. ~11!

By substituting Eqs.~9! to ~11! into Eq. ~1!, we obtain the
photoelectron final-state wave functionuk8& expressed in
terms ofJlm~r 8;k!.

Before we proceed to a discussion of the final one-
electron state for the molecular photoionization, a comment
on the physical meanings of quantities that have been intro-
duced so far is appropriate. The scattering phase shiftrl car-
ries information on how the ion-core short-range interaction
affects each partial-wave channel in the asymptotic region. It
is also an analytic continuation of the quantum defect defined
for the Rydberg states of the atom.28 Because the photoelec-
tron moves in the deep Coulomb well near the ion core with
a large associated kinetic energy, the dynamics inside the
ion-core region and thusrl are not very sensitive to the as-
ymptotic photoelectron energy.34 The sensitivity ofrl to the

TABLE I. Angular momentum quantum numbers used in the text.

Angular
momentum

Laboratory
fixed

projection
Molecule-fixed
projection Description

N MN L Nuclear rotation plus orbital
angular momentum for the

ionizing state
N1 M1 L1 Nuclear rotation plus orbital

angular momentum for the ion
Nt Mt Lt Angular momentum transferred

between the photoelectron
and the ion

J MJ LJ Total angular momentum
~excluding nuclear and electronic

spins!
l m l Photoelectron angular momentum
1 m0 m Photon angular momentum
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photoelectron energy is roughly proportional to the ratio of
the energy variation to the ionization potential of the atom.
When the variation of the asymptotic photoelectron energy is
small,rl can therefore be approximated to be independent of
energy and can be compared with the quantum defect for the
high-lying Rydberg states of the atom. The complicated en-
ergy dependence of the one-electron continuum wave func-
tionsFlm~r 8;k! andJlm~r 8;k! that stems from the electronic
motion in the asymptotic region is compactly represented by
the well-known properties of the regular and irregular Cou-
lomb basis functionsf l andgl and the Coulomb phase shift
sl .

24,29

The wave functionJlm~r 8;k! @andClm~r 8;k!# is the one-
electron eigenfunction of both the orbital angular momentum
operator and the atomic Hamiltonian. Therefore, it can be
identified as thecontinuum atomic orbital, setting aside the
asymptotic boundary condition that should be applied to it
through Eqs.~1! and~11!. Several differences exist, however,
betweenJlm~r 8;k! and bound atomic orbitals that are com-
monly encountered in electronic structure calculations.
Whereas a bound atomic orbital is defined only at a specific
orbital energy,Jlm~r 8;k! is defined at every energye. For a
given photoelectron energye, an infinite number of
Jlm~r 8;k! exist that are degenerate. Being a continuum wave
function,Jlm~r 8;k! is normalized to the Dirac delta function,
that is,Jlm~r 8;k! is an improper vector in the physical Hil-
bert space.35 For this reason, we cannot interpret
J lm* (r 8;k)J lm(r 8;k) as representing the probability density
of finding a photoelectron at a specific point in the configu-
ration space, unlike the case for bound orbitals. These differ-
ences are manifestations of the fact thatJlm~r 8;k! is defined
for the continuum electron~e.0!.

The expressions for the final state in molecular photo-
ionization can be obtained following a similar procedure.
The fact that the molecular ion has a structure associated
with it, however, introduces two important modifications in
the resulting expressions. First, any one-electron wave func-
tion for the molecular ionization continuum should be refer-
enced to the molecule-fixed~MF! frame. Second, the poten-
tial under which the photoelectron moves in the ion-core
region is noncentral, and the scattering between the photo-
electron and the ion core becomes a ‘‘multichannel’’
problem.29 The photoelectron motion in the asymptotic re-
gion is nevertheless governed by the Coulombic potential as
discussed in Sec. I, and the one-electron final-state wave
function for the photoelectron in the photoionization of a
diatomic molecule can be expanded in partial waves30,36 that
conform to the incoming-wave boundary condition,37 just as
for the one-electron final-state wave function for the photo-
electron in the atomic photoionization

uk8;R&5(
lm

i le2 is lYlm* ~ k̂8!Dml
l* ~R̂!c ll~r ;k,R!. ~12!

Here,k8 andsl are defined in the same way as in the atomic
photoionization@see Eqs.~2! and ~3!#, andR is the internu-
clear distance of the molecular ion. In Eq.~12!, r designates
the position vector of the photoelectron in the molecule-fixed

~MF! frame. The coordinate systems are defined such that the
z axis of the MF frame is along the internuclear axis of the
molecular ion and the origin of the MF frame coincides with
that of the LAB frame at the center of mass~CM! of the ion.
Thus the two frames are related to each other through a
frame rotation by a set of three Euler anglesR̂. Whenever
there is no ambiguity, we adopt a convention that a vector
with a prime is expressed in the LAB frame, whereas a vec-
tor without a prime is expressed in the MF frame. Compari-
son of Eqs.~1! and ~12! shows that the rotation matrix ele-
mentDml

l* (R̂) appears in Eq.~12! because the one-electron
wave functioncll~r ;k,R! is expressed in the MF frame.
Here,cll~r ;k,R! is the energy-normalized one-electron wave
function for the continuum electron referenced to the MF-
frame scattering matrix~S matrix!. The asymptotic form of
cll~r ;k,R! is given by38

c ll~r ;k,R! ——→
r→` Sme

pkD
1/2 1

2ir

3 (
l 8>ulu

@eixl 8d l l 82Sll 8
l* ~k,R!e2 ixl 8#Yl 8l~ r̂ !. ~13!

The molecular wave functioncll~r ;k,R! is also designated
as the partial-wave basis function, just asClm~r 8;k! is in
atomic photoionization.Sll 8

l is the (l ,l 8) element of theS
matrix for a given value ofl, which is thez-axis projection
of l in the MF frame. TheSmatrix is the multichannel ana-
log of the scattering amplitude,Sl , defined in Eq.~4!. To-
gether with the incoming-wave boundary condition pre-
sented in Eq.~12!, the form of Eq.~13! ensures that for large
r the continuum wave function is composed of one outgoing
Coulomb wave withl and the incoming Coulomb waves
with all l 8, consistent with the time-dependent representation
of the photoionization process.37,39

Inspection ofcll~r ;k,R! in Eq. ~13! clearly reveals the
molecular nature of the continuum wave function despite its
asymptotic form. Although the photoelectron experiences the
spherical Coulombic potential when it is in the asymptotic
region, it moves under the nonspherical molecular potential
when it is inside the ion-core region. Thusl is not a good
quantum number in this region, and thel -mixing between
different partial waves, or equivalently thel -changing colli-
sion between the photoelectron and the ion core, can occur
when the photoelectron emerges from the ion core. In the
independent electron approximation, however,l is still a
good quantum number because of the cylindrical nature of
the diatomic–ion-core potential. The possibility of
l -changing collisions within the samel manifold is indicated
in Eq. ~13! by off-diagonal elements of theSl matrix,
Sll 8

l ( l Þ l 8). TheSl matrix designates a portion of the fullS
matrix that is block diagonal inl. Sll 8

l gives the amplitude
ratio of the outgoing Coulomb wave withl and incoming
Coulomb wave withl 8 for each value ofl. It is important to
note thatSll 8

l being a continuum property, is a function of the
asymptotic energy of the photoelectron and the internuclear
distance only. TheSl matrix is a unitary matrix, and it com-
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pletely specifies the asymptotic outcome of the collision be-
tween the photoelectron and the ion core for a givenl.

For the same reason as for the atomic continuum wave
function, the one-electron continuum wave function for the
molecule can be expressed as a linear combination off l and
gl in the asymptotic region. We thus introduce the continuum
wave function that is referenced to the MF-frame reaction
matrix ~K matrix!,38 wll~r ;k,R!, which is the multichannel
analog ofFlm~r 8;k! for an atom

w ll~r ;k,R!5
1

&r
(

l 8>ulu
@ f l 8~r ;k!d l l 8

2Kll 8
l

~k,R!gl 8~r ;k!#Yl 8l~ r̂ ! ~r.r 0!.

~14!

Once again,r 0 is a radial distance from the CM of the ion
core to a~fictitious! surface that divides the ion-core region
and the asymptotic region,I is the unit matrix, andKl is the
MF-frame reaction matrix for a givenl. TheK matrix is the
multichannel analog of the reaction amplitudeKl that ap-
pears in Eq.~8!. The full K matrix is block diagonal inl for
the same reason theS matrix is. The matrix elementKll 8

l

signifies the ratio ofgl 8 with respect tof l in wll~r ;k,R!, and
it is a function of the photoelectron energy and internuclear
distance only, just asSll 8

l is. The relation between theSma-
trix and theK matrix is given by40

(
l 8

Sll 8
l

~d l 8 l 92 iK l 8 l 9
l

!5d l l 91 iK ll 9
l , ~15a!

which can be rewritten in matrix notation as

Sl5
I1 iKl

I2 iKl . ~15b!

Whereas theSl matrix is a complex unitary matrix, theKl

matrix is a real symmetric matrix~a real Hermitian matrix!.
Thuswll~r ;k,R! has a real radial part whereas the radial part
of cll~r ;k,R! is complex. Using Eqs.~13! through ~15!, it
can be shown thatcll~r ;k,R! andwll~r ;k,R! are related to
each other by the following equality:38,41

c ll~r ;k,R!5 (
l 8>ulu

@ I1 iKl# l l 8
21w l 8l~r ;k,R!. ~16!

Just asSl andKl defined for an atom do, both theSl and
Kl matrices completely specify the asymptotic outcome of
the electron scattering from the~linear! molecular ion core
for a givenl. The effect of the complex interactions that the
photoelectron experiences inside the ion-core region is thus
wholly represented by theK matrix outside the ion-core re-
gion. We emphasize that theKl matrix defined in Eqs.~14!
and~15!, like Kl that appears in the atomic continuum wave
function, characterizes only the short-range collision dynam-
ics between the photoelectron and the ion core because of the
anisotropic molecular-ion-core potential.24,28 Because the
electron moves in the deep Coulomb well near the ion core,
the short-range dynamics and thus theK matrix are rather
insensitive to the asymptotic photoelectron energy, just asKl

is insensitive. In many applications, theK matrix can be
treated to be approximately independent of energy.

To this point, the discussion reveals the nearly one-to-
one correspondence between various quantities defined for
molecular and atomic photoelectrons;Sl, Kl, cll~r ;k,R!,
and wll~r ;k,R! are the multichannel analogs ofSl , Kl ,
Clm~r 8;k!, andFlm~r 8;k!, respectively. This correspondence
becomes more evident when we consider the scattering am-
plitude Sl and the reaction amplitudeKl defined for the
atomic photoelectron as the diagonal elements of the scatter-

TABLE II. Glossary of terms used in the text.

Term

Descriptiona
Atomic case
~Spherical potential!

Diatomic
~Cylindrical potential!

sl(k) sl(k) Coulomb phase shift
l al Electronic eigenchannel index;

Orbital index
Sl(k)d l l 8 Sll 8

l (k,R) ~l ,l 8! element of the scattering matrix
~for a given value ofl!

Kl(k)d l l 8 Kll 8
l (k,R) ~l ,l 8! element of the reaction matrix

~for a given value ofl!
dl l 8 Ulal

l (k,R) ~l ,l 8! element of the electronic transformation matrix
~~l ,al! element for a given value ofl!

rl(k) tal

l Electronic eigenphase shift
uk8& uk8;R& Photoelectron final-state wave function
Clm~r 8;k! cll~r ;k,R! Continuum one-electron wave function referenced to the

scattering matrix;
Partial-wave basis function

Flm~r 8;k! wll~r ;k,R! Continuum one-electron wave function referenced to the
reaction matrix

Jlm~r 8;k! jal

l (r ;k,R) Electronic eigenchannel wave function;
Continuum orbital

aThe descriptions in parentheses apply only to diatomic molecules.
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ing matrix and the reaction matrix, respectively~see Table
II !. Because of the central nature of the atomic potential, the
off-diagonal elements of these matrices are all zero in the
atomic case. Note, however, that the one-electron wave func-
tions cll~r ;k,R! and wll~r ;k,R! defined for the molecular
photoelectron are not the eigenfunctions of the molecular
Hamiltonian in the ion-core region, as can be seen from the
off-diagonal elements of theSl andKl matrices. The atomic
counterparts of them,Clm~r 8;k! and Flm~r 8;k!, are eigen-
functions of the atomic Hamiltonian throughout the configu-
ration space for the photoelectron in the independent electron
approximation. Indeedcll~r ;k,R! andwll~r ;k,R! can be re-
written in terms of another set of one-electron wave func-
tions that are eigenfunctions of the short-range molecular
Hamiltonian based on the eigenchannel formulation of scat-
tering theory.23,24,42,43The derivation is briefly outlined be-
low.

Because theKl matrix is real and symmetric, it can be
diagonalized by the unitary transformation

Kll 8
l

5(
al

Ulal

l ~ tanptal

l !Ual l 8
lT

5(
al

Ulal

l ~ tanptal

l !Ul 8al

l . ~17a!

Equation~17a! can be written in the matrix form

Kl5Ul~ tan ptl!~Ul!T, ~17b!

whereUl is anelectronic transformation matrixthat diago-
nalizes theKl matrix, ~Ul!T is the transpose ofUl, and
tan ptl is a diagonal matrix with the element tanptal

l on the

alth row. BecauseK
l is a real matrix, we may chooseUl to

be a real orthogonal matrix. We designateal as theelec-
tronic eigenchannel indexor themolecular orbital indexand
tal

l as theelectronic eigenphase shift.

Using Eq.~17! and the real unitary property ofUl, it can
be easily shown that

@ I1 iKl#215Ul~e2 iptl
cosptl!~Ul!T. ~18!

Here, e2 iptl
cosptl is a diagonal matrix with

e2 iptal

l
cosptal

l on thealth row. Equation~18! can be in-

serted into Eq.~16! to obtain

c ll~r ;k,R!5(
l 8

(
al

Ulal

l e2 iptal

l
~cosptal

l !

3Ul 8al

l w l 8l~r ;k,R!. ~19!

Using Eq.~14! and the normalization properties ofUl,

(
l
Ulal

l Ula
l8

l
5dala

l8
, (

a
Ulal

l Ul 8al

l
5d l l 8 , ~20!

we can rewrite Eq.~19! as

c ll~r ;k,R!5(
al

Ulal

l e2 iptal

l
jal

l ~r ;k,R!, ~21!

wherejal

l (r ;k,R) is given by

jal

l ~r ;k,R!5
1

&r
(
l 9

Ul 9al

l
@ f l 9~r ;k!~cosptal

l !

2gl 9~r ;k!~sin ptal

l !#Yl 9l~ r̂ ! ~r.r 0!.

~22!

The wave functionjal

l (r ;k,R) is designated as theelectronic
eigenchannel wave function.24,43 Finally, by inserting Eq.
~21! into Eq. ~11!, we can write the one-electron continuum
state that conforms to the incoming-wave boundary condi-
tion as

uk8;R&5(
lml

i le2 is lYlm* ~ k̂8!Dml
l* ~R̂!

3(
al

Ulal

l e2 iptal

l
jal

l ~r ;k,R!. ~23!

Before we proceed to the next section, we should inves-
tigate the physical meanings oftal

l , Ulal

l , and

jal

l (r ;k,R), which were designated as the electronic eigen-

phase shift, the electronic transformation matrix element, and
the electronic eigenchannel wave function, respectively.
jal

l (r ;k,R) defined in Eq.~22! is an admixture off l andgl
with various l just like wll~r ;k,R! in Eq. ~14!. Mathemati-
cally, thejal

l (r ;k,R) and thewll~r ;k,R! are independent ba-

sis sets that are related to each other by the orthogonal trans-
formation matrixUl ~aside from the factor cosptal

l !. The f l
andgl that appear injal

l (r ;k,R) are, however, weighted re-

gardless of l with the same quantities, cosptal

l and

sinptal

l , respectively, unlike those inwll~r ;k,R!. This obser-

vation indicates thatjal

l (r ;k,R) is an eigenbasis that diago-

nalizes theKl matrix.24,43 Because theKl matrix character-
izes the scattering process between the photoelectron and the
ion core for a givenl, jal

l (r ;k,R) is the eigenfunction of the
collision process described by theKl matrix. In addition,
becausejal

l (r ;k,R) andja
l8

l
(r ;k,R) (al Þ al8) are not mixed

by the scattering of the electron from the ion core, there
should be no short-range interaction that couples
jal

l (r ;k,R) andja
l8

l
(r ;k,R).24 This lack of short-range mix-

ing means thatjal

l (r ;k,R) is also an eigenfunction of the

short-range MF-frame electronic Hamiltonian at a given as-
ymptotic energy of the photoelectron and the internuclear
distanceR.

Quantum mechanically, any linear combination of vari-
ous Coulomb basis functions,f l andgl , with the samek and
R can be considered an eigenfunction of the MF-frame elec-
tronic Hamiltonian as long as it conforms to the appropriate
boundary conditions because all of the linear combinations
are defined to be degenerate. They are related to each other
by an appropriate unitary transformation. Among these
eigenfunctions, however, the partial-wave basis function
cll~r ;k,R! and the electronic eigenchannel wave function
jal

l (r ;k,R) stand out because of their physical significance.

cll~r ;k,R! is the basis function for the partial-wave decom-
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position of the continuum wave function,uk8;R&. Because
asymptotically it is composed of the incoming and outgoing
Coulomb waves, the physical boundary condition at infinity
that is appropriate for the photoionization process can be
easily applied tocll~r ;k,R!. On the other hand,jal

l (r ;k,R)
is the eigenbasis for the collision between the photoelectron
and the molecular-ion core that is described by the electronic
Kl matrix.24,43It is also the one-electron eigenfunction of the
short-range electronic Hamiltonian at a fixed nuclear geom-
etry.

Considering that the short-range Hamiltonian is what
characterizes the molecular nature of the scattering process,
jal

l (r ;k,R) can be appropriately designated as thecontinuum

molecular orbital. Just like the continuum atomic orbital, the
continuum molecular orbitals have the following properties:
jal

l (r ;k,R) is defined at every energy,e. For a given photo-

electron energye, there are infinite number ofjal

l (r ,k,R)

that are degenerate. Becausejal

l (r ;k,R) is an improper vec-
tor in the physical Hilbert space, we cannot interpret

jal

l* (r ;k,R)jal

l (r ;k,R) as representing the probability den-

sity of finding the electron at a specific point of the configu-
ration space.

With the above interpretations ofjal

l (r ;k,R) in mind, it

is straightforward to assess the physical meanings oftal

l and

Ulal

l . The electronic eigenphase-shifttal

l is a scattering

phase shift associated with the electronic eigenchannel wave
function zal

l (r ;k,R) at a givenk andR. It carries informa-

tion about how the ion-core short-range potential acts on
each electronic eigenchannel.tal

l is also an analytic continu-

ation of the electronic quantum defect defined for the Ryd-
berg states of molecules.28 Because of the insensitivity of the
short-range scattering dynamics to the energy of the photo-
electron,tal

l can be compared with the corresponding elec-

tronic quantum defect of high-lying Rydberg states obtained
from MQDT analysis of Rydberg spectra.44 The correspon-
dence betweental

l defined for molecules andrl defined for

atoms can be recognized immediately~see Table II!. Ulal

l ,

which is defined to be the element of the electronic transfor-
mation matrix that diagonalizes theKl matrix, can be inter-
preted as the projection of a partial-wave wave function onto
the eigenstate of the collision~or of the short-range Hamil-
tonian! for a givenk andR. As for tal

l , Ulal

l can be com-

pared with the Rydberg-series mixing coefficient that can be
determined from the spectroscopy of Rydberg states.44

III. DIPOLE-MOMENT MATRIX ELEMENTS AND
PHOTOELECTRON ANGULAR DISTRIBUTIONS

The dynamics of one-photon ionization in the weak-field
limit is governed by the electric dipole-moment matrix ele-
ments that connect the ionizing state to the ionization con-
tinuum. Thus an expression for the quantum-state-specific
PADs can be obtained from expressions for these dipole ma-
trix elements. In this section, we derive an expression for the
PAD when both the ionizing state and the state of the ion are

described by Hund’s case~b! coupling. The derivation given
in this article can be easily extended to other Hund’s cou-
pling cases. The approximations made in the derivation are
also discussed in detail in this section. We note that the same
approximations were used in the earlier literature on this sub-
ject without explicit justification.11,27

The wave function for an ionizing state that follows
Hund’s case~b! coupling is given by the Born–Oppenheimer
product

uCpnNLMN
&5S 2N11

8p2 D 1/2upL&xn~R!DMNL
N* ~R̂!. ~24!

Here,n is the vibrational quantum number for the ionizing
state, andp represents quantum numbers needed to specify
the ionizing state completely. All the angular momentum
quantum numbers are listed in Table I.xn(R) is a vibrational
wave function in the ionizing state that we set to be real. The
wave function for the composite state of the photoelectron
and the ion that follows Hund’s case~b! coupling can also be
written as a similar Born–Oppenheimer type product using
the one-electron continuum wave functions given in Eq.~12!

uCp1n1N1L1M1;k8&5S 2N111

8p2 D 1/2xn1~R!DM1L1
N1* ~R̂!

3(
lml

i le2 is lYlm* ~ k̂8!Dml
l* ~R̂!

3Ã@ uc ll~r ;k,R!&up1L1&]. ~25!

Here,n1 represents the vibrational quantum number for the
ion, p1 represents the quantum numbers needed to specify
the state of the ion completely, andxn1(R) represents a vi-
brational wave function in the ion electronic state.Ã desig-
nates the antisymmetrization operator.

Several approximations are implicit in writing the wave
functions as in Eqs.~24! and ~25!. The spin parts of both
wave functions are not explicitly written because the spins
are decoupled from the dynamics when we assume Hund’s
case~b! coupling. This choice is equivalent to assuming that
the spins remain coupled throughout the ionization process
to the spin value of the ionizing state.24 The wave functions
given for both the ionizing state and the final state are also
not parity adapted. Because we do not consider the interac-
tions that remove the degeneracy between different parity
states, the final results of our derivation remain the same
when we use parity adapted wave functions, provided that
the incoherent sum over each parity component is performed
at the appropriate stage. Finally, by writing the final-state
wave function as Born–Oppenheimer products as in Eq.
~25!, we are ignoring the coupling between nuclear vibra-
tional motion and the electron being ionized when it is near
the ion core. When the photoelectron is inside the ion-core
region, the vibrational wave function for the composite state
of the photoelectron and the ion can be slightly different
from that of the isolated ion.26

The transition electric-dipole-moment matrix element
that connects the ionizing state and the final state in our
formalism is given by
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^Cp1n1N1L1M1;k8uDm0
uCpnNLMN

&

[K Cp1n1N1L1M1;k8U(
s
r s8–ê8UCpnNLMNL

5S 4p

3 D 1/2K Cp1n1N1L1M1;k8U(
s
r sY1m0

~ r̂ s8!

3UCpnNLMNL , ~26!

wherer s8 is the electronic coordinate expressed in the LAB
frame, ê8 is the unit polarization vector of light in the LAB

frame, ands is an index that runs over all electrons in the
molecule.Dm0

stands for the electric dipole-length operator,
wherem050 for linearly polarized light with its electric vec-
tor pointing along thez axis in the LAB frame, andm0561
for circularly polarized light that propagates along thez axis
in the LAB frame. We can express the dipole-length operator
that appears in Eq.~26! in terms of the spherical harmonics
defined in the MF frame

(
s
r sY1m0

~ r̂ s8!5(
s
r s(

m
Dm0m
1* ~R̂!Y1m~ r̂ s!. ~27!

Combining expressions in Eqs.~24! through~27!, we obtain

^Cp1n1N1L1M1;k8uDm0
uCpnNLMN

&

5S 4p

3 D 1/2 1

8p2 ~2N11!1/2~2N111!1/2(
lmlm

i2 leis lYlm~ k̂8!E dV DM1L1
N1

~R̂!Dml
l ~R̂!Dm0m

1* ~R̂!DMNL
N* ~R̂!

3E dR xn1~R![ ^c ll~r ;k,R!u^p1L1uÃ#(
s
r sY1m~ r̂ s!upL&xn~R!. ~28!

The first integral in Eq.~28! can be evaluated readily
using standard angular momentum algebra,45 and the result
can be found in the literature11,27

E dV DM1L1
N1

~R̂!Dml
l ~R̂!Dm0m

1* ~R̂!DMNL
N* ~R̂!

5(
Nt

8p2~2Nt11!

3~21!M
12m01L12mS N

MN

N1

2M1

Nt

Mt
D

3S l
2m

1
m0

Nt

2Mt
D SNL N1

2L1

Nt

L t
D

3S l
2l

1
m

Nt

2L t
D . ~29!

Here,Nt designates the angular momentum transferred be-
tween the photoelectron and the ion withMt andLt denoting
its projections along the LAB frame and the MF-framez
axes, respectively,

Nt5N12N512 l. ~30!

The last integral in Eq.~28! represents the vibrationally
averaged electronic dipole-moment matrix element that con-
nects the ionizing state to the continuum partial wave with
angular momentum quantum numberl and its projection on
the internuclear axisl.11,27,30We designate it asr lle

ih ll

r lle
ih ll5E dR xn1~R![ ^c ll~r ;k,R!u^p1L1uÃ#

3(
s
r sY1m~ r̂ s!upL&xn~R!. ~31!

Under the independent electron approximation, Eq.~31! is
simplified to a one-electron integral1

r lle
ih ll5E dR xn1~R!

3^c ll~r ;k,R!urY1m~ r̂ !ug~r !&xn~R!. ~32!

In Eq. ~32!, r is the coordinate of the electron being ionized,
andg~r ! is a one-electron orbital of that electron in the ion-
izing state. By inserting Eq.~19! into Eq. ~32!, we can ex-
pressr lle

ih ll in terms of the continuum eigenchannel quan-
tities

r lle
ih ll5(

al

E dR xn1~R!Ulal

l eiptal

l

^jal

l ~r ;k,R!ur

3Y1m~ r̂ !ug~r !&xn~R!. ~33!

As noted in the previous section, the continuum quanti-
tiesUlal

l andtal

l are dependent on the internuclear distance

R and formally cannot be taken outside the integral. When
the R dependence of continuum quantitiesUlal

l and tal

l is

small and smooth over the range ofR where the overlap
betweenxn1(R) and xn(R) is significant, Eq.~33! can be
written as

r lle
ih ll5(

al

Ū lal

l eipt̄al

l
Mal

l , ~34!

where

Mal

l [E dR xn1~R!^jal

l ~r ;k,R!urY1m~ r̂ !ug~r !&xn~R!.

~35!
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Here,Mal

l represents the vibrationally averaged electronic

dipole-moment matrix element that connects the ionizing
electronic orbital to thealth continuum molecular orbital for
eachl. It is important to note thatMal

l is real because the

radial parts of electronic wave functions are real and also
because the vibrational wave functions are chosen to be real.
In Eq. ~34!, Ū lal

l and t̄al

l are the representative values of

Ulal

l and tal

l , respectively, over that range ofR where the

vibrational overlap is significant. The equality in Eq.~34! is

exact ifUlal

l andeiptal

l
are monotonically varying functions

in this range ofR, in which caseŪ lal

l andt̄al

l can be chosen

by the mean-value theorem.46 Otherwise, the equality should
be considered an approximation~reminiscent of the Franck–
Condon approximation for bound–bound transitions!, and
Ū lal

l and t̄al

l can be taken as the vibrationally averaged val-

ues ofUlal

l and tal

l , respectively. The approximation that

the variations ofUlal

l andtal

l with R are small and smooth

is physically reasonable when we consider the direct photo-
ionization of a bound state with small vibrational quanta.
This approximation is likely to break down, however, when
some dynamical phenomena, such as a shape resonance, oc-
curs in molecular photoionization. It can be seen from Eq.
~34! that the matrixŪl, which is the vibrationally averaged
version of the electronic transformation matrixUl, acts as a
unitary matrix that causes the rotation between two complex

dipole lengths,rl 5 $r lle
ih ll% andMl 5 $Mal

l eiptal

l

%.

Equations~34! and~35! are the key results of this analy-
sis. These equations are important because they express the
separation of the dipole-moment matrix elements that govern
the photoionization dynamics into two parts: the quantities
that are the properties of the continuum wave functions only,
and the quantities that depend on both the ionizing state and
the ionization continuum. In atomic and molecular physics,
extensive experimental work has been performed to deter-
mine either continuum-related quantities~such as quantum
defects determined from Rydberg spectroscopy! or quantities
that depend both on the ionizing state and the continuum
~such as electric dipole-moment matrix elements determined
from photoelectron spectroscopy!. For atomic photoioniza-
tion, the relationship between these two types of quantities
has been used extensively to interpret various experimental
findings in a unified fashion.15,16,18–22It has also been shown
that both the dipole-moment matrix elements and the scatter-
ing matrix elements can be extracted by combining various
experimental data.17,34,47,48 In molecular photoionization,
however, systematic attempts to relate experimental findings
in photoionization with collisional parameters are rare11 de-
spite the close relationship between electron–ion collision
and photoionization, which has long been realized in the
MQDT framework. This rarity stems from experimental and
theoretical complexities inherent to the molecular problem.
For instance, whereas the partial wavesare the collision
eigenchannels in atomic photoionization in the central-field
approximation, this situation is not the case in molecules as
discussed in the previous section. Equation~34! permits us to

extract detailed dynamical information pertaining to the ion-
ization continuum from molecular photoionization experi-
ments.

By inserting Eqs.~29! and~34! into Eq. ~28!, we obtain
an expression for the transition electric-dipole matrix ele-
ment

^Cp1n1N1L1M1;k8uDm0
uCpnNLMN

&

5S 4p

3 D 1/2~2N11!1/2~2N111!1/2(
lml

3~2 i ! leis lYlm~ k̂8!(
al

Ū lal

l eipt̄al

l
Mal

l (
Ntm

3~21!m081L1
C~ llmNtMNm!, ~36!

where we define

C~ llmNtMNm![~21!m1M1
~2Nt11!S N

MN

N1

2M1

Nt

Mt
D

3S l
2m

1
m0

Nt

2Mt
D SNL N1

2L1

Nt

L t
D

3S l
2l

1
m

Nt

2L t
D . ~37!

The 3-j symbols given in Eq.~37! determine the selection
rules for the bound–free transitions when both the interme-
diate and the final states are described by Hund’s case~b!
coupling. Because photoionization selection rules for various
Hund’s coupling cases have already been discussed in the
literature,49,50we do not discuss them explicitly here.

Note that in Eq.~36!, the summations overl andal can
be truncated at some finite value~see Appendix A!. The sum-
mations overm andl, which are quantum numbers related to
l , are also truncated accordingly. The corresponding summa-
tions in the partial-wave expansion of the continuum wave
function are not restricted in Eq.~12!. Because of the light
mass of the electron, the centrifugal barrier associated with
the electronic motion near the ion core is very large, and the
penetration of the photoelectron into the ion-core region is
negligibly small whenl is large. On the other hand, the elec-
tron density of the bound electronic orbital is concentrated in
the ion-core region. In addition, the single-center expansion
of tightly bound molecular orbitals usually shows rapid con-
vergence withl . Consequently, the integrals in Eq.~32! be-
come negligible when l is very large. Because the
jal

l (r ;k,R) and thecll~r ;k,R! are related to each other by

the unitary transformationUl, al is also restricted whenl is
restricted.

The intensity of photoelectrons, or the rate of ejection of
photoelectrons, associated with the ionization event
up1n1N1L1&←upnNL& and detected in the LAB-frame
solid angle elementdV5sinu du df is given by27,30
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I ~u,f!52pa fsF\v(
M1

(
MNMN8

^Cp1n1N1L1M1;k8u

3Dm0
uCpnNLMN

&

3^CpnNLM
N8
uDm0

uCp1n1N1L1M1;k8&rMNMN8
N

.

~38!

Here,afs is the fine structure constant,F represents the pho-
ton flux of light with frequencyv, and rMNMN8

N
designates

elements of the density matrix for the ionizing state51 that
specifies not only the populations of the differentMN sub-
levels of a givenN level in the ionizing state but also the
coherences between these levels. Because we consider the
photoionization from a specific quantum level in the ionizing
state, the summation overN is omitted in Eq.~38!. For an
isotropic ensemble,rMNMN8

N
is simply given by

rMNMN8
N

5
1

2N11
dMNMN8

. ~39!

When ~n11! REMPI is employed to study the photoioniza-
tion from a specific quantum level in the intermediate state,
the specific form ofrMNMN8

N
for the intermediate state de-

pends on the experimental geometry. Various forms of
rMNMN8
N

can be found in the literature for different methods by

which the ionizing state is reached.11,27,30Inserting Eq.~36!
into Eq. ~38! we obtain

I ~u,f!5
8p2a fs

3
F\v(

lml
(

l 8m8l8
gN1 lml l 8m8l8

3Ylm~ k̂8!Yl 8m8
* ~ k̂8! (

ala
l8
8
Ū lal

l Ū
l 8a

l8
8

l8 Mal

l

3M
a

l8
8

l8 ei @p~ t̄al

l
2 t̄

a8l8

l8
!1s l2s l 8#, ~40!

where

gN1 lml l 8m8l8[~2N11!~2N111!~2 i ! l2 l 8

3 (
M1MNMN8

(
NtNt8

(
mm8

3C~ llmNtMNm!

3C~ l 8l8m8Nt8MN8 m8!rMNMN8
N

. ~41!

In Eq. ~40!, I ~u,f! can be recast in terms of the spherical
harmonics using the Clebsch–Gordan series27,45

I ~u,f!5 (
L5even

(
M

bLMYLM~u,f!, ~42!

where

bLM5
8p2a fs

3
F\v(

lml
(

l 8m8l8
~21!m

3F ~2l11!~2l 811!~2L11!

4p G1/2S l
2m

l 8
m8

L
M D

3S l0 l 8
0

L
0DgN1 lml l 8m8l8 (

ala
l8
8
Ū lal

l Ū
l 8a

l8
8

l8 Mal

l

3M
a

l8
8

l8 ei @p~ t̄al

l
2 t̄

a8l8

l8
!1s l2s l 8#. ~43!

In Eq. ~43!, bLM depends not only on the magnitudes of
electronic dipole-moment matrix elements,Mal

l , but also on

the scattering phase shifts,t̄al

l and sl . WhereasUlal

l and

tal

l can be assumed to be independent of energy, as dis-

cussed in the previous section, the Coulomb basis functions
andsl have a nontrivial dependence on the asymptotic pho-
toelectron energye. The value ofbLM is, however, much less
sensitive toe for two reasons. In contrast to their behavior at
the asymptotic region,f l and gl are quite insensitive toe
near the ion core.28 Thus Mal

l , whose magnitude stems

mostly from the ion-core region, is insensitive toe in most
cases. Also, whereassl itself is strongly dependent one,
s l2s l 8 does not vary rapidly withe. Using the properties of
the gamma function and Stirling’s approximation,28 it can be
shown that

s l2s l 852
p

2
~ l2 l 8!1

k

2
~ l2 l 8!~ l1 l 811!1O~k2!.

~44!

For most small diatomic ions,k varies typically less than
0.01 a.u. over the energy span of a few rotational levels
within the same vibrational manifold. Hence,Mal

l and sl

remain approximately the same for different ion rotational
levels within the same vibrational manifold. The form of the
PAD for a given quantum level of the ion, which is described
by bLM , can also be approximated to be independent of en-
ergy over an energy range on the order of 100 meV.

IV. DISCUSSION

We have derived in this article an expression for the
quantum-state-specific PADs from direct photoionization of
a diatomic molecule based on the molecular-orbital decom-
position of the ionization continuum. The resulting expres-
sion for the quantum-state-specific PADs is dependent on
two distinct types of dynamical quantities, one that pertains
to the ionization continuum and the other that depends both
on the ionizing state and the ionization continuum;Ū lal

l and

t̄al

l can be classified as the former, whereasMal

l clearly

belongs to the latter. BecauseŪ lal

l andt̄al

l describe only the

dynamics in the ionization continuum, they should be com-
mon in photoionization processes from different ionizing
states when the asymptotic photoelectron energy and the
rovibronic state of the ion are the same. Hence, the present
formalism allows for the maximal exploitation of the com-
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monality between different photoionization processes in de-
scribing the direct photoionization of a molecule. The
present formalism also enables the experimental investiga-
tion of the ionization continuum by studying quantum-state-
specific PADs.

It is straightforward to employ the expression derived
here to predict experimental PADs based on the dynamical
quantities obtained from theoretical calculations. It has been
shown that the dynamical quantities that pertain to the mo-
lecular ionization continuum, as well as the dipole-moment
matrix elements that couple an ionizing state to the ioniza-
tion continuum, can be found inab initio calculations within
the independent electron approximation.41,52–56Once these
ab initio results are available, they can be substituted into the
expressions given in this article to yield quantum-state-
specific photoionization cross sections and PADs associated
with each quantum level of the ion.

Equations~42! and ~43! can also be used to fit experi-
mental PADs to obtain the dynamical parametersMal

l ,

Ū lal

l , and t̄al

l . The quantum-state-specific PADs from a

single electronic state of a molecule are not, however, suffi-
cient to retrieve all the dynamical parameters that appear in
Eq. ~43!. As shown in our previous report of the complete
quantum-mechanical description for the photoionization of
the NOA 2S1~n50! state,10–12magnitudes and phases of the
electronic dipole-moment matrix elements that connect a
given ionizing state to each partial wave in the ionization
continuum, which are designated asr ll and hll , respec-
tively, in Eq. ~31!, completely specify the photoionization
dynamics from the ionizing state. The dynamical parameters
in the present formalism,Mal

l , Ū lal

l , and t̄al

l , contain, on

the other hand, information on the dynamics in the ionization
continuum in addition to dynamical information on the
photoionization from a given ionizing state. Consequently,
whereas we can uniquely determiner ll andhll from Mal

l ,

Ū lal

l , and t̄al

l using Eq.~34!, the reverse is not possible.

One solution for this indeterminacy is to use the infor-
mation obtained from the spectroscopy of high-lying Ryd-
berg states in fitting experimental PADs and reduce the num-
ber of fitting parameters. As discussed in Sec. II,Ū lal

l and

t̄al

l can be approximated by the Rydberg-series mixing co-

efficients and the electronic quantum defects of high-lying
Rydberg states, respectively,44 assuming that we ignore their
weak energy dependence and provided that the vibrational
quantum number of the Rydberg states is the same as that of
the residual ion produced after photoionization. Under these
conditions, the remaining dynamical parameters in the fit are
only a set of real parameters,Mal

l , which can then be

uniquely determined from quantum-state-specific PADs from
a single ionizing state. From a practical standpoint, this fit is
easier to perform than the fit of experimental PADs withr ll
and hll as fitting parameters. Admittedly, however, this
method works only when the approximation is valid that
Ū lal

l and t̄al

l are energy independent and when the spectro-

scopic data are available for high-lying Rydberg states.
The more satisfactory solution to obtain all the dynami-

cal parameters in Eq.~43! is to fit simultaneously quantum-
state-specific PADs from two or more electronic states. As
emphasized repeatedly, the ionization continuum reached
from different photoionization processes is the same as long
as the asymptotic photoelectron energy and the rovibronic
state of the ion produced are the same. ThusŪ lal

l and t̄al

l

should be the same for photoionization processes from dif-
ferent electronic states when the above conditions are met,
whereasMal

l is specific for a given electronic state being

ionized. Consequently, the number of independent param-
eters in the simultaneous fit of experimental PADs from mul-
tiple electronic states increases much more slowly than the
number of independent data points in the fit, which makes
possible the unique determination of all the dynamical pa-
rameters necessary to specify the photoionization dynamics
of multiple electronic statesand the dynamics in the ioniza-
tion continuum. This procedure is illustrated in the compan-
ion article for the photoionization of the NOA 2S1~n50!
andD 2S1~n50! states.31

In this study, we have derived a theoretical expression
for quantum-state-specific PADs from direct photoionization
of a diatomic molecule in which both the ionizing state and
the state of the ion follow Hund’s case~b! coupling. The
present formalism, which is based on the independent elec-
tron approximation, can be compared to the ‘‘single-
channel’’ partial-wave formalism for atomic photoionization
~see Sec. II and Table II!29 and should be regarded as the
starting point for theoretical improvements to include more
complex photoionization phenomena. It nevertheless pro-
vides a unified description for the direct photoionization of a
diatomic molecule that explicitly incorporates the molecular
nature of the problem. It also provides a theoretical frame-
work for the experimental study of the dynamics in the mo-
lecular ionization continuum.

It is relatively straightforward to extend the present for-
malism to the photoionization of a diatomic molecule that
follows other Hund’s coupling cases by employing one-
electron continuum wave functions that explicitly account
for the electron spin.57 The present formalism can also be
generalized to describe photoionization of polyatomic mol-
ecules using the final-state one-electron wave functions that
depend on molecular geometry. For linear molecules, the for-
malism presented in this article can be directly extended pro-
vided that the ion is also linear. For symmetric-top mol-
ecules,l in the present formalism should be interpreted as
the projection ofl on the molecular figure axis.58 The one-
electron continuum wave function for a symmetric-top mol-
ecule should be symmetry adapted,59,60 as is the bound mo-
lecular orbital.

To describe various autoionization phenomena, the more
general MQDT formalism that explicitly accounts for the
closed channel contribution should be employed.24,26,61 In
this case, however, the concept of a one-electron orbital that
parametrically depends on the molecular geometry should be
discarded because the breakdown of the Born–Oppenheimer
approximation in the asymptotic region should be fully taken
into account.
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APPENDIX A: SCATTERING MATRICES

In this Appendix, we discuss the specific form of various
scattering matrices that appears in the main text. As dis-
cussed in Sec. III, the summations in Eq.~36! can be trun-
cated. In theoretical calculations, the value of maximuml in
the summation,lmax

l , can be determined by variational sta-
bility of the summations as a function of the number ofl
channels included.14 The value of lmax

l can also be deter-
mined from the maximumDN(5N12N) observed in the
rotationally resolved photoelectron spectrum based on the
angular momentum constraints.8 In photoionization of most
small molecules for which the energy of the asymptotic pho-

toelectron is less than 2 eV, the inclusion of up tof ( l53) or
g( l54) waves in the ionization continuum is shown to be
sufficient to explain experimental data.9,11–13,62,63

The value oflmax
l determines the sizes of various scatter-

ing matrices because the number of partial-wave channels
involved in the scattering process for a givenl is given by
l 0
l[ lmax

l 2ulu. The MF-frame scattering matrixSl and the
MF-frame reaction matrixKl are l 0

l3 l 0
l matrices. The elec-

tronic transformation matrixUl is also anl 0
l3 l 0

l matrix.
Geometrically,Ul is an l 0

l3 l 0
l orthogonal matrix that de-

scribes a rotation inl 0
l-dimensional space.47 Because a rota-

tion in the l 0
l-dimensional space can be decomposed into a

combination of thebmax
l [l 0

l( l 0
l21)/2 elementary rotations,

we can writeUl in the following form:

Ul5 )
bl51

bmax
l

Rbl
l

~qbl
l

!. ~A1!

Here,bl is an index defined by the following convention:

bl5

~ l ,l 8!5

1
~ ul,u,lu11!

2
~ ulu,ulu12!

•••
•••

l o
l21

~ ulu,lmax!
l o
l

~ ulu11,ulu12!

•••
•••

bmax
l

~ lmax21,lmax!
~A2 !

~A3 !

and

Rbl
l

~qbl
l

!51
~1!

~2!

A
~ i !
A
A

~ j !
A

~ l 0
l!

~1!

1
0
A
0
A
A
0
A
0

~2!

0
1
0

•••

•••

•••

•••
•••
0
�

•••

•••

•••

~ i !
0
A
A

cosqbl
l

0
A

2sin qbl
l

A
0

•••
•••

0
1

0

•••

•••
•••

•••

�

•••

•••

~ j !
0
A
A

sin qbl
l

0
A

cosqbl
l

A
0

•••
•••

•••

•••
�

•••

~ l 0
l!

0
A
A
0
A
A
0
A
1

2 . ~A4!

Here,qbl
l stands for the mixing angle between thei th and

the j th partial-wave channels for each value ofl.

APPENDIX B: RELATIONSHIP BETWEEN OUR
FORMALISM AND MQDT

In this Appendix, we discuss the equivalence of the for-
malism presented in this article to the so-called ‘‘open-
continuum’’ MQDT.39 Instead of showing the equivalence by
rederiving the expression for quantum-state-specific PADs
from MQDT, we point out here that the theoretical elements
of the MQDT can indeed be retrieved from our formalism.
Specifically, we show that various frame transformation ma-
trix elements that are central in the molecular MQDT
formulation25 can be found in our expressions. The rest of
the proof relies on angular momentum coupling algebra that
involves the coupling of the ionizing photon and the mol-
ecule.

In molecular MQDT, the asymptotic ionization channels
are related to the short-range eigenchannels by a set of frame
transformations, that is, the electronic, vibrational, and rota-
tional frame transformations.24,25 In the discussion of mo-
lecular Rydberg spectroscopy and various autoionization
phenomena, introduction of the frame transformation has
proven especially beneficial because it allows for the descrip-
tion of complex rovibrational interactions among Rydberg
levels in terms of a few short-range eigenchannel
quantities.26 For the direct photoionization that is the subject
of the present study, however, the concept of the frame trans-
formation is not as significant.

The electronic frame transformation matrix is repre-
sented in our formalism by the matrixUl. The vibrational
frame transformation matrix elements are the vibrational
wave functions of the ion,xn1(R). The rotational frame
transformation matrix elements are contained in the first in-
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tegral of Eq.~28!, as can be shown by writing the integral as

E dV DM1L1
N1

~R̂!Dml
l ~R̂!Dm0m

1 * ~R̂!DMNL
N * ~R̂!

5 (
JMJLJ

8p2~2J11!S N1

MN
1

l
m

J
MJ

D SN1

L1

l
l

J
LJ

D
3S 1m0

N
MN

J
MJ

D S 1m N
L

J
LJ

D . ~B1!

Evaluation of the integral can be performed by using the
Clebsch–Gordan series45

DM1L1
N1

~R̂!Dml
l ~R̂!5 (

JMJLJ

~2J11!S N1

M1

l
m

J
MJ

D
3SN1

L1

l
l

J
LJ

DDMJLJ

J* ~R̂!, ~B2!

Dm0m
1* ~R̂!DMNL

N* ~R̂!5 (
JMJLJ

~2J11!S 1m0

N
MN

J
MJ

D
3S 1m N

L
J

LJ
DDMJLJ

J ~R̂!, ~B3!

and Eq.~3.113! of Ref. 45. Here,J is the total angular mo-
mentum of the photoionization process~excluding nuclear
and electronic spin! defined by

J5N11 l5N11, ~B4!

with MJ andLJ denoting its projections along thez axes of
the LAB frame and MF frame, respectively. The equivalence
of Eq. ~B1! and Eq.~29! in Sec. III can be shown readily
through a pair of recoupling transformations.45 In Eq. ~B1!,
the second 32j symbol corresponds to the rotational frame
transformation matrix elements without parity adaptation.25

The rotational frame transformation matrix elements signify
the transformation between the MF-frame and the LAB-
frame representations of the composite state of the ion and
the photoelectron, or equivalently, the change in representa-
tion between Hund’s case~b! and ~d! coupling.
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