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A nonlinear fitting procedure is presented that employs all measured line positions and 
iteratively compares their values with those calculated from numerically diagonalized 
model Hamiltonians with adjustable molecular constants. Case (a) wavefunctions with 
definite parity are introduced as a convenient basis set, and the effects of spin-orbit, spin- 
spin, spin-rotation, and centrifugal distortion interactions neglected in the Bom-Oppen- 
heimer separation are included simultaneously using the Van Vleck transformation. The 
spectroscopic constants found by this procedure represent the minimum-variance, unbiased 
set and maintain, to a high degree of accuracy, the separate mechanical and magnetic 
meanings of the molecular constants. Arguments are presented that such spectroscopic 
constants with mechanical meaning allow the most accurate construction of potential 
energy functions using the Rydberg-Klein-Rees (RKR) procedure. Residual mechanical 
and magnetic ambiguities, such as engendered by A-type doubling, are discussed. 

I. INTRODUCTION 

Diatomic molecular constants have held the interest of two groups, namely, positional 
spectroscopists who produce them, and “intensity spectroscopists” who use them. Un- 
fortunately, the overlap integral between these two groups has not always been large. 

In positional spectroscopy, the molecular constants are often viewed as parameters that 
reproduce, interpolate, or extrapolate the measured line positions. On the other hand, 

in intensity spectroscopy, the molecular constants are viewed as parameters from which 
molecular intensity factors-Franck-Condon factors and rotational line strengths- 
can be calculated. As a consequence, positional spectroscopists sometimes have re- 

ported values for the molecular constants that fit the data but are not the most appro- 
priate for calculating intensity factors, and in turn, intensity spectroscopists sometimes 
have used these constants without regard to their meaning. For example, a B, value is 
often given for each multiplet of a II state (S > 0) and these effective B, values have 
been used to construct a potential for each multiplet, from which intensity factors were 
deduced (see Sec. IV), despite the fact that these B, values do not describe the moment 
of inertia of the molecule. 

1 R. N. Z. gratefully acknowledges support from the National Science Foundation. 

37 

Copyright @ 1973 by Academic Press. Inc. 

All rights of reproduction in any form reserved. 



38 ZARE ET AL. 

In reducing line position measurements to molecular constants, ideally one formulates 
model Hamiltonians for the upper and lower electronic states of the band system and fits 
the measured line positions to the eigenvalues of these Hamiltonians using a sound 

statistical procedure. In practice, several impediments occur. Because of the inadequacy 
of the Born-Oppenheimer separation of the total molecular energy into electronic, 

vibrational, and rotational parts, a large number of molecular constants must be in- 
troduced to account for the energy level structure of the molecule. These constants 

appear in the expressions for the energy levels in an often complex and nonlinear manner 
so that their determination poses a burdensome problem, sometimes requiring the 

solution of transcendental equations. Moreover, additional difficulties may arise from 
the need to determine the molecular constants using proper statistics. 

For closed-shell diatomics (2 states), the energy levels may be represented by the 
simple expressionE(v, J) = T, + B,J(J + 1) - D,P(J + l)? + H,J3(J + 1)3 + . . . . 
For open-shell diatomics, the energy level expressions are the roots of a secular deter- 
minant calculated from the matrix elements of a model Hamiltonian. 

Basically, these matrix elements have been available since the early work of Van 

Vleck (1). However, if the model requires many constants to represent the molecular 
energy levels, the application of these ponderous algebraic expressions to experimental 

data has encouraged truncation and simplification. In such simplified forms, the 
molecular constants no longer have exactly their original meanings because, as adjust- 

able parameters in a least-squares fit, they have absorbed, to some extent, the effects of 
the missing constants. Consequently, the constants in these truncated or approximated 
forms often embody both mechanical and magnetic properties. This loss of the purely 
mechanical meaning attributed to the band origin and rotational constants, i.e., the 

vibrating rotator model (a), impairs the construction of a reliable potential (3) from 
these constants using the Rydberg-Klein-Rees (RKR) procedure. Of course, the ac- 
companying loss of the purely magnetic meaning attributed to the other constants 
similarly impairs the direct comparison with ab initio calculations of the fine-structure 

splittings. In fact, this blurring of the mechanical and magnetic meanings of molecular 

constants and the concomitant uncertainty in the construction of RKR potentials was 
our original motivation (4) in examining the reduction of diatomic spectra. 

In addition to the problem associated with the forms of the energy level expressions, 
there are problems of a purely statistical nature related to the fitting of the observed 
line positions to the theoretical energy level expressions. The time-honored method of 
determining rotational constants is the use of combination differences (5). Although 
combination differences are extremely useful in carrying out a preliminary analysis, 
their statistical shortcomings for producing final values of the molecular constants have 
been pointed out by Aslund (6) and are summarized in a following paper (7). It suf- 
fices here to note that combination differences do not use all the measured line positions 
and the method implicitly assumes that all measurement errors are associated with the 
state under analysis. 

We present in this paper a practical procedure for reducing diatomic spectra to 
molecular constants that avoids the problems discussed above. Calculated line posi- 
tions are iteratively compared to the measured line positions in a nonlinear least-squares 
fit. The calculated line positions are the appropriate differences between the eigenvalues 
of the upper and lower state Hamiltonians, in which the molecular constants appear as 
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adjustable parameters. Because this procedure is numerical, algebraic expressions for 

the roots of secular determinants are not explicitly required. Note that, in contrast to 

combination differences, this procedure utilizes the full body of measured line positions. 
Moreover, the resulting values of the molecular constants are the minimum-variance, 
unbiased estimates and their errors are statistically meaningful. 

in the next section, we discuss the development of the model Hamiltonian and sum- 

marize the evaluation of its matrix elements in a Hund’s case (a) basis set with well- 
defined parity. The matrix elements connecting different vibrational levels of the same 
electronic state (centrifugal distortion) and those connecting different electronic states 
(A-doubling and spin-splitting) are treated simultaneously in the same manner using 
the Van Vleck transformation. In Section III, we present the details of the nonlinear 

least-squares fitting procedure and in the final section we emphasize the problems as- 

sociated with the loss of purely mechanical meaning in the molecular constants used 

to construct RKR potentials. 

We feel that the more accurate reduction of data to molecular constants with sound 
statistical m_eaning and with a m_inim_um_ loss of mechanical and mwnetir sirmifirrinw ____~____‘_ __~‘__________ 

warrants consideration of this direct approach. It is ironic that the approach of com- 

paring measured line positions to those calculated from diagonalizing effective Hamil- 

tonians with adjustable molecular constants is being increasingly applied to the analysis 

of polyatomic spectra (8), while perhaps for historical reasons this approach has not 

yet won general favor for diatomics. We hope that some direct approach,2 such as we 

present in what follows, will gain acceptance as a means of obtaining molecular con- 

stants from measured line positions. 

The problem of deriving a satisfactory, effective Hamiltonian for a freely vibrating, 

rotating diatomic molecule has been considered at length by several authors (9-10). 

In the absence of external fields we may write 

22 = x0 + Got + XI, + Xhfs, (1) 

where x0 represents the nonrelativistic Hamiltonian of the nonrotating molecule, Xrot 

symbolizes the rotational motion of the nuclei, Xf, contains magnetic terms that cause 

the fine structure, and %hfs includes all nuclear spin and nuclear moment terms that 

I‘RIIS:P the hvn&ne strilrtllre. Rerause hvnerfine snlit.tinPs are rarelv resolved in onticd ___-- ____ __, r-______ -__- ___.__. -- __.- -_ __,r----__ -r~_____.~- __._ ___.~, __-_-. _- ___ -r ----- 

spectra, we disregard Xhfs in what follows. 

According to the Born-Oppenheimer approximation, the energy associated with X0 

depends only on the electronic and vibrational quantum numbers n and v. Since we are 

concentrating our attention on the rotational analysis of diatomic spectra, the exact 

2 It is encouraging to note these techniques are under development at several laboratories, for example: 

L. Veseth J. Phys. B 5,229 (1972) ; J. W. Johns (private communication) ; A. J. Merer (private conimuni- 

cation); W. Klemperer, R. W. Field, T. H. Bergeman and co-workers (private communication); 

T. E. H. Walker (private communication). 
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form of xo is of little concern to us here, whereas the form of Xrot, given by 

x rot = B(r)R2 
= B(r)(J - L - S)2, 

plays a major role in the subsequent analysis. In Eq. (2) 

(2) 

B(Y) = h/8?r2cpr2 (3) 

is the radial part of the rotational energy operator, defined in terms of the internuclear 
distance Y and the reduced mass p, and 

R=J-L-S (4) 

is the rotational angular momentum operator of the nuclei, defined in terms of J, L, and 
S, the total, the electronic orbital, and the electronic spin angular momentum operators. 

The fine structure Hamiltonian depends in a complex manner on the orbital and spin 

angular momenta, I; and si, of the individual electrons i, the interelectronic distance 

rij between any two electrons, the distance between any electron and any nucleus 
ski, the charge Zk on the nucleus K, and the internuclear distance Y. We shall refer to this 

as the microscopic form of the fine structure Hamiltonian. However, it is traditional in 
spectroscopic work to replace the microscopic fine structure Hamiltonian by a phe- 
nomenological fine structure Hamiltonian that represents the major magnetic inter- 

actions by a limited set of adjustable parameters. In this procedure, all terms in Xf, are 
omitted that cause a uniform shift rather than a splitting of the fine structure compon- 
ents. The fine structure Hamiltonian is then regarded as a sum of three terms 

Xf, = x&so + xss + XSR, 
where 

xso = A (r)L*S 

is the so-called spin-orbit interaction, 

(5) 

(6) 

xss = e(r) (3&2 - 9) 

is the so-called spin-spin interaction, and 

(7) 

XSR = r(y)N.S (8) 

is the so-called spin-rotation interaction. In Eq. (7) the z axis is chosen to lie along the 
internuclear axis, and in Eq. (8) N = J - S = R + L is the total orbital angular 
momentum operator. We note that some authors, e.g., Kovics (II) and Bennett (ZZ), 
represent the phenomenological spin-rotation interaction by r(7)R.S rather than 
r (r)N. S. The difference between these two choices is a term 7 (y)L- S that mimics the 
phenomenological spin-orbit interaction A (r)L. S. With the choice y (y)R. S Hund’s 
case (b) coupling is given by the condition A = yB. However, we wish to retain the 
more traditional identification of Hund’s case (b) coupling with A = 0. Accordingly, 
we define the spin-rotation interaction as in Eq. (8). 

There has been considerable attention given to the relation between the parameters 

of the phenomenological spin-orbit (2,13-15), spin-spin (16-Z@, and spin-rotation 
(21-23) interactions and the microscopic form of the fine structure Hamiltonian. It may 
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be shown that to good approximation the operator replacements given in Eqs. (6)-(S) 

may be used to calculate matrix elements diagonal in S. However, for matrix elements 

off-diagonal in S, the microscopic forms of these interactions must be employed for they 
connect states that according to Eqs. (6)-(S) would not otherwise be perturbed. 

The energy levels of a diatomic molecule are given by the solutions to the time- 
independent Schrodinger equation 

x+= E# (9) 

for the molecular Hamiltonian X shown in Eq. (1). In practice, one chooses a con- 
venient finite basis set cpi and expands the eigenfunctions # in terms of cpi 

# = T aicpi. (10) 

pcij - E6ijl = 0. (11) 

The choice of basis set is unquestionably arbitrary and any complete basis set would 
suffice provided the calculations are carried out to sufficient accuracy. However, by 
making a wise choice of the initial basis set, X may be roughly partitioned into diagonal 
blocks (sub-matrices) that weakly interact with one another. The diagonal blocks refer 
to Born-Oppenheimer states. 

We choose the wavefunctions appropriate to Hund’s case (a) coupling as the basis 
set. These wavefunctions are simultaneously eigenfunctions of the operators J2, 9, 

J,? & and L, with eigenvalues J(J + l)! S(S + l)! C& 2! and A, respectively, but the 

L2 operator is not diagonal in this representation. We choose the phase convention that 

and 
(J Q f 1 (Jr 1 JQ) = [J(J + 1) - O(Q f 1)-J’ (12) 

(SZ f l~S*~.s~) = - [S(S+ 1) - Z(Z f l)]‘, (13) 

where J& = J, f iJ, and S& = S, f is, and where we, follow Van Vleck’s procedure 
of reversed angular momentum (1). 

For a given electronic state n, vibrational level II, and rotational level J, there are 2S + 1 
possible spin projections -S, --S + 1, . . . , S, and 2 possible orbital angular momentum 
projections -A and A for A # 0. Thus, the energy levels are found, to first approxima- 

tion, by diagonaiizing a (2s + ij (2 - Sh0j by (2.5 + ij (2 - Gaoj submatrix which we 
shall call the nvJSA block (Born-Oppenheimer state). Then the matrix elements that 

connect different nvJSA blocks must be considered. However, if their magnitude is 
small and the interacting blocks are well separated in energy, the effect of the off- 
diagonal matrix elements may be included simply by perturbation theory. In what 
follows we first consider the matrix elements within a single nvJSA block, and then the 
energy corrections caused by matrix elements that connect different blocks. 

B. Matrix Elements Within the Same nvJSA Block 

The calculation of case (a) matrix elements has been considered at length by various 
.~,,+hnrc mfict nntohlxr h,, Tican Vlc.rG 11‘1 TTmxman IPA\ Kn.rJrc I1 1) I7mnrl i?r;b anA UU~““‘Y) lll”UIl ““CUU’J “J 1 u-1 . **L-x \1,, ““U~U” \- ,,) I~“.c&~cJ \“,, I IL.-u \‘J,) (CIIU 
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TABLE I 

CASE (a) MATRIX ELEMENTS WITHIN THE SAME n D J S A BLOCK 

(~l&j~:) = Tv 

(AzIxmtlllL:) = B,[J(J+1)-~n2+S(S+1)-~22] 

(AZjX,,,IA, L: f 1) = &[J(J + 1) - 12@ f l)-j[S(S + 1) - X(2 f l)]’ 

Wl~sol~) = A&Z 

(~l%Tl~) = e,[3z* - S(.s + l)] 

(mlx=Zi~) = 7,c.m - S(S + 1)l 
(ilL:I%~jh, z f 1) = - &[J(J + 1) - 9(a f l)]“[.S(S + 1) - 2@ f l)]” 

Miller, Levy, and Carrington (10). Consequently, we will not repeat these derivations 

but list instead in Table I the matrix elements that occur within the same nvJSA block. 

The parameter T,, B,, A,, E,, and yV appearing in Table I are the familiar spectroscopic 

constants associated with each type of interaction for the state n, v. They represent the 

expectation values of the radial parts of their respective operators,3 specifically 

T, = (nvl% + BW(Lz2 + L,2) lnv) 
B, = (nv\B(r) ~nv) 

A, = (nvIA(r)Inv) (14) 

E” = (nvl e(r) 1%) 

Yu = (nvlr(r) Inv). 

We follow the customary practice of incorporating into T, the term (B(r) (Lz2 + L,2)) 
arising from the diagonal matrix elements of Xrot. We note that this apparently un- 

avoidable approximation introduces a rotational contribution into the band origin, 

which is normally regarded as having only vibrational significance. 

Because of the radial dependence of these operators, the molecule, as it rotates, couples 

neighboring vibrational levels within the same electronic state. Furthermore, because 

of terms such as J. L and L. S, there are also nondiagonal matrix elements that couple 

different electronic states into the nvJSA block. The levels of the nvJSA block may be 

said to be perturbed by these other interactions. Occasionally, the perturbation can be 

ascribed to a pair or a small number of levels from neighboring blocks. Then the effect 

of the perturbation can be treated by diagonalizing the matrix of the interacting levels 

provided the locations and symmetry designations of the perturbing levels are known. 
This amounts to all orders of perturbation theory. For example, this technique has been 

applied with notable success to the low-lying valence states of CO (26) ; however, this 

requires the knowledge of energy locations (i.e., T,, G,, B,, and 0,) and symmetry 
designation of all interacting levels. More generally, the perturbations are small in 

magnitude and large in number. Moreover, they involve many interacting levels 

from distant blocks whose energy positions are often poorly known. In this latter case, 

an exact treatment is impossible and resort must be made to some approximate pro- 

1 It is customary in microwave spectroscopy to call the diagonal spin-spin interaction constant 

A, where X, = Qev. 
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cedure. Thus in order to construct a generally applicable procedure for obtaining 

molecular constants from the majority of diatomic spectra, we treat these interactions 

by incorporating their effects on the nvJSA block of interest. This is accomplished using 

an approximation, introduced by Van Vleck (1,27--29) which is similar to second-order 
perturbation theory. When this procedure is applicable, we need no longer diagonalize 
the supermatrix of interacting blocks. 

C. The Van Vleck Trarcsformation 

Let the Hamiltonian be written as 

H = Ho+XH1, (15) 

where X denotes the order of the perturbation. We assume that the matrix elements of 

HO lie entirely within diagonal blocks while the matrix elements of HI may lie inside or 

outside diagonal blocks. A unitary transformation can be applied to H that removes, to 
first order in X, the matrix elements of HI that lie outside of the diagonal blocks. The 

remaining matrix elements of HI that lie outside of the diagonal blocks are second order 
in X and they contribute to the energy only in fourth order in X. Thus through third 

order in h, the transformed matrix of H consists of diagonal blocks. Let the matrix ele- 
ments of the nvJSA block of interest be indexed by i, j, k, etc. and let (Y, 8, y, etc. label 
levels of other blocks. Then the unitary transformation causes the matrix elements of H 
within the nvJSA block to have the form 

Hij = Hii@) + XHij(‘) + xzHij(3) + h3Hij(3), 

where 

Hij(‘) = (i 1 HO 1 j) = E$ij, 

Hij(‘) = (iIH,Ij), 

(16) 

(17) 

(18) 

09) Hii@, = C 
4(Ei -I- Ei) - E, 

0 (Ei - Em) (Ej - E,) 
(iIH~ldblH~I_i), 

and 

H1j(3) = C 
a [ 

c 
(;IH~~~)(~IHIIP)(PIH~I~~ 

B (Ei - Em) (Ej - EB) 

-3 c (iIH1lk)(~IH1I~)(~lH~lj) : c (i/Hllcu)(a!lHlIK)(klH11j) 
k (Ek - Ea)(Ej - E,) - - k ’ (Ek - E,)(Ei - E,) 1 (20) 

Equations (16)-(20) constitute the Van Vleck transformation. According to this 
procedure the corrections through third order in the perturbation HI are found by 

diagonalizing the (2s + 1) (2 - Aon) by (2s + 1) (2 - SOA) block given by Eqs. 
(16)-(20). It suffices in most applications to retain only the second-order correction in 
the perturbation. A further simplification results if the energy separation between the 

interacting blocks is much larger than the energy separation between the fine structure 
components of the nvJSA block. Then to good approximation the correction matrix 
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H$) may be written 

(21) 

where E,,#J - E,~,IJ is the energy difference between the centers of the unperturbed 
blocks nvJSA and n’v’JS’A’. Equation (21) closely resembles the form of second-order 

perturbation theory. We illustrate next the Van Vleck transformation by using it to 
correct for the effects of centrifugal distortion (24,30). 

D. Matrix Elements Connecting Different Vibrational nvJSA Blocks 

The radial dependence of the interactions Xrot, XSO, XSS, and XSR cause neighboring 
vibrational levels to be coupled together. Let us assume that the vibrational spacings 

are large compared to the fine structure splittings. Because X&t and XSO predominantly 
determine the rotational energy level structure, we ignore the radial dependence of XSS 
and %SR in what follows. First, let us concentrate our attention on P&. According to 
Eq. (21) this may be treated through second order in this interaction by adding to 
Hii@) and H$) the correction matrix 

Hij(2) = c 
(nvJQiSzi 1 Got 1 nv’JD’S~‘)(nv’JQ’SY 1 x,,~ 1 nvJ~jS~j) 

(22) 
u’Q’2’ En, - E,,l 

We may separate Eq. (22) into a product of angular and radial factors 

H,,(2) _ 
2, - C 

c (nvIB(r) IW(nv’l B(r) Inn) 
0’ E na - IL,? 1 

X [C (J!&SZ~I R’l J!XSZ’)(JI;t’SX’I R21 JQjSXj)] = - D,(&Zij R41 QiI;i), (23) 
n/z 

where we have equated the radial factor to the centrifugal distortion constant -D, (31)) 

and where we have neglected the mixing of other electronic states caused by matrix 
elements of R2 off-diagonal in A. 

Similarly, if the perturbation Xrot is treated through third order, we have the addi- 
tional centrifugal distortion term of the form 

I.ij(3) = Hu(QiZi j R6 I OjZj). (24) 

The matrix elements of R4 and R6 within the same block may be evaluated by standard 
means (32), and the results are collected in Table II. From Eqs. (23) and (24) we see 
that centrifugal distortion may be treated as if X& were replaced by an effective rota- 
tional Hamiltonian of the form 

x rot = B,R2 - DUR4 + H,R”. (25) 

The spin-orbit interaction may also couple together neighboring vibrational levels 
through the weak radial dependence of A (7) (33). If we consider the centrifugal dis- 
tortion effects caused simultaneously by Xrot and S&o we must introduce two additional 
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. 
centrifugal distortion parameters 

1’ E,, -En,* 
(26) 

and 

Table II also contains the additional matrix elements resulting from these centrifugal 
distortion corrections. We note that the matrix elements of aD, have no J dependence, 
and the Z dependence is the same as the diagonal spin-spin interaction constant, e,. 
Hence for A # 0 states, aDV and ev are inextricably mixed and in a least-squares fit to 

the data, totally correlated. Consequently, we omit further reference to aD,, but it 

must be recognized that the vaiue for tu wiii include the effects of @D,. The parameter 

AD, is often referred to as 2~4~ in the literature (33-34). Note that the matrix elements 

involving A D V are J-dependent. 

Inspection of Tables I and II shows that there are no nonvanishing matrix elements 

between levels with different values of A. Thus, to this approximation, the nvJSA block 
separates into two identical, diagonal subblocks, one for +A and one for -A, provided 

A # 0. This corresponds to the twofold degeneracy of the A components. However, 
when we consider perturbations from neighboring electronic states, which are caused 
by terms we have so far neglected, then this degeneracy is removed. 

TABLE: ii 

CASE (a) CENTRIFUGAL DISTORTION MATRIX ELEMENTS OF TIIE ROTATIONAL 
AND OF THE SPIN-ORBIT HAMILTONIANS 

(AZ/S’& + Xso(A, 2 f 4 = - &f~(Wf& f 1, z f 1) + Htsf~(Wfi@ f 1, L: f 1) 

CflKE:) Sfi@ f 1, z f 1) +fl@ f 2,z f 31 

(AZpFh -I- %0/A, Z: f 3) = &f~@Qfr(n f 1, Z f l)f~(Q f 2, Z f 2) 
where 

fi(Qz) = J(J + 1) - 02 + S(S + 1) - 22 

f&z) = CJ(J + 1) - n@+ 1)1cscs + 1) - Z(I: + l)] 
f3@2) = CJ(J + 1) -Q@ - l)lCS(.s + 1) - 2@ - l)] 

f4(L?2) = [J(J + 1) - Q(Q f l)]“CS(S + 1) - Z(2 f l)]’ 
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TABLE III 

CASE (a) MATRIX ELEMENTS CONNECTING n ZI J S A BLOCKS WITH 
DIFFERENT VALUES OF A OR S 

(nzJ_mSAZ p&t ln’zl’rn f 1, s A f 1,X) = (nd / 2B (r) (L, + L-j/2 I n’v’J)[J (J + 1) - n(n f 1)]4 

(nvJQ.SAZ IX,,t + XSO 1 n'v'JCkS A f 1, Z F 1) 

= (nvJ I[2B (r) + A (r)] (L, + Le.)/2 1 n’v’J)CS(S + 1) - z (Z 7 l)]’ 

(nvJii?SKZ~X~~~n’v’JClS’A%‘) = (- l)*‘-” C(s’1.Y; Z’, A’ - A, Z)AaAS;*‘S’ 

(nvJQ.SAZ~Xss~nvJ~SA f 2, Z =F 2) = ia,[(STZ+ l)(SfZ)(S=FZ+2)(S*Z- I)]# 

E. Matrix Elements Connecting Different Electronic nvJSA Blocks 

Within the framework of the fine structure Hamiltonian given by Eqs. (S)-(B) there 

are only two types of terms that connect different electronic states. These are listed in 
Table III. The first type, which is of the form J+L_ + J_L+, represents a Coriolis in- 

teraction arising from X&t. It connects electronic states differing by one unit in A. 
This interaction is J-dependent and its magnitude increases with increasing J. In the 
literature this is often referred to as L-uncoupling. Because this interaction may affect 
the f A components differently, it contributes to a J-dependent splitting of the A 
doublets. The second type of interaction, which is of the form L+S_ + L-S,, arises 

from both X,t and X&o. It is independent of J and thus contributes primariiy to 

J-independent shifts in the A doublets. 
If the microscopic form of the fine structure Hamiltonian is considered, additional 

matrix elements are found that are diagonal in Q but with AS = 0, or f 1. In particular, 
the microscopic form of the spin-orbit operator connects electronic states of different 

multiplicity for which M = 0 and fl. These are included in Table III where we in- 

troduce A tlhS;A’S’ as the intercombination analog of the spin-orbit parameter. Note that 
the matrix elements of the microscopic spin-orbit operator for AS = & 1 are in general 
different for different values of D in the nvJSA block of interest, but they are related to 

each other through a factor (- 1) *‘-* C(S’1.5; Z’, A’-A, Z) where C is a Clebsch- 
Gordan coefficient. The microscopic forms of the spin-spin and spin-rotation interaction 
have nonvanishing matrix elements for AA = 0, i 1, &2 and AS = 0, i 1, respectively 

(10,25). Other than the diagonal matrix elements shown in Table I, these matrix ele- 
ments are usually neglected since these latter interactions are usually much smaller 

than the spin-orbit interaction. An exception occurs, however, for Il states of triplet 
and higher multiplicity. For such states the spin-spin interaction connects the A = + 1 
andA = - 1 levels with the same value of D (See Table III). 

P, Case (a) Wavejunctions with Parity 

As pointed out by Rronig (35) and by Van Vleck (1)) the task of calculating the molec- 
ular energy levels is significantly simplified if we transform to a basis set with well-de- 
fined parity. In such a basis set, each wavefunction may be classified as even or odd ac- 
cording to whether it remains unchanged or changes sign upon inversion through the 
origin of the spatial coordinates of all particles. Since the molecular Hamiltonian is invari- 
ant under inversion, only states of the same parity have nonvanishing matrix elements 
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connecting them. Consequently, the introduction of a parity basis set divides the secular 

determinant into two noninteracting blocks, one of even and one of odd parity, Thus 

the calculation of case (a) matrix elements between states of well-defined parity not 
only has the computational advantage of reducing the size of the secular equations we 

must solve, but also the conceptual advantage of allowing us to associate a definite 
parity with each calculated energy level. 

The symmetry classification of diatomic molecules has been discussed by Wigner and 

Witmer (36)) Hougen (37)) and Bunker and PapouSek (38). Different parity conven- 
tions have been proposed by Freed (Z), Hougen (24)) Y.-N. Chiu (39), Pack and 

Hirschfelder (40), and Wofsy (41). Nevertheless, this topic has been a source of con- 
siderable confusion to us, and consequently, we present in Appendix A a development 
of the parity convention we adopt here. Let i,, denote the inversion of all spatial co- 
ordinates. In Appendix A, we show that when i,, acts on a case (a) wavefunction it 
transforms it as follows 

i,, j nvJfLSA2) = (- 1) J+S+aI nvJ, --OS, -A, -Z), (28) 

where s = 1 for X- states and s = 0 for Z+ states; Appendix A shows that for all other 

states s may be set to zero. 

Wavefunctions with well-defined parity p may then be constructed from case (a) 
wavefunctions in the following manner: 

[n zs+lAe vJp*) = -$nvJfLSAZ) f InvJ, - W, - A, - a17 (29) 

(where in the molecular term symbol it is understood that A = 1 A I) and for the special 

caseA = 0,Z = 0: 

1 n zs+l& vJp+) = 1 nvJOSO0). (30) 

In Eqs. (29) and (30) the parity p* is given by 

pA = f (-l)J+~+s, (31) 

where the plus sign refers to the state with the parity p+ and the minus sign to the state 

with the parity p-. 
For the matrix elements appearing in Table I and II it is readily shown that 

(nvJQ$Z~p* 1 H 1 nvJf2jSZjp*) = (~zvJQ+ST~ I H 1 ~vJQ+5’E~>, (32) 

and the results listed in Tables I and II may be used directly. For the matrix elements 
appearing in Table III, however, the following two identities are required for their 
evaulation 

(nvJQSA2 j H 1 n’v’JQ’.SA’Z’) 

= ( -1)J+s+“z+S’+8’(nvJ, -iPi’, -A, -2 I H 1 dv’J, -Q’S’, -A’, -Z’> (33) 

and 

(nvJfLSAZ 1 H j n’v’J, -tYS’, -A’, -2’) 

= (-1) J+S+afJ+S’+a’(nvJ, -EL?, -A, --Z I H 1 n’v’JO’S’A’2). (34) 



ZARE ET AL. 

G. Electronic Perturbation Parameters 

The interaction between different electronic states may again be treated by means of 
the Van Vleck transformation. This causes additional adjustable parameters, often 

called A-doubling and spin-splitting constants, to appear in the 2s + 1 by 2s + 1 block 
of nvJ levels with the same parity. The second-order correction term has the general 

form 

(n 2S+1ilni vJP / H, 1 n’ zs’+lA’nt v’Jp)(n’ 2S’+lA’n, v1 Jp 1~~ / n zS+I&~ v JP) 

bn>ii = 1 ~ 

n’r’D’Z’ E ?bVJ - &,,J 

where the matrix elements of H, and Hb may be obtained from Table III with the help 

of the identities given in Eqs. (33) and (34). 

The Franck-Condon principle primarily controls the magnitude of the contribution 

of each perturbing rt’v’ level to the numerator in Eq. (3.5). This may be seen by splitting 

off from Eq. (35) the factor (v 1 h,(r) 1 v’)(v’ 1 hb(r) / v) where h,(r) and hb(r) are the radial 

parts of the perturbations H, and Hb. We suppose h,(r) and hb(r) to vary slowly with Y. 
Then the radial factor is roughly equal to (v 1 v’)~, the square of the overlap integral of 
the two vibrational wavefunctions. Thus only those n’v’ levels with appreciable Franck- 
Condon factors p,!, connecting the levels nv and nv’ contribute to the value of y*,. 
Because the Franck-Condon factors are relatively insensitive to the rotational quantum 

number J, the numerator in Eq. (35) may be considered to be independent of J to first 

order. 
The proximity of interacting levels controls the contribution of each perturbing n’v’ 

level to the denominator in Eq. (39, which may be written approximately as 

E ?LVJ - E,,,,.,= (E,, - E,,,t) + (B, - B,,)J(J + 1). (36) 

When the separation between the two perturbing levels is much larger than (B, - B,,) 

X J(J + l), then, to first order, the electronic perturbation parameter yv is independent 

of J. 
However, if data are available to high J values, centrifugal distortion corrections to 

y,, may be warranted. The J-dependence of the energy denominator may be expressed as 
a power series expansion in J(J + 1) 

(E,,J - E,,,r~)-l = (En, - &r,r)-l J(J -I- 1) + . . + 1 (37) 

and the J-dependence of the radial matrix elements (31) as 

(vJlh(r)jv’J) = (vIh(r)/v’)+xuJ(J+ 1). (3% 

Thus the effects of centrifugal distortion on yU result in the replacement of yU by 
yv + yDvJ(J + 1) everywhere yO appears in the 2S + 1 by 2S + 1 parity block of 
interest. We note that ~0~ represents the collection of terms in J(J + 1) when Eqs. (37) 
and (38) are combined. Similar centrifugal distortion corrections have been developed 
previously by Veseth (34). 

This discussion can be specialized to electronic perturbations arising from the form of 
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the rotational and fine structure Hamiltonians given by Eqs. (2) and (S-8). Within 
this framework only electronic states of the same multiplicity and with AA = f 1 may 

perturb each other, to first order. For Z states, it may be shown that in general three 
additional electronic perturbation parameters appear in the rotational energy level 
expressions (1,17,42) 

(n’ 2s+1II V’J 1 +jA (r)L+ 1 n 2s+12* vJ)2 

08==gr- 7 E __E (39) 
nu.J ?L’V’J 

p,= = 4 c 
(n’ 2s+Tl V’J j &4 (r)L+ 1 n 2s+w vJ)(n’ 2s+‘II V’J [ B(r)L+ 1 n 2s+1z* VJ) 

7L’D’ E nr.J -E 
, (40) 

n’ tr’.l 
and 

(n’ 2s+lII v’J 1 B(r)L+ 1 n 2s+11Z* vJ)~ 
4v ‘=2X- (41) 

?I’ P‘ E nvJ - E,~,,J 

However, the presence of electronic perturbations in Z states cannot be recognized from 

inspection of the spectroscopic data because the functional form of the energy level 
expressions for the rotational levels of a Z state are unaltered (11,42). This is illustrated 

for a Z state in Appendix B, which also provides a concrete application of the preceding 
theory. Moreover, for Z states, the adjustable molecular constants also absorb the 

effects of perturbations by any other state. Consequently, the perturbation of Z states 

by other electronic states is an insidious problem since there is no simple way to ascertain 
whether the molecular constants determined in the rotational analysis, namely, the 
band origin V,(V), v”), the rotational constants B,, D,, H,, etc., the spin-rotation con- 

stant yUt and the spin-spin constant e, (for S 2 l), have the separate mechanical and 
magnetic meanings usually attributed to them.4m5 

For non-2 states the presence of electronic perturbations may also go undetected, 
particularly for interactions between two electronic states with A # 0, e.g., a A state 
interacting with a II state. On the other hand, the perturbations caused by Z* states 

manifest themselves by splitting the rotational levels of the non-Z state into two A 

components (A-type doubling). In first order, only II states interact with Z states, and 
if we again restrict our attention to the commonly occurring situation of perturbations 

between states of the same multiplicity, then in general three A-doubling parameters 
must be introduced to describe the energy levels of such a II state. In a manner similar 

4 Because of the presence of electronic perturbations the molecular constants of a B state, which is 

often regarded as the paragon of a molecular state that behaves as a vibrating rotator, do not describe 

the vibrational and rotational motions of nuclei in an effective radial potential. However, the departure 

of a ‘2 state from the vibrating rotator model may be detected by the following internal consistency test. 

First, the experimental G(u) and B,, values are used to construct the potential with the RKR procedure. 

Secondly, the wavefunctions and associated eigenvalues are obtained for this potential. Finally, a com- 

parison is made between the observed and calculated G(u) + Yea values and the observed and calculated 

rotational constants B,, D,, H,, etc. (31). Deviations outside the experimental uncertainties signal unde- 

tected perturbations (or the unlikely failure of the RKR procedure). 

6 An additional indicator that a multiplet Z state is perturbed is the magnitude of y. and e, (for S 

2 l), because often the values of these parameters include large (and for “/u, dominant) contributions 

from the off-diagonal spin-orbit interaction. In particular, 7” is usually well approximated by - pVx (f ,43) 

(See Appendix C). 
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to Eqs. (3%41), these electronic perturbation parameters are conveniently defined as 

(42) 

z( 
n 

OVII = 
zS+lfl vJl +l(r)L+ln’ zs+lZZi v’J)~ 

, (42) 
n’ 0’ E nvJ - E,*,,J 

(n zS+lII vJ) $A (r)L+ 1 n’ 2s+1Z* v’J)(n 2s+111 oJI B(r)L+ 1 n’ 2s+121* v’J) 
pun = 4 c -- > (43) 

n’ 0’ E nu.7 - E,~+.I 
and 

qo” = 2 c 
(n ~S+~II VJ 1 B(r)L+ ] n’ 2s+1Z* v’J)~ 

(44) 
n’u’ E IlVJ - Enfuf~ -* 

For III states, only the A-doubling parameter qUn occurs; for II states of higher 

multiplicity, the energy level expressions depend on qnn, pen, and oan. However, the 

3/2 f / 

-30 - 
III1 I I I I I I I I 

-60 -50 -40 -30 -20 -10 0 IO 20 30 40 50 60 
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FIG. 1. Rotational energy level pattern of a *II state as a function of the spin-orbit parameter A,n. 
The parities of the A components are indicated by f signs and the point at which the A components of 
the same F component but of opposite parity cross is marked by an arrow. The figure is constructed using 
the molecular constants BVn = 2.0 cm-l, qVn = - 0.08 cm-i, and p vn = -0.016 Awn. The figure refers to 
a *II state perturbed by a W state above. If the parities of the A components are reversed, then this 
figure refers to a 91 state perturbed by a %- state above. 
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FIG. 2. Rotational energy level pattern of a sll state as a function of the spin-orbit parameter A,=. The 
parities of the A components are indicated by f signs and the point at which the A components of the 
same F component but of opposite parity cross is marked by an arrow. The figure is constructed using the 

molecular constants B, = 2.0 cm-‘, pun = 0.08 cm-*, and 9,” = 0.016 A.“. The figure refers to a 
*II state perturbed by a W state below. If the parities of the A components are reversed, then this figure 
refers to a ‘3 state perturbed by a W state below. 

A-doubling parameter o Un cannot be determined independently from experimental data 
because its effect can be totally absorbed into some of the other molecular constants 

already employed in the analysis .’ Consequently, to help maintain the integrity of 
the other molecular constants we look for a means of estimating and fixing the value 

of oun. 
Often the contribution from one or a few 2 states outweighs those from all others in 

determining the values of the A-doubling parameters. When this situation occurs, then 
the A-doubling splittings are readily calculated using what we shall call the unique 

6 For Q states, TVn, &n, and o,,n cannot be determined simultaneously, whereas any two of these three 
constants can. Of course, it is the first two, rather than the perturbation correction term, that should be 
retained. For % states, &,n, A,n, aUn, e,n, and own cannot be determined simultaneously, whereas any 
four of these five constants can. Again, we regard aVn as the correction term and retain the first four. For 
II states of higher even and odd multiplicity, it appears that o,n is involved in total correlations like 
those of the sll and Q states, respectively. 
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FIG. 3. Rotational energy level pattern of a% state as a function of the spin-orbit parameter A,,“. The 

parities of the A components are indicated by f signs and the point at which A components of the same 

F component but of opposite parity cross is marked by an arrow. The figure is constructed using the 

molecular constants B,n = 2.0 cm-t, q*n = - 0.12 cm-r, fitin = - 0.0024 A,,=, and a,n = 0.6 cm-r. The 

figure refers to a 311 state perturbed by a W state above. 

perturber approximation in which the effects of all perturbing electronic states are 

ascribed to the interaction with one real or effective (composite) Z+ or Z- state whose 

position relative to the II state (i.e., above or below) is known. We show in Appendix C 

that under a set of not very restrictive assumptions that pun is proportional to A,” 
and that o “n is proportional to (A Un)z. Moreover, when the unique perturber approxima- 

tion is valid, Appendix C gives the development of the approximate relation, 

0.n = (l/8) (A.*/&9pvn, (45) 

that permits uUn to be calculated from the value of the A-doubling constant pun and the 

molecular constants A,” and B vn of the perturbed II state. The use of Eq. (45) as a 

means of estimating o,n has been suggested previously by Veseth (44) . 
To gain insight into the nature of A doubling in II states, Figs. 1 and 2 show the lower 

rotational energy levels of a % state perturbed by a 2Z+ state as a function of A,,” 
under the above assumptions, where for simplicity we have set yun, Dun, If,=, and AD,=, 
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FIG. 4. Rotational energy level pattern of a aII state as a function of the spin-orbit parameter A,n. The 
parities of the A components are indicated by f signs and the point at which A components of the same 
F component but of opposite parity cross is marked by an arrow. The figure is constructed using the 
molecular constants B,n = 2.0 cm-‘, qvn = 0.12 cm-‘, p,n = 0.0024 Avn, and a”” = 0.6 cm-r. The 
fignre refers to a an state perturbed by a W state below. 

equal to zero. In this example, which cannot be assumed general, arrows mark the places 

where the two parity components for the same J and Sz cross. Note that there occurs 
one and only one crossing for each (J, f2) pair. This means that for a given value of A vn 
corresponding to the vibrational level of an actual molecule, the parity alternation of 
the upper A-component will change phase at some J value near the crossing. As a con- 

sequence, care must be taken in assigning the parity to the observed A-doublets, since 
these measured line positions are compared to calculated line positions of definite 
parity. 

Figures 3 and 4 show the lower rotational energy levels of a 311 state perturbed by a 
3,Z+ as a function of A,” in the same manner as 211 levels shown in Figs. 1 and 2. In 
contrast to the 211 states, a 32- above (below) is not identical to a 3Z+ above (below) 
with the parities of the A-components reversed. However, the difference is a uniform 
shift of different magnitude for each multiplet. The crossing points, marked by arrows, 
have a distinctively different structure for Figs. 3 and 4. In Fig. 3 all the lower J levels 
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have two crossings each. However, for J = 3 and above, the F3 components have no 
crossings. The minimum value of J for which F3 components do not cross, of course, 
depends on the particular choice of the molecular constants. In Fig. 4 only the Fz 
components above J = 1 cross twice; otherwise there are no crossings. We note that a 
great deal of care must be taken in assigning the parity of the A components of a% state. 
For 11 states of higher multiplicity this problem is exacerbated, e.g., in 411 states many 

levels have three crossings as a function of A. However, for homonuclear molecules whose 

nuclei have zero spin, only one parity exists and the above is not a problem. This is, 
of course, also no problem in transitions involving Z states.‘z8 

III. NUMERICAL PROCEDURE 

A computer program has been written to calculate upper and lower state molecular 
constants from a direct, least-squares fit to the measured line positions of an individual 
band using the effective Hamiltonians described in the preceding section. The calcula- 
tional procedure logically divides into three steps: (1) The matrix elements of the upper 
and lower state Hamiltonians are calculated for each J value using initial values of the 

adjustable molecular constants; (2) both Hamiltonians are numerically diagonalized 
and the resulting sets of eigenvalues are used to construct a set of cslculated line posi- 

tions; and (3) from a least-squares fit of the calculated to the observed line positions, an 
improved set of molecular constants is generated. This nonlinear least-squares procedure 

is repeated until a satisfactory set of molecular constants is obtained. As will be de- 

scribed, the speed of this program makes the band-by-band reduction of spectroscopic 
data with numerically diagonalized Hamiltonians a practical technique for obtaining 

molecular constants in which the separate mechanical and magnetic significance is 

iargeiy retained. 
At present, the scope of the computer program is as follows. All transitions between 

electronic states with A 5 5, S 5 3, and / AJ 1 5 3 are included. Any appropriate com- 
bination of the following molecular constants may be evaluated: the band origin 
v,(v’, 0”) and, for the upper and lower states, the rotational constants B,, D,, and Hu; 
the spin-orbit constants A,, A,hs;A’s’, and AD,; the spin-rotation constant 7”; the 

spin-spin constants c u and (Y 1, ; and the A-doubling constants qI,, and p, [oV is fixed as in 

Eq. (45)] and their centrifugal distortion corrections qDu and pDU. A-doubling is con- 
sidered only for II states and only for a single perturbing state (unique perturber ap- 
proximation) that differs from the perturbed II state by AS = 0, fl and AA = 0, fl. 
This program has been designed so that it can be easily modified to include other in- 
teractions whose matrix elements are not given in Tables I-III. 

For each band, the input data to this program are of two types: the identification and 
wavenumbers of the observed lines and the starting values of the requested molecular 
constants. Each measured line position is accompanied by the rotational quantum num- 
ber J”, the branch designation J’-Jrt, the upper and lower F-levels, and the parities 
(when A-doubling is being considered). Numerous internal consistency tests may be 

7 It is customary to let G and d denote the upper and lower A components. However, Figs. l-4 show that 

then c and d cannot generally represent the parity. 

8 In Figs. 1-4, case (b) coupling corresponds to A ,,= = 0 and the rotational levels are labeled by the 

quantum number N, as shown. It has often been considered that the assignment of N is ambiguous at 

low J levels. However, Figs. 14 shows that this assignment is, in fact, unambiguous. 
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made of these data. One of the most useful of these is a verification that the input 

quantities accompanying each line are compatible with the identification of the states 

involved since some published line positions do contain some physically impossible 

lines (45). Furthermore, unidentified blends are detected and flagged by testing whether 
two or more input lines have exactly the same wavenumber. 

For each molecular constant that is to be included in the fit, there are three alterna- 

tives in the input to the program: (1) The value of the molecular constant is fixed to an 
assigned value; (2) the sign of the value of the molecular constant is fixed to be either 
positive or negative while its magnitude may be determined, (3) the sign and magnitude 
of the molecular constant is free to be found by the program. In the latter two options, 

trial values are required. If reasonable starting values (~20 percent) are not available 
from previous work, then the data are initially fit using only the major constants, i.e., 
v,(v’, D”), A .‘, Au”, B,‘, and B,“. These estimates are then used as starting values for a 

detailed fit. Serious convergence and false-minima problems, which often occur in non- 

linear least-squares fitting, have not been encountered for reasonable, i.e., not un- 

physical, choices of the starting values of the molecular constants. In fact, the ease of 
convergence can be taken as some measure of the correctness of choices such as the 
location and the symmetry type of the perturbing state in A-doubling. In the discussion 
of Figs. 1-4, it was noted that the assignment of the parities to the observed A doublets 
may not be straightforward; in the application of this program, some of the parities 
may require iterative assignments. This often can be facilitated, for example, by initially 

analyzing a E-II transition that shares a common II state with the lI-II transition of 
interest. 

For the appropriate values of J’ and J”, matrix elements for each (2s + 1) 
X (2s + 1) parity block are constructed using Tables I-III and using first the starting 
values, and then the iteratively improved values of the requested molecular constants. 

The upper and lower state Hamiitonians are diagonalized to yield a set of eigenvalues 

(term values) for each J’ and J”. From these eigenvalues, calculated line positions are 
determined for the appropriate branches. These are compared with the measured line 

positions and new estimates of the molecular constants are made that reduce the sum of 
the squares of the residuals. This least-squares procedure is based on the method of 
Marquardt (46) that combines the Gauss (Taylor series) method and the method of 
steepest descent. This numerical procedure was adapted to the computer by Meeter 
and Wolfe (47). 

The molecular constants are iteratively improved until one of several specified con- 

vergence criteria are met. Upon completion, the program provides as output the values 
of the band origin and the molecular constants for the upper and lower states, as well 
as the associated standard deviations (based on a linear approximation to the model in 

the neighborhood of the constants). In addition to the standard deviation of each con- 
stant, the correlation coefficients between all pairs of constants (in the linear approxima- 
tion) are also given. These correlation coefficients show quantitatively how the various 
constants are interrelated in the least-squares fit (7). 

Although this nonlinear least-squares fitting procedure may appear, at first glance, 
to be complex, the time required to reduce the data of a typical band is sufficiently short 
to make this procedure practical. Of course, the running time depends on the number of 
requested constants, the number of lines in the band, etc., but particularly on the multi- 
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plicities of the states. For example, the reduction of a 211-211 band, with A-doubling in 
the lower state and about fifty lines in each of eight branches, requires less than two 

minutes on a CDC-3800 computer. 
Documentation for distribution of this and related programs is now in preparation. 

IV. DISCUSSION AND EXAMPLES 

Detailed applications of the procedure discussed in the preceding two sections have 

been made to the 02 b1Z,+-X3Z, Red Atmospheric band system (48) and the 02+ A211U- 
X2& Second Negative band system (45). In this section, we present examples illustrat- 

ing the problems that result from the lack of a proper separation of the mechanical and 

magnetic meanings of the molecular constants. 

Since our main interest is in constructing reliable RKR potentials from which vibra- 

tional matrix elements such as Franck-Condon factors, r-centroids, centrifugal dis- 
tortion constants, etc. may be calculated, the mechanical significance of experimentally 
obtained band origins and B, values is of paramount importance to us. Because the 
Born-Oppenheimer separation is not exact, there is always some loss of the mechanical 
meaning of v, and B, values and in many cases, we know of no practical way to recoup 
this loss. However, some of the problems can be avoided and we give three examples. 

One major problem is the use of “effective” B, values that have absorbed some of the 

spin-orbit coupling constant A “. The analysis of a 211 state provides an example of this. 

Because of spin-orbit splitting the rotational term values of a 211 state can be written 

for a given vibrational level v as 

Fi(v, J) = B,ci)J(J + 1) - D,ci’[J(J + l)]” + . . . (46) 

where A-doubling has been ignored. In Eq. (46) i = 1 or 2, corresponding to the lower 

or upper sub-bands, respectively. For moderate to large spin-orbit splittings, the empiri- 
cal analysis of spectroscopic data for 211 states yields, according to Eq. (46), two slightly 
different effective B, values, B,(l) and B, c2). If we only take into account the (diagonal) 
contribution to the 211 energy of the spin-orbit interaction and ignore all other inter- 
actions, then Hill and Van Vleck (I) showed long ago that the rotational term values 

have the theoretical form 

and 

Fr(v, _7) = B,{J(J + 1) - 9 - +[(2J + 1)” + Y,(Y, - 4)]t} (47) 

F2(v, J) = B,{J(J + 1) - $ + +[(ZJ + 112 + Y,(Uv - 4)]+} (4% 

where Y, = Au/B,. By rewriting the square root in Eqs. (47) and (48) as 

=F$Y,( 1 + [(Z-7 + 1)” - 4Y,]/Y,2}*, making a power series expansion for 

[(2_7 + 1)” - 4Y,]/Y,2 < 1, 

and collecting terms in J(J + l), we may equate 

B,(l) = B,[l - Y,-’ - . . .] (49) 
and 

B,c2) = B,[l + Y,-’ + . ..]. (50) 

Thus it can be seen that the effective B, values have the spin-orbit interaction en- 
tangled with the mechanical B, value appropriate to the 211 potential, and potentials 
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TABLE IV 

FRANCK-CONDON FACTORS FOR THE T/z0 B 93 - X 12 BAND SYSTEM 

\V’f 0 1 2 

82 

0 9.134 (-1)s 0.828 (- 1) 3.652 (-3) 

8.823 (-1) 1.113 (-1) 6.256 (-3) 

1 0.825 (-1) 7.544 (-1) 1.523 (-1) 
1.096 (-1) 6.742 (-1) 1.979 (-1) 

2 3.936 (-3) 1.510 (-1) 6.149 (-1) 

7.707 (-3) 1.917 (-1) 5.032 (-1) 

a The upper entry is calculated using the B state RKR potential constructed from BSc values; the lower 
entry from B,d values. The number in parentheses is the power of 10, e.g., (- 1) implies X 10-r. 

constructed from the effective B, values do not govern the mechanical motion of the 

nuclei. 

Nevertheless, different RKR potentials have been constructed for 211t and ‘%4 com- 
ponents using the B,(l) and Bvc2) values (49-51). It is not surprising to find that, in the 
case of ArO y-bands, the relative vibrational intensity measurements of Poland and 
Broida (52) disagree seriously with the predictions based on RKR potentials constructed 
from such effective B, values (51), but agree fairly closely with the Franck-Condon 

factors calculated from a RKR-potential based on the mechanical B, value (4). 

Generally, the errors introduced into the v~(zI’, 0”) and B, values by failing to main- 
tain their mechanical significance are small compared to their magnitudes, provided of 

course, that A u is not partially absorbed in B, and v,(zJ’, D”). However, an error of only 

a few parts per thousand in the B, value can appreciably affect the values of calculated 
Franck-Condon factors; thus, maintaining the mechanical integrity even at this level 

often is required. This requires consideration of the mixing of electronic perturbation 
parameters into B,. 

The BIEXIZ system of ThO illustrates this problem. In their analysis of this 

A-doubled system, Edvinsson, Selin, and Aslund (53) determined two B, values, Bvc 
and Bad, as is often done, where c and d refer to the upper and lower A components. For 
example, they found BoC = 0.324324 cm-l and Bad = 0.322988 cm-l, a difference of four 
parts per thousand. In Table IV we present the Franck-Condon factors for the ThOBlU- 
X’Z band system based on RKR potentials constructed from the two sets of B,’ values. 
For Franck-Condon factors on the order of 10-l the two sets differ by as much as 2Ooj,; 

for Franck-Condon factors on the order of 10e3 the uncertainty is about a factor of two. 
Because the ThO A% state lies about 500 cm’ below the B’II state it is reasonable to 
suppose it is responsible for the relatively large A doubling in the BIII state. If we further 
assume that the A% state is a W state (which is based on the assumption that the 
ground ‘Z state is a W) then it is expected that the Bud values associated with the 
lower A component are the more mechanically meaningful. Unfortunately, there are no 
intensity measurements available for this band system so that a direct test of this 
hypothesis cannot be made. 
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It is traditional to take as the B, value of the III state the average of the B,, values 
for the two A components. In the absence of further information, there appears to be no 
simpler procedure for choosing a B, value for the construction of an RKR potential. As 

the example of the ThO B-X band system shows, when But and Bed differ substantially, 
the average B, value has doubtful mechanical meaning. However, when the unique 
perturber approximation is valid, the values obtained for vO(zl’, v”) and B, refer more 

accurately to the mechanical motion of the nuclei (45). 
Perhaps at the level of insignificant mixing of the meaning of molecular constants is 

the common replacement of [J(J + 1) - Q2 + S(S + 1) - F] (see Table I) by 

simply J(J + 1) in the expression for the energy levels. Note that this introduces 
[B, into T, (or, of more importance in the construction of RKR potentials, [AB, into 
AGv++) and 12Du into B,, where E = Q2 - S(S + 1) + x2. These alterations in the 

T, and B, values are usually within the experimental uncertainty; even in those cases 

where the alterations are discernible, the impaired molecular constants lead to RKR 
potentials that are essentially indistinguishable for the calculation of various vibra- 
tional matrix elements. 
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APPENDIX A 

The case (a) wavefunction ~nvJ&SLCV) may be written as a product of two wave- 

functions 
1 n7JJ8SAZM) = 1 Jkm) 1 n-J.sAZ), (Al) 

where 

/JMQ) = [(2J + 1)/8~*1;DJ*~~~11(~~~) (A2) 

is a rotational part and 
1 nvSA2) = R&r) 2”~‘p~(qi, a,; i) (43) 

is a vibronic part that pertains to the nonrotating molecule. In Eq. (A2) DJ*A~~~ is a 
symmetric top wavefunction, given by 

where dJMe is a Jacobi polynomial and ti$y are Euler angles that describe the orienta- 

tion of the molecule-fixed frame with respect to the space-fixed frame (54). In Eq. (A3) 
R,,(r) is the vibrational wavefunction and 2S+1(pg(qi, ai; r) is the electronic wave- 

function. Here the internuclear distance is denoted by r, the electronic coordinates by 
qi, and the electron spin coordinates by CT~, where the ni are measured in the molecular 
frame. To determine the parity of the overall wavefunction 1 ~vJQSAZM) we consider 
the effect of the spatial inversion operation on 1 JMCi2) and 1 n&AZ) separately. 

In defining the molecular wavefunction 1 nvJOSAZM) we use two coordinate systems, 
a frame XYZ fixed in space and a frame xyz that moves with the molecule. The origin 
of both frames coincide with the center of mass of the AB molecule. The xyz frame is 
defined to have its z axis along the internuclear axis pointing from nucleus A to nucleus 
B. Both frames are right-handed coordinate systems. The Euler angles & relate the 
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space-fixed frame XYZ to the molecule-fixed frame xyz where, by performing three 

successive rotations, XYZ may be made to coincide with xyz: (1) a positive rotation by 
0 5 (11 2 2?r about the Z axis; (2) a positive rotation by 0 _< ,B 5 w about the line of 

nodes; and (3) a positive rotation by 0 5 y < 2?r about the z axis. The XYZ and ,zyz 
frames are then related by 

X 

II I 

c@cy - scysy -cca&y - s4Yc-y cffsp x 

Y = scvcpcy + ccvsy -scKpsy + carcy s& Y , W) z - sPcr SPW 4 II1 Z 

where sine has been abbreviated by s and cosine by c. In Eq. (AS) the unitary trans- 
formation matrix is the transpose of the well-known direction cosine matrix. 

Under spatial inversion, X + - X, Y--f - Y, and Z--f - Z. For Eq. (A5) to be an 
identity, we must determine how the Euler angles& and the molecule-fixed coordinates 

xyz transform under this symmetry operation. Note that spatial inversion may be re- 
garded as an inversion of the positions of all particles (nuclei and electrons) in a fixed 
laboratory reference frame. It can be easily seen that the following transformation 

preserves Eq. (AS) : 

X+-X, 

Y+Y, 

24 2; (-46) 

and 
CY+?r+Cr, 

P+a -P, 

Y-+-Y* (A7) 

Physically, Eqs. (A6) and (A7) correspond to the symmetry operation a,uz for the 
molecule-fixed coordinates and to the transformation Czz on the Euler angles. 

We note that this choice is arbitrary. We could equally well have used the alternative 
transformation (24) uVzz on the molecule-fixed coordinates (;2.+ x, y-+ - y, z--t Z) 

and Cgu on the Euler angles (cz ---f w + (Y, /3 ---f ?r - /3, y -+ ?r - r). The only difference 

in the Eulerian angle transformations is the behavior of the angle y that measures rota- 
tion about the molecule-fixed z axis. However, a linear molecule has only two rotational 
degrees of freedom, and hence the angle y is redundant. Thus the value of y can be fixed 
arbitrarily. If one chooses to express the effect of spatial inversion on the molecular 
coordinates by Eqs. (A6) and (A’i), then y must be fixed equal to zero (the only number 
equal to its negative). If, however, the alternative transformation (24) is chosen, then y 
must be fixed equal to a/2. As will be seen, we prefer choosing Eqs. (A6) and (A7) be- 
cause the expressions for the resulting transformation properties are simpler. 

The rotational wavefunction 1 JMQ) may then be rewritten as 

2J+l* 
/_7llm) = __ 

[ 1 DJ**&,P,O), 
4* 

(A@ 

where the normalization factor has been altered to reflect the fact that integration over 
the solid angle element no longer includes y. The transformation properties of the rota- 
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tional wavefunction IJMQ) may be derived with the help of the two identities (56) 

and 

dj,, ,%(K - p) = (- l) j-m’ dj,,_,, @) (A9) 

djmtrn@) = dj_,,_,r(f3). (AlO) 
We find that 

iapDJ*Mo(a, P, 0) = DJ*~e(rr + a, ?r - P, 0) 

= (-1) JDJ*~,_&,@, 0). (All) 
Hence we conclude that 

igpjJMQ) = (-l)JI.7M, -a). (AM 

The vibrational wavefunction R,,(r) depends solely on the internuclear distance r, 

a quantity that is unchanged by the operation i,,. Thus the effect of i,, on InvSAZ) 
may be determined from the behavior of the electronic function ns+l~~ under spatial 

inversion. The electronic wavefunction 2s+1po may be regarded as an antisymmetrized 

linear combination of spin-orbitals of the form 

where cp~ expresses the orbital part and XSZ the spin part, respectively. For the purposes 
of determining the behavior of the vibronic wavefunction [ nv.SAZ), it suffices then to 
consider separately the behavior of cp~ and Xsz. 

The dependence of the orbital part on A may be written explicitly as ph(qi; r) eiAya 

where the electronic coordinates qi are conveniently represented in cylindrical 

coordinates, 
Xi = pi COS yi, 

>‘i = pi sin y;, 

Zi = Zi, (A14) 

and the angle 7e may be considered to be an electronic reference angle from which all 

other yi are measured (35). To preserve the transformation properties given in Eqs. 
(A6) and (A7), a,~~ must have the effect of transforming pi + pi and yi -+ ?r - yi. 

In the special case of Z states, corresponding to A = 0, we must distinguish between 
two types of Z states, Z+ and 2, according to whether the state is unchanged or changes 
sign, respectively, under a reflection in the yz plane. Thus we have 

i sp PO = (-1P PO, LW 

where s = 1 for Z- states and s = 0 for 2+ states. 
For non-2 states, we are at liberty to choose s = 0; this choices implies that 

Thus, for all states 
p*(qi; r) = (i)^ CplAl eihle. 

i,, cPk = (-~)SP-A, 

(A16) 

(Al7) 

where s = 1 for Z- states, and s = 0 for all others. 

9 Note that sometimes it may be preferable, especially when L is at most a good quantum number, to 

let s be a function of L and possibly A (24,30). 
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In Hund’s case (a) coupling the spin coordinates ui are referred to the molecule-fixed 

frame so that the symmetry operation i,, may alter the value of pi. We may make ex- 
plicit the spatial dependence of the spin function XSE by re-expressing XSZ in terms of 
Hund’s case (b) spin functions XS m, where m, is the projection of S on a space-fixed axis : 

xsr. = c ~s,z(~,P,o) %sm*. (Al@ 
m. 

In Eq. (AM) Xsma is unaffected by the symmetry operation isp while Ds,,z transforms 

under i,, according to Eq. (All). Thus 

iepXSz = (- 1)s XS,_Z. (A19) 

Combining Eqs. (A12), (A17), and (A19) we conclude that 

i,, 1 nvJ.!XZ) = (- 1)J+s+8 1 nvJS, -A, -Z), (A201 

where s = 1 for Z- states and s = 0 for all other states. In Eq. (A20) we have omitted 
M from the wavefunction since Eq. (A20) is independent of the value of M. 

APPENDIX B 

For a ‘% state each J value is associated with two rotational levels, one of each parity. 

The case (a) basis set functions corresponding to the rotational level J with parity 
p* = f (- l)J+S+* may be written 

= ;I, n 22t* vJ) f 1 n 2X*__; vJ)], W) 

where we have abbreviated their form by introducing the signed value of A + Z as a 

subscript on the term symbol. For a 211 state each J value, except J = 3, has four rota- 
tional levels associated with it, two of each parity. The 2 X 2 blocks of parity p* are 

constructed from the case (a) basis functions 

and 

In2111tvJ+*) =;~~n211pJ)& ~n21LivJ)] 032) 

~n211~vJ~*) =;[la211pJ)t In211_+vJ}]. (B3) 

In the special case J = 3, the D = Q basis functions are missing and there are only two 
rotational levels of opposite parity for this J value. 

In the absence of perturbations, the pf parity levels of a 2Z state have the energy 

H:l’O’(p+) + H tf’l’(p+) = Tn” + BvYJ + $1 (J + $1 - D,“[(J + B> (J + f>12 
+ Hv”[(J + 4>(J + 91” - 4rv”CJ + 3, (B4) 
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while the p- parity levels have the-energy 

H+t’“‘(p-) + H,+ “‘(p-) = T,’ + B,‘(J - $)(J + ;) - Dv”[(J - $)(J + $)I” 

+ H,“[(J - $)(J + ;>I” + frrt,“(J - $). (BS) 

Equations (B4) and (BS) h s ow that even in the absence of perturbation the rotational 

levels of a 2Z state are split by an amount 

E(la2Z+* vJp-) - E(n2Zi* v, J - 1, p’) = yupJ, Gw 

where the magnitude of the splitting increases linearly with J in the absence of cen- 
trifugal distortion corrections to 7 x,,. Thus each rotational level except the J = 5 level 

of p- parity occurs in closely-spaced pairs. Equations (B4)-(B6) assume a more familiar 
form if J + 3 is replaced by the rotational quantum number N, which is a good quan- 

tum number in Hund’s case (b) coupling. 

Suppose 211 states perturb the 2L: state under study (42). Then, we may treat these 
perturbations according to the Van Vleck transformation by adding the correction term 

H++c2’(+) = 1 [E(n %;*vJ) - E(n’ %v’J)]-’ 
n’ 21’ 

X {[(n 2Z;* VJ 1 HI 1 n’ Q; v’J) + (a 22i* VJ 1 HI/n’ *II_+ v’J)12 

+ [(n *&* ZJJ 1 HI (n’ *ITJ v’J) + (n *&* VJ 1 HI j n’ C3 v’J)]“} (B7) 

to the unperturbed energy of the p+ levels of a 2Z+ state or the p- levels of a 2Z- state, 
and by adding the correction term 

H++‘*‘( -) = c [E(n 2X* vJ) - E(n’ 211 v’J)]-’ 
n’o’ 

X {[(n 2Z+* VJ 1 HI 1 n’ *II+ v’J) - (n 2Z;* vJ 1 HI 1 n’ 2FI_+ v’J)]” 

+ [(n 22+* VJ 1 HI / n’ 2J11 v’J) - (n 2Z;* VJ 1 HI/n 2n-I v’J)12) (B8) 

to the p- levels of a *Zf state or the p+ levels of a 2Z- state. Introducing the electronic 
perturbation parameters qvz, puz, and ov x defined in Eqs. (39-41), Eqs. (B7) and (B8) 

may be rewritten 

and 
H++‘2’(+) = qu’(J + t)(J + Q) + &,“(J + $> + ouz (B9) 

Wi+‘2’(-) = q,‘(J - $)(J + 4) - $p.“(J - 4) + o”=. (BW 

For J = &, the matrix elements involving the 2II+ and 211-f wavefunctions do not appear 
in Eqs. (B7) and (B8) ; however, Eqs. (B9) and (BlO) are unaltered. 

Comparison of Eqs. (B9) and (BlO) with Eqs. (B4) and (B5) shows that 211 perturba- 
tions contribute a term ouz to the effective band origin, a term -pvx to the effective 
spin-rotation constant y,,, and a term qu z to the effective B, value. If centrifugal dis- 

tortion corrections to the parameters ovx, pUz, and quE are also introduced, the effective 
D, and H. values also differ from Dvx and H, z. This illustrates how the presence of 

interacting *II states impairs the mechanical meaning of the rotational constants of a 
22 state. Because both parity levels are affected equally, it is not possible to recover 
Bvz from the experimental B, value. In the unique perturber approximation we note 
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that B, < Buz if the perturbing 211 state lies above the 2Zk state, and B, > B,” if the 
perturbing 211 state lies below. 

APPENDIX C 

There are in general three A-doubling parameters required to describe the shifts and 
splittings of the A components of a II state caused by interactions with 2* states of the 
same multiplicity. These electronic perturbation parameters are conveniently defined 

as (42) 

0,” = z( 
n 2S+111~J~$4(r)L+~n’ 2S+12*~‘J)2 

7 (Cl) 
n’v’ E 7lu.l - Erz’u~~ 

pun=41 
(n 2s+111 oJl iA (r)L+ 1 n’ 2S+1X* $J)(n 2S+111 ZJJI B(r)L+ 1 n’ 2s+1Z* v’J) 

, w> 
n’u’ E nvJ - &*.,J 

and 

qv” = 2 c 
(n 2S+111 vJ/ B(r)L+ 1 n’ 2s+12* v’J)~ 

(C3) 
n’ Y’ E nuJ - &,,J 

It is possible to relate the A-doubling parameters to each other and to the constants 

A,” and B,” of the perturbed state. These approximate relations prove useful as a 
means of estimating or interpreting the sign and magnitude of the A-doubling constants. 

They also permit us to understand how the A-doubling structure of a II state changes 

as a function of A “* from Hund’s case (a) coupling (A,= +w), to Hund’s case (b) 
coupling (A vn = 0), to inverted Hund’s case (a) coupling (A an -+ - CQ) (See Figs. 14). 

1. Born-Oppenheimer separation. Each vibronic matrix element appearing in Eqs. 

(Cl)-(C3) are assumed to factor into the product of a vibrational and an electronic 
matrix element : 

(tz 2s+111 VJ 1 +A (r) L, 1 n ‘2s+Yz* V’J) = (VJ 1311 (r) 1 V’J)(lZ 1 L, I n’) (C4) 
and 

(s~~+~II vJI B(r)L+ I n’ zs+12* v’J) = (vJ 1 B(r) 1 v’J)(n / L, / d). (C5) 

2. Neglect of centrifugal distortion. The A-doubling parameters are assumed to be 

independent of J. Thus 

(vJ 1 B(r) I ~‘4 = (v 1 B(r) 1 a’), (W 

(VJ [ ;A (r) / V’J) = (v 1 &I (r) I v’), (C7) 
and 

&“J - E,,,tJ = E,, - E,!,!. (W 

3. Variation of A(r) with r. The spin-orbit parameter A is usually a slowly-varying 
function of internuclear distance (56). The reasons for this behavior are complex (15,57). 
In brief, the value of A is approximately the sum of the contributions Zi (Zik)eft (rck3) 
for each nucleus k, where (.&Jarr is the effective (screened) nuclear charge seen by the 
unpaired electron i and (rik3) is the average cubed inverse distance from the electron i 
to the nucleus k. As the internuclear distance changes by a small amount, the variation 
of the electronic wavefunction does not sensitively affect these essentially atomic con- 
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tributions. Therefore, we assume that 

(v 1 g.4 (r) [ 8’) = $11 u”(zl ~ ZJ’). (C9) 

With the help of the foregoing approximations the A-doubling parameters may be 

rewritten 

oil= = a(AorYC tnIL+ln’)2$ E 
(v IO 

, (ClO) 
n’ 

_ E 
nv n’a’ 

and 

(C11) 

(Cl21 

Equations (ClO)-(C12) show that oun is proportional to the square of A vn, pun is pro- 

portional to A 2n, and qvn is independent of A ,,n. 

4. Unique perturber approximation. We assume one Z+ or one Z- state (real or 
composite) of the same multiplicity accounts for the A doubling. Then the sumnat’on 

over n’ in Eqs. (ClO)-(C12) may be omitted. 
5. Effective energy denominator. Because of the Franck-Condon principle, only 

those vibrational levels D’ of the 92 ’ zs+lTZ* state with appreciable Franck-Condon factors 
contribute to the vibrational sums shown in Eq. (ClO)-(C12). Moreover, the vibrational 
spacings in the perturbing electronic state are usually small compared to the sepal ation 
between the two electronic states n and n’. Accordingly, we assume that we can replace 
the energy denominators in Eqs. (ClO)-(C12) by an effective value AE(v) that is 
independent of v’. This permits us to carry out the summations over v’ in Eqs. (ClO)- 

(C12). The expressions for the A-doubling parameters reduce to 

0,” = $(~4,n)~(n/ L+ (n’)2/AE(v), 

pvrr = 211,“B,“(nI L.,Is’)~/AE(~), 

qua = 2(vjB2(r)jv)(nIL+In’)2/AE(v). 

For calculational purposes10 AL?(v) might be taken as 

(C13) 

(C14) 

(C15) 

where q,,, = (v’ / v)‘. 

A-%) = C qvtd(Eiz, - En,,,), 
I’ 

KW 

Inspection of Eqs. (C13)-(15) shows that the sign of o,,n is the same as qun, i.e., the 
sign of AE(v), while the sign of pVn is the sign of 0,” or qan times the sign of A,n. Few 
exceptions are known to this rule and they have been traced to the failure of the unique 
perturber approximation (59). We also note that oVn and pVn may be related to each 

lo Often the evaluation of Eqs. (C13)-(C15) can be further simplified by assuming that the valence 
electrons have well-defined angular momenta 1 that make projections X on the internuclear axis [Van 
Vleck’s hypothesis of pure precession (42)]. This permits the matrix elements (n [ L+ 1 n’)” to be simply 
estimated. However, the pure precession hypothesis is not always satisfied (58) and, in any case, we need 
not make this assumption in what follows. 
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other by 

0,” = +(A,“/B,“)pv”, (Cl7) 
and pDn and qVn by 

87Gc/.~ (v 1 r-2 1 v) 
p,n = ~ 08) 

h (VI r-41 yqv”* 

If we further approximate (u~~~/zJ) as (~lr-~/~)~ then Eq. (C18) simplifies to 

pan= (A,“IB,T’)q,“. (Cl9) 

No study of the validity of Eqs. (C17) or (C18) appears to have been made to date; 
the validity of Eq. (C19) has been considered in the analysis of the O,+ A%,-X2& 

system (45). 

RECEIVED : September 12,1972 
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