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Optimization problem

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

gi (x) = 0, i = 1, . . . , p

I x ∈ Rn is (vector) variable to be chosen (n scalar variables x1, . . . , xn)
I f0 is the objective function, to be minimized
I f1, . . . , fm are the inequality constraint functions
I g1, . . . , gp are the equality constraint functions

I variations: maximize objective, multiple objectives, …
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Finding good (or best) actions

I x represents some action, e.g.,
– trades in a portfolio
– airplane control surface deflections
– schedule or assignment
– resource allocation

I constraints limit actions or impose conditions on outcome
I the smaller the objective f0 (x), the better

– total cost (or negative profit)
– deviation from desired or target outcome
– risk
– fuel use
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Finding good models

I x represents the parameters in a model
I constraints impose requirements on model parameters (e.g., nonnegativity)
I objective f0 (x) is sum of two terms:

– a prediction error (or loss) on some observed data
– a (regularization) term that penalizes model complexity
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Worst-case analysis (pessimization)

I variables are actions or parameters out of our control
(and possibly under the control of an adversary)

I constraints limit the possible values of the parameters
I minimizing −f0 (x) finds worst possible parameter values

I if the worst possible value of f0 (x) is tolerable, you’re OK
I it’s good to know what the worst possible scenario can be
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Optimization-based models

I model an entity as taking actions that solve an optimization problem
– an individual makes choices that maximize expected utility
– an organism acts to maximize its reproductive success
– reaction rates in a cell maximize growth
– currents in a circuit minimize total power

I (except the last) these are very crude models
I and yet, they often work very well
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Basic use model for mathematical optimization

I instead of saying how to choose (action, model) x
I you articulate what you want (by stating the problem)
I then let an algorithm decide on (action, model) x
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Can you solve it?

I generally, no
I but you can try to solve it approximately, and it often doesn’t matter

I the exception: convex optimization
– includes linear programming (LP), quadratic programming (QP), many others
– we can solve these problems reliably and efficiently
– come up in many applications across many fields
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Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)
I find a point that minimizes f0 among feasible points near it
I can handle large problems, e.g., neural network training
I require initial guess, and often, algorithm parameter tuning
I provide no information about how suboptimal the point found is

global optimization methods
I find the (global) solution
I worst-case complexity grows exponentially with problem size
I often based on solving convex subproblems
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Convex optimization

convex optimization problem:

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

I variable x ∈ Rn

I equality constraints are linear
I f0, . . . , fm are convex: for \ ∈ [0, 1],

fi (\x + (1 − \)y) ≤ \fi (x) + (1 − \)fi (y)

i.e., fi have nonnegative (upward) curvature
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When is an optimization problem hard to solve?

I classical view:
– linear (zero curvature) is easy
– nonlinear (nonzero curvature) is hard

I the classical view is wrong

I the correct view:
– convex (nonnegative curvature) is easy
– nonconvex (negative curvature) is hard
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Solving convex optimization problems

I many different algorithms (that run on many platforms)
– interior-point methods for up to 10000s of variables
– first-order methods for larger problems
– do not require initial point, babysitting, or tuning

I can develop and deploy quickly using modeling languages such as CVXPY
I solvers are reliable, so can be embedded
I code generation yields real-time solvers that execute in milliseconds

(e.g., on Falcon 9 and Heavy for landing)
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Modeling languages for convex optimization

I domain specific languages (DSLs) for convex optimization
– describe problem in high level language, close to the math
– can automatically transform problem to standard form, then solve

I enables rapid prototyping
I it’s now much easier to develop an optimization-based application
I ideal for teaching and research (can do a lot with short scripts)

I gets close to the basic idea: say what you want, not how to get it
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CVXPY example: non-negative least squares

math:

minimize ‖Ax − b‖2
2

subject to x � 0

I variable is x
I A, b given
I x � 0 means x1 ≥ 0, . . . , xn ≥ 0

CVXPY code:
import cvxpy as cp

A, b = ...

x = cp.Variable(n)
obj = cp.norm2(A @ x - b)**2
constr = [x >= 0]
prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()
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Brief history of convex optimization

I theory (convex analysis): 1900–1970

I algorithms
– 1947: simplex algorithm for linear programming (Dantzig)
– 1960s: early interior-point methods (Fiacco & McCormick, Dikin, …)
– 1970s: ellipsoid method and other subgradient methods
– 1980s & 90s: interior-point methods (Karmarkar, Nesterov & Nemirovski)
– since 2000s: many methods for large-scale convex optimization

I applications
– before 1990: mostly in operations research, a few in engineering
– since 1990: many applications in engineering (control, signal processing, communications,

circuit design, …)
– since 2000s: machine learning and statistics, finance
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Summary

convex optimization problems
I are optimization problems of a special form
I arise in many applications
I can be solved effectively
I are easy to specify using DSLs
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Affine set

line through x1, x2: all points of form x = \x1 + (1 − \)x2, with \ ∈ R

x1

x2

\ = 1.2
\ = 1

\ = 0.6

\ = 0
\ = −0.2

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Ax = b}
(conversely, every affine set can be expressed as solution set of system of linear equations)
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Convex set

line segment between x1 and x2: all points of form x = \x1 + (1 − \)x2, with 0 ≤ \ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ \ ≤ 1 =⇒ \x1 + (1 − \)x2 ∈ C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x1,…, xk: any point x of the form

x = \1x1 + \2x2 + · · · + \kxk

with \1 + · · · + \k = 1, \i ≥ 0

convex hull conv S: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x1 and x2: any point of the form

x = \1x1 + \2x2

with \1 ≥ 0, \2 ≥ 0

0

x1

x2

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b}, with a ≠ 0

a

x

a
T

x = b

x0

halfspace: set of the form {x | aTx ≤ b}, with a ≠ 0

a

a
T

x ≥ b

a
T

x ≤ b

x0

I a is the normal vector
I hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x − xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

ellipsoid: set of the form
{x | (x − xc)TP−1 (x − xc) ≤ 1}

with P ∈ Sn
++ (i.e., P symmetric positive definite)

xc

another representation: {xc + Au | ‖u‖2 ≤ 1} with A square and nonsingular

Convex Optimization Boyd and Vandenberghe 2.7



Norm balls and norm cones
I norm: a function ‖ · ‖ that satisfies

– ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0
– ‖tx‖ = |t | ‖x‖ for t ∈ R
– ‖x + y‖ ≤ ‖x‖ + ‖y‖

I notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm
I norm ball with center xc and radius r: {x | ‖x − xc‖ ≤ r}
I norm cone: {(x, t) | ‖x‖ ≤ t}
I norm balls and cones are convex

Euclidean norm cone

{(x, t) | ‖x‖2 ≤ t} ⊂ Rn+1

is called second-order cone
x1

x2

t

−1

0

1

−1

0

1

0

0.5

1
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Polyhedra

I polyhedron is solution set of finitely many linear inequalities and equalities

{x | Ax � b, Cx = d}

(A ∈ Rm×n, C ∈ Rp×n, � is componentwise inequality)
I intersection of finite number of halfspaces and hyperplanes
I example with no equality constraints; aT

i are rows of A

a1 a2

a3

a4

a5

P
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Positive semidefinite cone
notation:
I Sn is set of symmetric n × n matrices
I Sn

+ = {X ∈ Sn | X � 0}: positive semidefinite (symmetric) n × n matrices

X ∈ Sn
+ ⇐⇒ zTXz ≥ 0 for all z

I Sn
+ is a convex cone, the positive semidefinite cone

I Sn
++ = {X ∈ Sn | X � 0}: positive definite (symmetric) n × n matrices

example:
[

x y
y z

]
∈ S2

+

xy
z

0

0.5

1

−1

0

1

0

0.5

1
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Showing a set is convex

methods for establishing convexity of a set C

1. apply definition: show x1, x2 ∈ C, 0 ≤ \ ≤ 1 =⇒ \x1 + (1 − \)x2 ∈ C
– recommended only for very simple sets

2. use convex functions (next lecture)

3. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, …)
by operations that preserve convexity

– intersection
– affine mapping
– perspective mapping
– linear-fractional mapping

you’ll mostly use methods 2 and 3
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Intersection

I the intersection of (any number of) convex sets is convex

I example:
– S = {x ∈ Rm | |p(t) | ≤ 1 for |t | ≤ c/3}, with p(t) = x1 cos t + · · · + xm cos mt
– write S =

⋂
|t | ≤c/3 {x | |p(t) | ≤ 1}, i.e., an intersection of (convex) slabs

I picture for m = 2:

0 c/3 2c/3 c

−1

0

1

t

p
(t
)

x1

x
2 S

−2 −1 0 1 2
−2

−1

0

1

2
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Affine mappings

I suppose f : Rn → Rm is affine, i.e., f (x) = Ax + b with A ∈ Rm×n, b ∈ Rm

I the image of a convex set under f is convex

S ⊆ Rn convex =⇒ f (S) = {f (x) | x ∈ S} convex

I the inverse image f −1 (C) of a convex set under f is convex

C ⊆ Rm convex =⇒ f −1 (C) = {x ∈ Rn | f (x) ∈ C} convex
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Examples

I scaling, translation: aS + b = {ax + b | x ∈ S}, a, b ∈ R
I projection onto some coordinates: {x | (x, y) ∈ S}
I if S ⊆ Rn is convex and c ∈ Rn, cTS = {cTx | x ∈ S} is an interval
I solution set of linear matrix inequality {x | x1A1 + · · · + xmAm � B} with Ai,B ∈ Sp

I hyperbolic cone {x | xTPx ≤ (cTx)2, cTx ≥ 0} with P ∈ Sn
+
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Perspective and linear-fractional function

I perspective function P : Rn+1 → Rn:

P(x, t) = x/t, dom P = {(x, t) | t > 0}

I images and inverse images of convex sets under perspective are convex

I linear-fractional function f : Rn → Rm:

f (x) = Ax + b
cTx + d

, dom f = {x | cTx + d > 0}

I images and inverse images of convex sets under linear-fractional functions are convex

Convex Optimization Boyd and Vandenberghe 2.16



Linear-fractional function example

f (x) = 1
x1 + x2 + 1

x

x1

x
2

C

−1 0 1
−1

0

1

x1

x
2

f (C)

−1 0 1
−1

0

1
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Proper cones

a convex cone K ⊆ Rn is a proper cone if
I K is closed (contains its boundary)
I K is solid (has nonempty interior)
I K is pointed (contains no line)

examples
I nonnegative orthant K = Rn

+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}
I positive semidefinite cone K = Sn

+
I nonnegative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t + x3t2 + · · · + xntn−1 ≥ 0 for t ∈ [0, 1]}
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Generalized inequality

I (nonstrict and strict) generalized inequality defined by a proper cone K:

x �K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ int K

I examples
– componentwise inequality (K = Rn

+): x �Rn
+

y ⇐⇒ xi ≤ yi, i = 1, . . . , n
– matrix inequality (K = Sn

+): X �Sn
+

Y ⇐⇒ Y − X positive semidefinite
these two types are so common that we drop the subscript in �K

I many properties of �K are similar to ≤ on R, e.g.,

x �K y, u �K v =⇒ x + u �K y + v
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Separating hyperplane theorem

I if C and D are nonempty disjoint (i.e., C ∩ D = ∅) convex sets, there exist a ≠ 0, b s.t.

aTx ≤ b for x ∈ C, aTx ≥ b for x ∈ D

D

C

a

a
T

x ≥ b a
T

x ≤ b

I the hyperplane {x | aTx = b} separates C and D
I strict separation requires additional assumptions (e.g., C is closed, D is a singleton)
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Supporting hyperplane theorem

I suppose x0 is a boundary point of set C ⊂ Rn

I supporting hyperplane to C at x0 has form {x | aTx = aTx0}, where a ≠ 0 and
aTx ≤ aTx0 for all x ∈ C

C

a

x0

I supporting hyperplane theorem: if C is convex, then there exists a supporting
hyperplane at every boundary point of C
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Definition

I f : Rn → R is convex if dom f is a convex set and for all x, y ∈ dom f , 0 ≤ \ ≤ 1,

f (\x + (1 − \)y) ≤ \f (x) + (1 − \)f (y)

(x, f (x))

(y, f (y))

I f is concave if −f is convex
I f is strictly convex if dom f is convex and for x, y ∈ dom f , x ≠ y, 0 < \ < 1,

f (\x + (1 − \)y) < \f (x) + (1 − \)f (y)
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Examples on R

convex functions:
I affine: ax + b on R, for any a, b ∈ R
I exponential: eax, for any a ∈ R
I powers: xU on R++, for U ≥ 1 or U ≤ 0
I powers of absolute value: |x |p on R, for p ≥ 1
I positive part (relu): max{0, x}

concave functions:
I affine: ax + b on R, for any a, b ∈ R
I powers: xU on R++, for 0 ≤ U ≤ 1
I logarithm: log x on R++
I entropy: −x log x on R++
I negative part: min{0, x}
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Examples on Rn

convex functions:
I affine functions: f (x) = aTx + b
I any norm, e.g., the ℓp norms

– ‖x‖p = ( |x1 |p + · · · + |xn |p)1/p for p ≥ 1
– ‖x‖∞ = max{|x1 |, . . . , |xn |}

I sum of squares: ‖x‖2
2 = x2

1 + · · · + x2
n

I max function: max(x) = max{x1, x2, . . . , xn}
I softmax or log-sum-exp function: log(exp x1 + · · · + exp xn)
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Examples on Rm×n

I X ∈ Rm×n (m × n matrices) is the variable
I general affine function has form

f (X) = tr(ATX) + b =

m∑
i=1

n∑
j=1

AijXij + b

for some A ∈ Rm×n, b ∈ R
I spectral norm (maximum singular value) is convex

f (X) = ‖X‖2 = fmax (X) = (_max (XTX))1/2

I log-determinant: for X ∈ Sn
++, f (X) = log det X is concave
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Extended-value extension

I suppose f is convex on Rn, with domain dom f
I its extended-value extension f̃ is function f̃ : Rn → R ∪ {∞}

f̃ (x) =
{

f (x) x ∈ dom f
∞ x ∉ dom f

I often simplifies notation; for example, the condition

0 ≤ \ ≤ 1 =⇒ f̃ (\x + (1 − \)y) ≤ \ f̃ (x) + (1 − \) f̃ (y)

(as an inequality in R ∪ {∞}), means the same as the two conditions
– dom f is convex
– x, y ∈ dom f , 0 ≤ \ ≤ 1 =⇒ f (\x + (1 − \)y) ≤ \f (x) + (1 − \)f (y)
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Restriction of a convex function to a line

I f : Rn → R is convex if and only if the function g : R → R,

g(t) = f (x + tv), dom g = {t | x + tv ∈ dom f }

is convex (in t) for any x ∈ dom f , v ∈ Rn

I can check convexity of f by checking convexity of functions of one variable

Convex Optimization Boyd and Vandenberghe 3.7



Example

I f : Sn → R with f (X) = log det X, dom f = Sn
++

I consider line in Sn given by X + tV , X ∈ Sn
++, V ∈ Sn, t ∈ R

g(t) = log det(X + tV)

= log det
(
X1/2

(
I + tX−1/2VX−1/2

)
X1/2

)
= log det X + log det

(
I + tX−1/2VX−1/2

)
= log det X +

n∑
i=1

log(1 + t_i)

where _i are the eigenvalues of X−1/2VX−1/2

I g is concave in t (for any choice of X ∈ Sn
++, V ∈ Sn); hence f is concave
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First-order condition
I f is differentiable if dom f is open and the gradient

∇f (x) =
(
mf (x)
mx1

,
mf (x)
mx2

, . . . ,
mf (x)
mxn

)
∈ Rn

exists at each x ∈ dom f
I 1st-order condition: differentiable f with convex domain is convex if and only if

f (y) ≥ f (x) + ∇f (x)T (y − x) for all x, y ∈ dom f

I first order Taylor approximation of convex f is a global underestimator of f

(x, f (x))

f (y)

f (x) + ∇f (x)T (y − x)
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Second-order conditions

I f is twice differentiable if dom f is open and the Hessian ∇2f (x) ∈ Sn,

∇2f (x)ij =
m2f (x)
mximxj

, i, j = 1, . . . , n,

exists at each x ∈ dom f

I 2nd-order conditions: for twice differentiable f with convex domain
– f is convex if and only if ∇2f (x) � 0 for all x ∈ dom f
– if ∇2f (x) � 0 for all x ∈ dom f , then f is strictly convex
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Examples
I quadratic function: f (x) = (1/2)xTPx + qTx + r (with P ∈ Sn)

∇f (x) = Px + q, ∇2f (x) = P

convex if P � 0 (concave if P � 0)
I least-squares objective: f (x) = ‖Ax − b‖2

2

∇f (x) = 2AT (Ax − b), ∇2f (x) = 2ATA

convex (for any A)

I quadratic-over-linear: f (x, y) = x2/y, y > 0

∇2f (x, y) = 2
y3

[
y
−x

] [
y
−x

]T
� 0

convex for y > 0
xy

f
(x
,
y
)

−2

0

2

0

1

2

0

1

2
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More examples

I log-sum-exp: f (x) = log
∑n

k=1 exp xk is convex

∇2f (x) = 1
1T z

diag(z) − 1
(1T z)2 zzT (zk = exp xk)

I to show ∇2f (x) � 0, we must verify that vT∇2f (x)v ≥ 0 for all v:

vT∇2f (x)v =
(∑k zkv2

k) (
∑

k zk) − (∑k vkzk)2

(∑k zk)2 ≥ 0

since (∑k vkzk)2 ≤ (∑k zkv2
k) (

∑
k zk) (from Cauchy-Schwarz inequality)

I geometric mean: f (x) = (∏n
k=1 xk)1/n on Rn

++ is concave (similar proof as above)
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Epigraph and sublevel set

I U-sublevel set of f : Rn → R is CU = {x ∈ dom f | f (x) ≤ U}
I sublevel sets of convex functions are convex sets (but converse is false)
I epigraph of f : Rn → R is epi f = {(x, t) ∈ Rn+1 | x ∈ dom f , f (x) ≤ t}

epi f

f

I f is convex if and only if epi f is a convex set

Convex Optimization Boyd and Vandenberghe 3.13



Jensen’s inequality

I basic inequality: if f is convex, then for x, y ∈ dom f , 0 ≤ \ ≤ 1,

f (\x + (1 − \)y) ≤ \f (x) + (1 − \)f (y)

I extension: if f is convex and z is a random variable on dom f ,

f (E z) ≤ E f (z)

I basic inequality is special case with discrete distribution

prob(z = x) = \, prob(z = y) = 1 − \
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Example: log-normal random variable

I suppose X ∼ N(`, f2)
I with f (u) = exp u, Y = f (X) is log-normal
I we have E f (X) = exp(` + f2/2)
I Jensen’s inequality is

f (E X) = exp ` ≤ E f (X) = exp(` + f2/2)

which indeed holds since expf2/2 > 1
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Example: log-normal random variable

f (E X)
E f (X)

p(f (X))

E X

p(
X)
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Showing a function is convex

methods for establishing convexity of a function f

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show ∇2f (x) � 0
– recommended only for very simple functions

3. show that f is obtained from simple convex functions by operations that preserve convexity
– nonnegative weighted sum
– composition with affine function
– pointwise maximum and supremum
– composition
– minimization
– perspective

you’ll mostly use methods 2 and 3
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Nonnegative scaling, sum, and integral

I nonnegative multiple: Uf is convex if f is convex, U ≥ 0

I sum: f1 + f2 convex if f1, f2 convex

I infinite sum: if f1, f2, . . . are convex functions, infinite sum
∑∞

i=1 fi is convex

I integral: if f (x, U) is convex in x for each U ∈ A, then
∫
U∈A

f (x, U) dU is convex

I there are analogous rules for concave functions
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Composition with affine function

(pre-)composition with affine function: f (Ax + b) is convex if f is convex

examples
I log barrier for linear inequalities

f (x) = −
m∑

i=1
log(bi − aT

i x), dom f = {x | aT
i x < bi, i = 1, . . . ,m}

I norm approximation error: f (x) = ‖Ax − b‖ (any norm)
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Pointwise maximum

if f1, …, fm are convex, then f (x) = max{f1 (x), . . . , fm (x)} is convex

examples
I piecewise-linear function: f (x) = maxi=1,...,m (aT

i x + bi)
I sum of r largest components of x ∈ Rn:

f (x) = x[1] + x[2] + · · · + x[r ]

(x[i] is ith largest component of x)

proof: f (x) = max{xi1 + xi2 + · · · + xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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Pointwise supremum

if f (x, y) is convex in x for each y ∈ A, then g(x) = supy∈A f (x, y) is convex

examples
I distance to farthest point in a set C: f (x) = supy∈C ‖x − y‖
I maximum eigenvalue of symmetric matrix: for X ∈ Sn, _max (X) = sup‖y‖2=1 yTXy is convex
I support function of a set C: SC (x) = supy∈C yTx is convex
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Partial minimization

I the function g(x) = infy∈C f (x, y) is called the partial minimization of f (w.r.t. y)
I if f (x, y) is convex in (x, y) and C is a convex set, then partial minimization g is convex

examples
I f (x, y) = xTAx + 2xTBy + yTCy with[

A B
BT C

]
� 0, C � 0

minimizing over y gives g(x) = infy f (x, y) = xT (A − BC−1BT )x
g is convex, hence Schur complement A − BC−1BT � 0

I distance to a set: dist(x, S) = infy∈S ‖x − y‖ is convex if S is convex

Convex Optimization Boyd and Vandenberghe 3.23



Composition with scalar functions

I composition of g : Rn → R and h : R → R is f (x) = h(g(x)) (written as f = h ◦ g)
I composition f is convex if

– g convex, h convex, h̃ nondecreasing
– or g concave, h convex, h̃ nonincreasing

(monotonicity must hold for extended-value extension h̃)
I proof (for n = 1, differentiable g, h)

f ′′ (x) = h′′ (g(x))g′ (x)2 + h′ (g(x))g′′ (x)

examples
I f (x) = exp g(x) is convex if g is convex
I f (x) = 1/g(x) is convex if g is concave and positive
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General composition rule

I composition of g : Rn → Rk and h : Rk → R is f (x) = h(g(x)) = h(g1 (x), g2 (x), . . . , gk (x))
I f is convex if h is convex and for each i one of the following holds

– gi convex, h̃ nondecreasing in its ith argument
– gi concave, h̃ nonincreasing in its ith argument
– gi affine

I you will use this composition rule constantly throughout this course
I you need to commit this rule to memory
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Examples

I log
∑m

i=1 exp gi (x) is convex if gi are convex
I f (x) = p(x)2/q(x) is convex if

– p is nonnegative and convex
– q is positive and concave

I composition rule subsumes others, e.g.,
– Uf is convex if f is, and U ≥ 0
– sum of convex (concave) functions is convex (concave)
– max of convex functions is convex
– min of concave functions is concave
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Constructive convexity verification

I start with function f given as expression
I build parse tree for expression

– leaves are variables or constants
– nodes are functions of child expressions

I use composition rule to tag subexpressions as convex, concave, affine, or none
I if root node is labeled convex (concave), then f is convex (concave)
I extension: tag sign of each expression, and use sign-dependent monotonicity

I this is sufficient to show f is convex (concave), but not necessary
I this method for checking convexity (concavity) is readily automated
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Example

the function
f (x, y) = (x − y)2

1 − max(x, y) , x < 1, y < 1

is convex

constructive analysis:
I (leaves) x, y, and 1 are affine
I max(x, y) is convex; x − y is affine
I 1 − max(x, y) is concave
I function u2/v is convex, monotone decreasing in v for v > 0
I f is composition of u2/v with u = x − y, v = 1 − max(x, y), hence convex
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Example (from dcp.stanford.edu)
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Disciplined convex programming

in disciplined convex programming (DCP) users construct convex and concave functions as
expressions using constructive convex analysis

I expressions formed from
– variables,
– constants,
– and atomic functions from a library

I atomic functions have known convexity, monotonicity, and sign properties
I all subexpressions match general composition rule
I a valid DCP function is

– convex-by-construction
– ‘syntactically’ convex (can be checked ‘locally’)

I convexity depends only on attributes of atomic functions, not their meanings
– e.g., could swap √· and 4√·, or exp · and (·)+, since their attributes match
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CVXPY example

(x − y)2

1 − max(x, y) , x < 1, y < 1

import cvxpy as cp
x = cp.Variable()
y = cp.Variable()
expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x, y))
expr.curvature # Convex
expr.sign # Positive
expr.is_dcp() # True

(atom quad_over_lin(u,v) includes domain constraint v>0)
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DCP is only sufficient

I consider convex function f (x) =
√

1 + x2

I expression f1 = cp.sqrt(1+cp.square(x)) is not DCP

I expression f2 = cp.norm2([1,x]) is DCP

I CVXPY will not recognize f1 as convex, even though it represents a convex function

Convex Optimization Boyd and Vandenberghe 3.33



Outline

Convex functions

Operations that preserve convexity

Constructive convex analysis

Perspective and conjugate

Quasiconvexity

Convex Optimization Boyd and Vandenberghe 3.34



Perspective

I the perspective of a function f : Rn → R is the function g : Rn × R → R,

g(x, t) = tf (x/t), dom g = {(x, t) | x/t ∈ dom f , t > 0}

I g is convex if f is convex

examples
I f (x) = xTx is convex; so g(x, t) = xTx/t is convex for t > 0
I f (x) = − log x is convex; so relative entropy g(x, t) = t log t − t log x is convex on R2

++
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Conjugate function

I the conjugate of a function f is f ∗ (y) = supx∈dom f (yTx − f (x))

f (x)

(0,−f ∗ (y))

xy

x

I f ∗ is convex (even if f is not)
I will be useful in chapter 5
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Examples

I negative logarithm f (x) = − log x

f ∗ (y) = sup
x>0

(xy + log x) =
{
−1 − log(−y) y < 0
∞ otherwise

I strictly convex quadratic, f (x) = (1/2)xTQx with Q ∈ Sn
++

f ∗ (y) = sup
x
(yTx − (1/2)xTQx) = 1

2
yTQ−1y
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Quasiconvex functions

I f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

SU = {x ∈ dom f | f (x) ≤ U}

are convex for all U

U

V

a b c

I f is quasiconcave if −f is quasiconvex
I f is quasilinear if it is quasiconvex and quasiconcave
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Examples

I
√
|x | is quasiconvex on R

I ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

I log x is quasilinear on R++

I f (x1, x2) = x1x2 is quasiconcave on R2
++

I linear-fractional function

f (x) = aTx + b
cTx + d

, dom f = {x | cTx + d > 0}

is quasilinear
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Example: Internal rate of return

I cash flow x = (x0, . . . , xn); xi is payment in period i (to us if xi > 0)
I we assume x0 < 0 (i.e., an initial investment) and x0 + x1 + · · · + xn > 0

I net present value (NPV) of cash flow x, for interest rate r, is PV(x, r) = ∑n
i=0 (1 + r)−ixi

I internal rate of return (IRR) is smallest interest rate for which PV(x, r) = 0:

IRR(x) = inf{r ≥ 0 | PV(x, r) = 0}

I IRR is quasiconcave: superlevel set is intersection of open halfspaces

IRR(x) ≥ R ⇐⇒
n∑

i=0
(1 + r)−ixi > 0 for 0 ≤ r < R
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Properties of quasiconvex functions

I modified Jensen inequality: for quasiconvex f

0 ≤ \ ≤ 1 =⇒ f (\x + (1 − \)y) ≤ max{f (x), f (y)}

I first-order condition: differentiable f with convex domain is quasiconvex if and only if

f (y) ≤ f (x) =⇒ ∇f (x)T (y − x) ≤ 0

x
∇f (x)

I sum of quasiconvex functions is not necessarily quasiconvex
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Optimization problem in standard form

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

I x ∈ Rn is the optimization variable
I f0 : Rn → R is the objective or cost function
I fi : Rn → R, i = 1, . . . ,m, are the inequality constraint functions
I hi : Rn → R are the equality constraint functions
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Feasible and optimal points

I x ∈ Rn is feasible if x ∈ dom f0 and it satisfies the constraints

I optimal value is p★ = inf{f0 (x) | fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p}

I p★ = ∞ if problem is infeasible

I p★ = −∞ if problem is unbounded below

I a feasible x is optimal if f0 (x) = p★

I Xopt is the set of optimal points
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Locally optimal points
x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0 (z)
subject to fi (z) ≤ 0, i = 1, . . . ,m, hi (z) = 0, i = 1, . . . , p

‖z − x‖2 ≤ R

x★ xlo

p★

f0 (xlo)

Convex Optimization Boyd and Vandenberghe 4.4



Examples

examples with n = 1, m = p = 0
I f0 (x) = 1/x, dom f0 = R++: p★ = 0, no optimal point
I f0 (x) = − log x, dom f0 = R++: p★ = −∞
I f0 (x) = x log x, dom f0 = R++: p★ = −1/e, x = 1/e is optimal
I f0 (x) = x3 − 3x: p★ = −∞, x = 1 is locally optimal

0 1 2
0

5

10

f0 (x) = 1/x

0 1 2
0

3

6

f0 (x) = − log x

0 1/e 1

0

f0 (x) = x log x

−2 0 2

−3

0

f0 (x) = x3 − 3x
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Implicit and explicit constraints

standard form optimization problem has implicit constraint

x ∈ D =

m⋂
i=0

dom fi ∩
p⋂

i=1
dom hi,

I we call D the domain of the problem
I the constraints fi (x) ≤ 0, hi (x) = 0 are the explicit constraints
I a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize f0 (x) = −∑k

i=1 log(bi − aT
i x)

is an unconstrained problem with implicit constraints aT
i x < bi
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Feasibility problem

find x
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0 (x) = 0:

minimize 0
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

I p★ = 0 if constraints are feasible; any feasible x is optimal
I p★ = ∞ if constraints are infeasible
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Standard form convex optimization problem

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

aT
i x = bi, i = 1, . . . , p

I objective and inequality constraints f0, f1, …, fm are convex
I equality constraints are affine, often written as Ax = b
I feasible and optimal sets of a convex optimization problem are convex

I problem is quasiconvex if f0 is quasiconvex, f1, …, fm are convex, h1, . . . , hp are affine
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Example

I standard form problem

minimize f0 (x) = x2
1 + x2

2
subject to f1 (x) = x1/(1 + x2

2) ≤ 0
h1 (x) = (x1 + x2)2 = 0

I f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex
I not a convex problem (by our definition) since f1 is not convex, h1 is not affine
I equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2
subject to x1 ≤ 0

x1 + x2 = 0

Convex Optimization Boyd and Vandenberghe 4.9



Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof:
I suppose x is locally optimal, but there exists a feasible y with f0 (y) < f0 (x)
I x locally optimal means there is an R > 0 such that

z feasible, ‖z − x‖2 ≤ R =⇒ f0 (z) ≥ f0 (x)

I consider z = \y + (1 − \)x with \ = R/(2‖y − x‖2)
I ‖y − x‖2 > R, so 0 < \ < 1/2
I z is a convex combination of two feasible points, hence also feasible
I ‖z − x‖2 = R/2 and f0 (z) ≤ \f0 (y) + (1 − \)f0 (x) < f0 (x), which contradicts our assumption

that x is locally optimal

Convex Optimization Boyd and Vandenberghe 4.10



Optimality criterion for differentiable f0

I x is optimal for a convex problem if and only if it is feasible and

∇f0 (x)T (y − x) ≥ 0 for all feasible y

−∇f0 (x)

X x

I if nonzero, ∇f0 (x) defines a supporting hyperplane to feasible set X at x
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Examples

I unconstrained problem: x minimizes f0 (x) if and only if ∇f0 (x) = 0

I equality constrained problem: x minimizes f0 (x) subject to Ax = b if and only if there
exists a a such that

Ax = b, ∇f0 (x) + AT a = 0

I minimization over nonnegative orthant: x minimizes f0 (x) over Rn
+ if and only if

x � 0,
{
∇f0 (x)i ≥ 0 xi = 0
∇f0 (x)i = 0 xi > 0
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Linear program (LP)

minimize cTx + d
subject to Gx � h

Ax = b

I convex problem with affine objective and constraint functions
I feasible set is a polyhedron

P x
★

−c
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Example: Diet problem

I choose nonnegative quantities x1, …, xn of n foods
I one unit of food j costs cj and contains amount Aij of nutrient i
I healthy diet requires nutrient i in quantity at least bi

I to find cheapest healthy diet, solve

minimize cTx
subject to Ax � b, x � 0

I express in standard LP form as

minimize cTx

subject to
[
−A
−I

]
x �

[
−b
0

]
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Example: Piecewise-linear minimization

I minimize convex piecewise-linear function f0 (x) = maxi=1,...,m (aT
i x + bi), x ∈ Rn

I equivalent to LP
minimize t
subject to aT

i x + bi ≤ t, i = 1, . . . ,m

with variables x ∈ Rn, t ∈ R

I constraints describe epi f0
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Example: Chebyshev center of a polyhedron

Chebyshev center of P = {x | aT
i x ≤ bi, i = 1, . . . ,m} is

center of largest inscribed ball B = {xc + u | ‖u‖2 ≤ r}
xchebxcheb

I aT
i x ≤ bi for all x ∈ B if and only if

sup{aT
i (xc + u) | ‖u‖2 ≤ r} = aT

i xc + r‖ai‖2 ≤ bi

I hence, xc, r can be determined by solving LP with variables xc, r

maximize r
subject to aT

i xc + r‖ai‖2 ≤ bi, i = 1, . . . ,m
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Quadratic program (QP)

minimize (1/2)xTPx + qTx + r
subject to Gx � h

Ax = b

I P ∈ Sn
+, so objective is convex quadratic

I minimize a convex quadratic function over a polyhedron

P

x★

−∇f0 (x
★)
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Example: Least squares

I least squares problem: minimize ‖Ax − b‖2
2

I analytical solution x★ = A†b (A† is pseudo-inverse)

I can add linear constraints, e.g.,
– x � 0 (nonnegative least squares)
– x1 ≤ x2 ≤ · · · ≤ xn (isotonic regression)
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Example: Linear program with random cost

I LP with random cost c, with mean c̄ and covariance Σ

I hence, LP objective cTx is random variable with mean c̄Tx and variance xTΣx

I risk-averse problem:
minimize E cTx + W var(cTx)
subject to Gx � h, Ax = b

I W > 0 is risk aversion parameter; controls the trade-off between expected cost and
variance (risk)

I express as QP
minimize c̄Tx + WxTΣx
subject to Gx � h, Ax = b
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Quadratically constrained quadratic program (QCQP)

minimize (1/2)xTP0x + qT
0 x + r0

subject to (1/2)xTPix + qT
i x + ri ≤ 0, i = 1, . . . ,m

Ax = b

I Pi ∈ Sn
+; objective and constraints are convex quadratic

I if P1, . . . ,Pm ∈ Sn
++, feasible region is intersection of m ellipsoids and an affine set
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Second-order cone programming

minimize f Tx
subject to ‖Aix + bi‖2 ≤ cT

i x + di, i = 1, . . . ,m
Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)
I inequalities are called second-order cone (SOC) constraints:

(Aix + bi, cT
i x + di) ∈ second-order cone in Rni+1

I for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP
I more general than QCQP and LP
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Example: Robust linear programming

suppose constraint vectors ai are uncertain in the LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m,

two common approaches to handling uncertainty
I deterministic worst-case: constraints must hold for all ai ∈ Ei (uncertainty ellipsoids)

minimize cTx
subject to aT

i x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

I stochastic: ai is random variable; constraints must hold with probability [

minimize cTx
subject to prob(aT

i x ≤ bi) ≥ [, i = 1, . . . ,m
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Deterministic worst-case approach

I uncertainty ellipsoids are Ei = {āi + Piu | ‖u‖2 ≤ 1}, (āi ∈ Rn, Pi ∈ Rn×n)
I center of Ei is āi; semi-axes determined by singular values/vectors of Pi

I robust LP
minimize cTx
subject to aT

i x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m
I equivalent to SOCP

minimize cTx
subject to āT

i x + ‖PT
i x‖2 ≤ bi, i = 1, . . . ,m

(follows from sup‖u‖2≤1 (āi + Piu)Tx = āT
i x + ‖PT

i x‖2)
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Stochastic approach

I assume ai ∼ N(āi, Σi)
I aT

i x ∼ N(āT
i x, xTΣix), so

prob(aT
i x ≤ bi) = Φ

(
bi − āT

i x

‖Σ1/2
i x‖2

)
where Φ(u) = (1/

√
2c)

∫ u
−∞ e−t2/2 dt is N(0, 1) CDF

I prob(aT
i x ≤ bi) ≥ [ can be expressed as āT

i x +Φ−1 ([)‖Σ1/2
i x‖2 ≤ bi

I for [ ≥ 1/2, robust LP equivalent to SOCP

minimize cTx
subject to āT

i x +Φ−1 ([)‖Σ1/2
i x‖2 ≤ bi, i = 1, . . . ,m
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Conic form problem

minimize cTx
subject to Fx + g �K 0

Ax = b

I constraint Fx + g �K 0 involves a generalized inequality with respect to a proper cone K

I linear programming is a conic form problem with K = Rm
+

I as with standard convex problem
– feasible and optimal sets are convex
– any local optimum is global
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Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · · + xnFn + G � 0

Ax = b

with Fi, G ∈ Sk

I inequality constraint is called linear matrix inequality (LMI)
I includes problems with multiple LMI constraints: for example,

x1F̂1 + · · · + xnF̂n + Ĝ � 0, x1F̃1 + · · · + xnF̃n + G̃ � 0

is equivalent to single LMI

x1

[
F̂1 0
0 F̃1

]
+ x2

[
F̂2 0
0 F̃2

]
+ · · · + xn

[
F̂n 0
0 F̃n

]
+

[
Ĝ 0
0 G̃

]
� 0
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Example: Matrix norm minimization

minimize ‖A(x)‖2 =
(
_max (A(x)TA(x))

)1/2

where A(x) = A0 + x1A1 + · · · + xnAn (with given Ai ∈ Rp×q)
equivalent SDP

minimize t

subject to
[

tI A(x)
A(x)T tI

]
� 0

I variables x ∈ Rn, t ∈ R
I constraint follows from

‖A‖2 ≤ t ⇐⇒ ATA � t2I, t ≥ 0

⇐⇒
[

tI A
AT tI

]
� 0
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize cTx
subject to Ax � b

SDP: minimize cTx
subject to diag(Ax − b) � 0

(note different interpretation of generalized inequalities � in LP and SDP)

SOCP and equivalent SDP

SOCP: minimize f Tx
subject to ‖Aix + bi‖2 ≤ cT

i x + di, i = 1, . . . ,m

SDP: minimize f Tx

subject to
[
(cT

i x + di)I Aix + bi
(Aix + bi)T cT

i x + di

]
� 0, i = 1, . . . ,m
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Change of variables
I q : Rn → Rn is one-to-one with q(dom q) ⊇ D
I consider (possibly non-convex) problem

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

I change variables to z with x = q(z)
I can solve equivalent problem

minimize f̃0 (z)
subject to f̃i (z) ≤ 0, i = 1, . . . ,m

h̃i (z) = 0, i = 1, . . . , p

where f̃i (z) = fi (q(z)) and h̃i (z) = hi (q(z))
I recover original optimal point as x★ = q(z★)
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Example

I non-convex problem
minimize x1/x2 + x3/x1
subject to x2/x3 + x1 ≤ 1

with implicit constraint x � 0

I change variables using x = q(z) = exp z to get

minimize exp(z1 − z2) + exp(z3 − z1)
subject to exp(z2 − z3) + exp(z1) ≤ 1

which is convex
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Transformation of objective and constraint functions

suppose
I q0 is monotone increasing
I ki (u) ≤ 0 if and only if u ≤ 0, i = 1, . . . ,m
I ii (u) = 0 if and only if u = 0, i = 1, . . . , p

standard form optimization problem is equivalent to

minimize q0 (f0 (x))
subject to ki (fi (x)) ≤ 0, i = 1, . . . ,m

ii (hi (x)) = 0, i = 1, . . . , p

example: minimizing ‖Ax − b‖ is equivalent to minimizing ‖Ax − b‖2
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Converting maximization to minimization
I suppose q0 is monotone decreasing
I the maximization problem

maximize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

is equivalent to the minimization problem

minimize q0 (f0 (x))
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

I examples:
– q0 (u) = −u transforms maximizing a concave function to minimizing a convex function
– q0 (u) = 1/u transforms maximizing a concave positive function to minimizing a convex

function
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Eliminating equality constraints

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to
minimize (over z) f0 (Fz + x0)
subject to fi (Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that Ax = b ⇐⇒ x = Fz + x0 for some z
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Introducing equality constraints

minimize f0 (A0x + b0)
subject to fi (Aix + bi) ≤ 0, i = 1, . . . ,m

is equivalent to
minimize (over x, yi) f0 (y0)
subject to fi (yi) ≤ 0, i = 1, . . . ,m

yi = Aix + bi, i = 0, 1, . . . ,m
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Introducing slack variables for linear inequalities

minimize f0 (x)
subject to aT

i x ≤ bi, i = 1, . . . ,m

is equivalent to
minimize (over x, s) f0 (x)
subject to aT

i x + si = bi, i = 1, . . . ,m
si ≥ 0, i = 1, . . .m
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Epigraph form

standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0 (x) − t ≤ 0

fi (x) ≤ 0, i = 1, . . . ,m
Ax = b

Convex Optimization Boyd and Vandenberghe 4.38



Minimizing over some variables

minimize f0 (x1, x2)
subject to fi (x1) ≤ 0, i = 1, . . . ,m

is equivalent to
minimize f̃0 (x1)
subject to fi (x1) ≤ 0, i = 1, . . . ,m

where f̃0 (x1) = infx2 f0 (x1, x2)
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Convex relaxation

I start with nonconvex problem: minimize h(x) subject to x ∈ C
I find convex function ĥ with ĥ(x) ≤ h(x) for all x ∈ dom h (i.e., a pointwise lower bound on

h)
I find set Ĉ ⊇ C (e.g., Ĉ = conv C) described by linear equalities and convex inequalities

Ĉ = {x | fi (x) ≤ 0, i = 1, . . . ,m, fm (x) ≤ 0, Ax = b}

I convex problem
minimize ĥ(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m, Ax = b

is a convex relaxation of the original problem
I optimal value of relaxation is lower bound on optimal value of original problem
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Example: Boolean LP

I mixed integer linear program (MILP):

minimize cT (x, z)
subject to F (x, z) � g, A(x, z) = b, z ∈ {0, 1}q

with variables x ∈ Rn, z ∈ Rq

I zi are called Boolean variables
I this problem is in general hard to solve

I LP relaxation: replace z ∈ {0, 1}q with z ∈ [0, 1]q

I optimal value of relaxation LP is lower bound on MILP
I can use as heuristic for approximately solving MILP, e.g., relax and round
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Disciplined convex program

I specify objective as
– minimize {scalar convex expression}, or
– maximize {scalar concave expression}

I specify constraints as
– {convex expression} <= {concave expression} or
– {concave expression} >= {convex expression} or
– {affine expression} == {affine expression}

I curvature of expressions are DCP certified, i.e., follow composition rule

I DCP-compliant problems can be automatically transformed to standard forms, then solved
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CVXPY example

math:

minimize ‖x‖1
subject to Ax = b

‖x‖∞ ≤ 1

I x is the variable
I A, b are given

CVXPY code:
import cvxpy as cp

A, b = ...

x = cp.Variable(n)
obj = cp.norm(x, 1)
constr = [

A @ x == b,
cp.norm(x, 'inf') <= 1,

]
prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()
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How CVXPY works

I starts with your optimization problem P1

I finds a sequence of equivalent problems P2, . . . ,PN

I final problem PN matches a standard form (e.g., LP, QP, SOCP, or SDP)
I calls a specialized solver on PN

I retrieves solution of original problem by reversing the transformations

your problem

P1 ⇐⇒ P2 ⇐⇒ · · · ⇐⇒ PN−1 ⇐⇒ PN

standard problem
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Geometric programming

I monomial function:
f (x) = cxa1

1 xa2
2 · · · xan

n , dom f = Rn
++

with c > 0; exponent ai can be any real number
I posynomial function: sum of monomials

f (x) =
K∑

k=1
ckxa1k

1 xa2k
2 · · · xank

n , dom f = Rn
++

I geometric program (GP)

minimize f0 (x)
subject to fi (x) ≤ 1, i = 1, . . . ,m

hi (x) = 1, i = 1, . . . , p

with fi posynomial, hi monomial
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Geometric program in convex form
I change variables to yi = log xi, and take logarithm of cost, constraints
I monomial f (x) = cxa1

1 · · · xan
n transforms to

log f (ey1 , . . . , eyn ) = aTy + b (b = log c)

I posynomial f (x) = ∑K
k=1 ckxa1k

1 xa2k
2 · · · xank

n transforms to

log f (ey1 , . . . , eyn ) = log

(
K∑

k=1
eaT

k y+bk

)
(bk = log ck)

I geometric program transforms to convex problem

minimize log
(∑K

k=1 exp(aT
0ky + b0k)

)
subject to log

(∑K
k=1 exp(aT

iky + bik)
)
≤ 0, i = 1, . . . ,m

Gy + d = 0
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Examples: Frobenius norm diagonal scaling

I we seek diagonal matrix D = diag(d), d � 0, to minimize ‖DMD−1‖2
F

I express as

‖DMD−1‖2
F =

n∑
i,j=1

(
DMD−1

)2

ij
=

n∑
i,j=1

M2
ijd

2
i /d2

j

I a posynomial in d (with exponents 0, 2, and −2)
I in convex form, with y = log d,

log ‖DMD−1‖2
F = log ©­«

n∑
i,j=1

exp
(
2(yi − yj + log |Mij |)

)ª®¬
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Quasiconvex optimization

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 : Rn → R quasiconvex, f1, …, fm convex
can have locally optimal points that are not (globally) optimal

(x, f0 (x))
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Linear-fractional program

I linear-fractional program

minimize (cTx + d)/(eTx + f )
subject to Gx � h, Ax = b

with variable x and implicit constraint eTx + f > 0

I equivalent to the LP (with variables y, z)

minimize cTy + dz
subject to Gy � hz, Ay = bz

eTy + fz = 1, z ≥ 0

I recover x★ = y★/z★
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Von Neumann model of a growing economy

I x, x+ ∈ Rn
++: activity levels of n economic sectors, in current and next period

I (Ax)i: amount of good i produced in current period
I (Bx+)i: amount of good i consumed in next period
I Bx+ � Ax: goods consumed next period no more than produced this period
I x+i /xi: growth rate of sector i

I allocate activity to maximize growth rate of slowest growing sector

maximize (over x, x+) mini=1,...,n x+i /xi
subject to x+ � 0, Bx+ � Ax

I a quasiconvex problem with variables x, x+
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Convex representation of sublevel sets

I if f0 is quasiconvex, there exists a family of functions qt such that:
– qt (x) is convex in x for fixed t
– t-sublevel set of f0 is 0-sublevel set of qt , i.e., f0 (x) ≤ t ⇐⇒ qt (x) ≤ 0

example:
I f0 (x) = p(x)/q(x), with p convex and nonnegative, q concave and positive
I take qt (x) = p(x) − tq(x): for t ≥ 0,

– qt convex in x
– p(x)/q(x) ≤ t if and only if qt (x) ≤ 0

Convex Optimization Boyd and Vandenberghe 4.54



Bisection method for quasiconvex optimization

I for fixed t, consider convex feasiblity problem

qt (x) ≤ 0, fi (x) ≤ 0, i = 1, . . . ,m, Ax = b (1)

if feasible, we can conclude that t ≥ p★; if infeasible, t ≤ p★

I bisection method:

given l ≤ p★, u ≥ p★, tolerance n > 0.
repeat

1. t := (l + u)/2.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, u := t; else l := t.

until u − l ≤ n .

I requires exactly dlog2 ((u − l)/n)e iterations
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Multicriterion optimization

I multicriterion or multi-objective problem:

minimize f0 (x) = (F1 (x), . . . ,Fq (x))
subject to fi (x) ≤ 0, i = 1, . . . ,m, Ax = b

I objective is the vector f0 (x) ∈ Rq

I q different objectives F1, . . . ,Fq; roughly speaking we want all Fi’s to be small
I feasible x★ is optimal if y feasible =⇒ f0 (x★) � f0 (y)
I this means that x★ simultaneously minimizes each Fi; the objectives are noncompeting
I not surprisingly, this doesn’t happen very often
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Pareto optimality

I feasible x dominates another feasible x̃ if f0 (x) � f0 (x̃) and for at least one i, Fi (x) < Fi (x̃)
I i.e., x meets x̃ on all objectives, and beats it on at least one

I feasible xpo is Pareto optimal if it is not dominated by any feasible point
I can be expressed as: y feasible, f0 (y) � f0 (xpo) =⇒ f0 (xpo) = f0 (y)

I there are typically many Pareto optimal points
I for q = 2, set of Pareto optimal objective values is the optimal trade-off curve
I for q = 3, set of Pareto optimal objective values is the optimal trade-off surface
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Optimal and Pareto optimal points

set of achievable objective values O = {f0 (x) | x feasible}

I feasible x is optimal if f0 (x) is the minimum value of O
I feasible x is Pareto optimal if f0 (x) is a minimal value of O

O

f0 (x
★)

x★ is optimal

O

f0(x
po)

xpo is Pareto optimal
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Regularized least-squares

I minimize (‖Ax − b‖2
2, ‖x‖

2
2) (first objective is loss; second is regularization)

I example with A ∈ R100×10; heavy line shows Pareto optimal points
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Risk return trade-off in portfolio optimization

I variable x ∈ Rn is investment portfolio, with xi fraction invested in asset i

I p̄ ∈ Rn is mean, Σ is covariance of asset returns

I portfolio return has mean p̄Tx, variance xTΣx

I minimize (−p̄Tx, xTΣx), subject to 1Tx = 1, x � 0

I Pareto optimal portfolios trace out optimal risk-return curve
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Scalarization

I scalarization combines the multiple objectives into one (scalar) objective
I a standard method for finding Pareto optimal points
I choose _ � 0 and solve scalar problem

minimize _T f0 (x) = _1F1 (x) + · · · + _qFq (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p

I _i are relative weights on the objectives
I if x is optimal for scalar problem, then it is Pareto-optimal for multicriterion problem
I for convex problems, can find (almost) all Pareto optimal points by varying _ � 0
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Example: Regularized least-squares
I regularized least-squares problem: minimize (‖Ax − b‖2

2, ‖x‖
2
2)

I take _ = (1, W) with W > 0, and minimize ‖Ax − b‖2
2 + W‖x‖2

2
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Example: Risk-return trade-off

I risk-return trade-off: minimize (−p̄Tx, xTΣx) subject to 1Tx = 1, x � 0
I with _ = (1, W) we obtain scalarized problem

minimize −p̄Tx + WxTΣx
subject to 1Tx = 1, x � 0

I objective is negative risk-adjusted return, p̄Tx − WxTΣx
I W is called the risk-aversion parameter
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Lagrangian

I standard form problem (not necessarily convex)

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p★

I Lagrangian: L : Rn × Rm × Rp → R, with dom L = D × Rm × Rp,

L(x, _, a) = f0 (x) +
m∑

i=1
_ifi (x) +

p∑
i=1

aihi (x)

– weighted sum of objective and constraint functions
– _i is Lagrange multiplier associated with fi (x) ≤ 0
– ai is Lagrange multiplier associated with hi (x) = 0
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Lagrange dual function

I Lagrange dual function: g : Rm × Rp → R,

g(_, a) = inf
x∈D

L(x, _, a) = inf
x∈D

(
f0 (x) +

m∑
i=1

_ifi (x) +
p∑

i=1
aihi (x)

)
I g is concave, can be −∞ for some _, a
I lower bound property: if _ � 0, then g(_, a) ≤ p★

I proof: if x̃ is feasible and _ � 0, then

f0 (x̃) ≥ L(x̃, _, a) ≥ inf
x∈D

L(x, _, a) = g(_, a)

minimizing over all feasible x̃ gives p★ ≥ g(_, a)

Convex Optimization Boyd and Vandenberghe 5.3



Least-norm solution of linear equations

minimize xTx
subject to Ax = b

I Lagrangian is L(x, a) = xTx + aT (Ax − b)
I to minimize L over x, set gradient equal to zero:

∇xL(x, a) = 2x + AT a = 0 =⇒ x = −(1/2)AT a

I plug x into L to obtain

g(a) = L((−1/2)AT a, a) = −1
4
aTAAT a − bT a

I lower bound property: p★ ≥ −(1/4)aTAAT a − bT a for all a
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Standard form LP

minimize cTx
subject to Ax = b, x � 0

I Lagrangian is

L(x, _, a) = cTx + aT (Ax − b) − _Tx = −bT a + (c + AT a − _)Tx

I L is affine in x, so

g(_, a) = inf
x

L(x, _, a) =
{
−bT a AT a − _ + c = 0
−∞ otherwise

I g is linear on affine domain {(_, a) | AT a − _ + c = 0}, hence concave
I lower bound property: p★ ≥ −bT a if AT a + c � 0
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Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

I dual function is

g(a) = inf
x
(‖x‖ − aTAx + bT a) =

{
bT a ‖AT a‖∗ ≤ 1
−∞ otherwise

where ‖v‖∗ = sup‖u‖≤1 uTv is dual norm of ‖ · ‖
I lower bound property: p★ ≥ bT a if ‖AT a‖∗ ≤ 1
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Two-way partitioning

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

I a nonconvex problem; feasible set contains 2n discrete points
I interpretation: partition {1, . . . , n} in two sets encoded as xi = 1 and xi = −1
I Wij is cost of assigning i, j to the same set; −Wij is cost of assigning to different sets
I dual function is

g(a) = inf
x

(
xTWx +

∑
i
ai (x2

i − 1)
)
= inf

x
xT (W + diag(a)) x−1T a =

{
−1T a W + diag(a) � 0
−∞ otherwise

I lower bound property: p★ ≥ −1T a if W + diag(a) � 0
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Lagrange dual and conjugate function

minimize f0 (x)
subject to Ax � b, Cx = d

I dual function

g(_, a) = inf
x∈dom f0

(
f0 (x) + (AT_ + CT a)Tx − bT_ − dT a

)
= −f ∗0 (−AT_ − CT a) − bT_ − dT a

where f ∗ (y) = supx∈dom f (yTx − f (x)) is conjugate of f0
I simplifies derivation of dual if conjugate of f0 is known
I example: entropy maximization

f0 (x) =
n∑

i=1
xi log xi, f ∗0 (y) =

n∑
i=1

eyi−1
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The Lagrange dual problem

(Lagrange) dual problem
maximize g(_, a)
subject to _ � 0

I finds best lower bound on p★, obtained from Lagrange dual function
I a convex optimization problem, even if original primal problem is not
I dual optimal value denoted d★

I _, a are dual feasible if _ � 0, (_, a) ∈ dom g
I often simplified by making implicit constraint (_, a) ∈ dom g explicit
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Example: standard form LP

(see slide 5.5)
I primal standard form LP:

minimize cTx
subject to Ax = b

x � 0
I dual problem is

maximize g(_, a)
subject to _ � 0

with g(_, a) = −bT a if AT a − _ + c = 0, −∞ otherwise
I make implicit constraint explicit, and eliminate _ to obtain (transformed) dual problem

maximize −bT a

subject to AT a + c � 0
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Weak and strong duality

weak duality: d★ ≤ p★

I always holds (for convex and nonconvex problems)
I can be used to find nontrivial lower bounds for difficult problems, e.g., solving the SDP

maximize −1T a

subject to W + diag(a) � 0

gives a lower bound for the two-way partitioning problem on page 5.7

strong duality: d★ = p★

I does not hold in general
I (usually) holds for convex problems
I conditions that guarantee strong duality in convex problems are called constraint

qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e., there is an x ∈ intD with fi (x) < 0, i = 1, . . . ,m, Ax = b

I also guarantees that the dual optimum is attained (if p★ > −∞)
I can be sharpened: e.g.,

– can replace intD with relintD (interior relative to affine hull)
– affine inequalities do not need to hold with strict inequality

I there are many other types of constraint qualifications
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Inequality form LP

primal problem
minimize cTx
subject to Ax � b

dual function
g(_) = inf

x

(
(c + AT_)Tx − bT_

)
=

{
−bT_ AT_ + c = 0
−∞ otherwise

dual problem
maximize −bT_

subject to AT_ + c = 0, _ � 0

I from the sharpened Slater’s condition: p★ = d★ if the primal problem is feasible
I in fact, p★ = d★ except when primal and dual are both infeasible
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Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax � b

dual function
g(_) = inf

x

(
xTPx + _T (Ax − b)

)
= −1

4
_TAP−1AT_ − bT_

dual problem
maximize −(1/4)_TAP−1AT_ − bT_

subject to _ � 0

I from the sharpened Slater’s condition: p★ = d★ if the primal problem is feasible
I in fact, p★ = d★ always
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Geometric interpretation

I for simplicity, consider problem with one constraint f1 (x) ≤ 0
I G = {(f1 (x), f0 (x)) | x ∈ D} is set of achievable (constraint, objective) values
I interpretation of dual function: g(_) = inf (u,t) ∈G (t + _u)

G

p★

g(_)_u + t = g(_)

t

u

G

p★

d★

t

u

I _u + t = g(_) is (non-vertical) supporting hyperplane to G
I hyperplane intersects t-axis at t = g(_)
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Epigraph variation

I same with G replaced with A = {(u, t) | f1 (x) ≤ u, f0 (x) ≤ t for some x ∈ D}

A

p★

g(_)

_u + t = g(_)

t

u

I strong duality holds if there is a non-vertical supporting hyperplane to A at (0, p★)
I for convex problem, A is convex, hence has supporting hyperplane at (0, p★)
I Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting hyperplane at

(0, p★) must be non-vertical
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Complementary slackness

I assume strong duality holds, x★ is primal optimal, (_★, a★) is dual optimal

f0 (x★) = g(_★, a★) = inf
x

(
f0 (x) +

m∑
i=1

_★i fi (x) +
p∑

i=1
a★i hi (x)

)
≤ f0 (x★) +

m∑
i=1

_★i fi (x★) +
p∑

i=1
a★i hi (x★)

≤ f0 (x★)

I hence, the two inequalities hold with equality
I x★ minimizes L(x, _★, a★)
I _★i fi (x★) = 0 for i = 1, . . . ,m (known as complementary slackness):

_★i > 0 =⇒ fi (x★) = 0, fi (x★) < 0 =⇒ _★i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the KKT conditions (for a problem with differentiable fi, hi) are
1. primal constraints: fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p
2. dual constraints: _ � 0
3. complementary slackness: _ifi (x) = 0, i = 1, . . . ,m
4. gradient of Lagrangian with respect to x vanishes:

∇f0 (x) +
m∑

i=1
_i∇fi (x) +

p∑
i=1

ai∇hi (x) = 0

if strong duality holds and x, _, a are optimal, they satisfy the KKT conditions
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KKT conditions for convex problem

if x̃, _̃, ã satisfy KKT for a convex problem, then they are optimal:
I from complementary slackness: f0 (x̃) = L(x̃, _̃, ã)
I from 4th condition (and convexity): g(_̃, ã) = L(x̃, _̃, ã)

hence, f0 (x̃) = g(_̃, ã)

if Slater’s condition is satisfied, then

x is optimal if and only if there exist _, a that satisfy KKT conditions

I recall that Slater implies strong duality, and dual optimum is attained
I generalizes optimality condition ∇f0 (x) = 0 for unconstrained problem
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Perturbation and sensitivity analysis
(unperturbed) optimization problem and its dual

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

maximize g(_, a)
subject to _ � 0

perturbed problem and its dual

minimize f0 (x)
subject to fi (x) ≤ ui, i = 1, . . . ,m

hi (x) = vi, i = 1, . . . , p

maximize g(_, a) − uT_ − vT a

subject to _ � 0

I x is primal variable; u, v are parameters
I p★(u, v) is optimal value as a function of u, v
I p★(0, 0) is optimal value of unperturbed problem
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Global sensitivity via duality

I assume strong duality holds for unperturbed problem, with _★, a★ dual optimal
I apply weak duality to perturbed problem:

p★(u, v) ≥ g(_★, a★) − uT_★ − vT a★ = p★(0, 0) − uT_★ − vT a★

I implications
– if _★i large: p★ increases greatly if we tighten constraint i (ui < 0)
– if _★i small: p★ does not decrease much if we loosen constraint i (ui > 0)
– if a★i large and positive: p★ increases greatly if we take vi < 0

– if a★i large and negative: p★ increases greatly if we take vi > 0

– if a★i small and positive: p★ does not decrease much if we take vi > 0

– if a★i small and negative: p★ does not decrease much if we take vi < 0
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Local sensitivity via duality
if (in addition) p★(u, v) is differentiable at (0, 0), then

_★i = −mp★(0, 0)
mui

, a★i = −mp★(0, 0)
mvi

proof (for _★i ): from global sensitivity result,
mp★(0, 0)

mui
= lim

t↘0

p★(tei, 0) − p★(0, 0)
t

≥ −_★i
mp★(0, 0)

mui
= lim

t↗0

p★(tei, 0) − p★(0, 0)
t

≤ −_★i

hence, equality

p★(u) for a problem with one (inequality) constraint:
u

p
★(u)

p
★(0) − _

★
u

u = 0
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Duality and problem reformulations

I equivalent formulations of a problem can lead to very different duals
I reformulating primal problem can be useful when dual is difficult to derive, or uninteresting

common reformulations
I introduce new variables and equality constraints
I make explicit constraints implicit or vice-versa
I transform objective or constraint functions, e.g., replace f0 (x) by q(f0 (x)) with q convex,

increasing
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Introducing new variables and equality constraints

I unconstrained problem: minimize f0 (Ax + b)
I dual function is constant: g = infx L(x) = infx f0 (Ax + b) = p★

I we have strong duality, but dual is quite useless

I introduce new variable y and equality constraints y = Ax + b

minimize f0 (y)
subject to Ax + b − y = 0

I dual of reformulated problem is

maximize bT a − f ∗0 (a)
subject to AT a = 0

I a nontrivial, useful dual (assuming the conjugate f ∗0 is easy to express)
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Example: Norm approximation

I minimize ‖Ax − b‖
I reformulate as minimize ‖y‖ subject to y = Ax − b
I recall conjugate of general norm:

‖z‖∗ =
{

0 ‖z‖∗ ≤ 1
∞ otherwise

I dual of (reformulated) norm approximation problem:

maximize bT a

subject to AT a = 0, ‖a‖∗ ≤ 1
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Theorems of alternatives

I consider two systems of inequality and equality constraints
I called weak alternatives if no more than one system is feasible
I called strong alternatives if exactly one of them is feasible
I examples: for any a ∈ R, with variable x ∈ R,

– x > a and x ≤ a − 1 are weak alternatives
– x > a and x ≤ a are strong alternatives

I a theorem of alternatives states that two inequality systems are (weak or strong)
alternatives

I can be considered the extension of duality to feasibility problems
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Feasibility problems

I consider system of (not necessarily convex) inequalities and equalities

fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p

I express as feasibility problem

minimize 0
subject to fi (x) ≤ 0, i = 1, . . . ,m,

hi (x) = 0, i = 1, . . . , p

I if system if feasible, p★ = 0; if not, p★ = ∞
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Duality for feasibility problems

I dual function of feasibility problem is g(_, a) = infx

(∑m
i=1 _ifi (x) +

∑p
i=1 aihi (x)

)
I for _ � 0, we have g(_, a) ≤ p★

I it follows that feasibility of the inequality system

_ � 0, g(_, a) > 0

implies the original system is infeasible
I so this is a weak alternative to original system
I it is strong if fi convex, hi affine, and a constraint qualification holds
I g is positive homogeneous so we can write alternative system as

_ � 0, g(_, a) ≥ 1
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Example: Nonnegative solution of linear equations

I consider system
Ax = b, x � 0

I dual function is g(_, a) =
{
−bT a AT a = _

−∞ otherwise

I can express strong alternative of Ax = b, x � 0 as

AT a � 0, bT a ≤ −1

(we can replace bT a ≤ −1 with bT a = −1)

Convex Optimization Boyd and Vandenberghe 5.34



Farkas’ lemma

I Farkas’ lemma:
Ax � 0, cTx < 0 and ATy + c = 0, y � 0

are strong alternatives

I proof: use (strong) duality for (feasible) LP

minimize cTx
subject to Ax � 0
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Investment arbitrage

I we invest xj in each of n assets 1, . . . , n with prices p1, . . . , pn

I our initial cost is pTx
I at the end of the investment period there are only m possible outcomes i = 1, . . . ,m
I Vij is the payoff or final value of asset j in outcome i
I first investment is risk-free (cash): p1 = 1 and Vi1 = 1 for all i

I arbitrage means there is x with pTx < 0, Vx � 0
I arbitrage means we receive money up front, and our investment cannot lose
I standard assumption in economics: the prices are such that there is no arbitrage
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Absence of arbitrage

I by Farkas’ lemma, there is no arbitrage ⇐⇒ there exists y ∈ Rm
+ with VTy = p

I since first column of V is 1, we have 1Ty = 1
I y is interpreted as a risk-neutral probability on the outcomes 1, . . . ,m
I VTy are the expected values of the payoffs under the risk-neutral probability
I interpretation of VTy = p:

asset prices equal their expected payoff under the risk-neutral probability

I arbitrage theorem: there is no arbitrage ⇔ there exists a risk-neutral probability
distribution under which each asset price is its expected payoff
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Example

V =


1.0 0.5 0.0
1.0 0.8 0.0
1.0 1.0 1.0
1.0 1.3 4.0

 , p =


1.0
0.9
0.3

 , p̃ =


1.0
0.8
0.7


I with prices p, there is an arbitrage

x =


6.2

−7.7
1.5

 , pTx = −0.2, 1Tx = 0, Vx =


2.35
0.04
0.00
2.19


I with prices p̃, there is no arbitrage, with risk-neutral probability

y =


0.36
0.27
0.26
0.11

 VTy =


1.0
0.8
0.7


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6. Approximation and fitting
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Norm approximation

I minimize ‖Ax − b‖, with A ∈ Rm×n, m ≥ n, ‖ · ‖ is any norm

I approximation: Ax★ is the best approximation of b by a linear combination of columns of
A

I geometric: Ax★ is point in R(A) closest to b (in norm ‖ · ‖)
I estimation: linear measurement model y = Ax + v

– measurement y, v is measurement error, x is to be estimated
– implausibility of v is ‖v‖
– given y = b, most plausible x is x★

I optimal design: x are design variables (input), Ax is result (output)
– x★ is design that best approximates desired result b (in norm ‖ · ‖)
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Examples

I Euclidean approximation (‖ · ‖2)
– solution x★ = A†b

I Chebyshev or minimax approximation (‖ · ‖∞)
– can be solved via LP

minimize t
subject to −t1 � Ax − b � t1

I sum of absolute residuals approximation (‖ · ‖1)
– can be solved via LP

minimize 1T y
subject to −y � Ax − b � y
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Penalty function approximation

minimize q(r1) + · · · + q(rm)
subject to r = Ax − b

(A ∈ Rm×n, q : R → R is a convex penalty function)
examples
I quadratic: q(u) = u2

I deadzone-linear with width a:

q(u) = max{0, |u| − a}

I log-barrier with limit a:

q(u) =
{
−a2 log(1 − (u/a)2) |u| < a
∞ otherwise u

q
(u
)

deadzone-linear

quadratic
log barrier

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2
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Example: histograms of residuals

A ∈ R100×30; shape of penalty function affects distribution of residuals

absolute value q(u) = |u|

square q(u) = u2

deadzone q(u) = max{0, |u| −0.5}

log-barrier q(u) = − log(1 − u2)

r

−2

−2

−2

−2

−1

−1

−1

−1

0

0

0

0

1

1

1

1

2

2

2

2

0

40

0

10

0

20

0

10
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Huber penalty function

qhub (u) =
{

u2 |u| ≤ M
M (2|u| − M) |u| > M

u

q
h
u
b
(u
)

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

I linear growth for large u makes approximation less sensitive to outliers
I called a robust penalty
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Example

t

f
(t
)

−10 −5 0 5 10

−20

−10

0

10

20

I 42 points (circles) ti, yi, with two outliers
I affine function f (t) = U + Vt fit using quadratic (dashed) and Huber (solid) penalty

Convex Optimization Boyd and Vandenberghe 6.7



Least-norm problems

I least-norm problem:
minimize ‖x‖
subject to Ax = b,

with A ∈ Rm×n, m ≤ n, ‖ · ‖ is any norm

I geometric: x★ is smallest point in solution set {x | Ax = b}
I estimation:

– b = Ax are (perfect) measurements of x
– ‖x‖ is implausibility of x
– x★ is most plausible estimate consistent with measurements

I design: x are design variables (inputs); b are required results (outputs)
– x★ is smallest (‘most efficient’) design that satisfies requirements

Convex Optimization Boyd and Vandenberghe 6.8



Examples

I least Euclidean norm (‖ · ‖2)
– solution x = A†b (assuming b ∈ R(A))

I least sum of absolute values (‖ · ‖1)
– can be solved via LP

minimize 1T y
subject to −y � x � y, Ax = b

– tends to yield sparse x★
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Regularized approximation

I a bi-objective problem:

minimize (w.r.t. R2
+) (‖Ax − b‖, ‖x‖)

I A ∈ Rm×n, norms on Rm and Rn can be different
I interpretation: find good approximation Ax ≈ b with small x

I estimation: linear measurement model y = Ax + v, with prior knowledge that ‖x‖ is small
I optimal design: small x is cheaper or more efficient, or the linear model y = Ax is only

valid for small x
I robust approximation: good approximation Ax ≈ b with small x is less sensitive to errors

in A than good approximation with large x
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Scalarized problem

I minimize ‖Ax − b‖ + W‖x‖
I solution for W > 0 traces out optimal trade-off curve
I other common method: minimize ‖Ax − b‖2 + X‖x‖2 with X > 0

I with ‖ · ‖2, called Tikhonov regularization or ridge regression

minimize ‖Ax − b‖2
2 + X‖x‖2

2

I can be solved as a least-squares problem

minimize




[ A√

XI

]
x −

[
b
0

]



2

2

with solution x★ = (ATA + XI)−1ATb
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Optimal input design

I linear dynamical system (or convolution system) with impulse response h:

y(t) =
t∑

g=0
h(g)u(t − g), t = 0, 1, . . . ,N

I input design problem: multicriterion problem with 3 objectives
– tracking error with desired output ydes: Jtrack =

∑N
t=0 (y(t) − ydes (t))2

– input variation: Jder =
∑N−1

t=0 (u(t + 1) − u(t))2

– input magnitude: Jmag =
∑N

t=0 u(t)2

track desired output using a small and slowly varying input signal
I regularized least-squares formulation: minimize Jtrack + XJder + [Jmag

– for fixed X, [, a least-squares problem in u(0), …, u(N)

Convex Optimization Boyd and Vandenberghe 6.13



Example
I minimize Jtrack + XJder + [Jmag
I (top) X = 0, small [; (middle) X = 0, larger [; (bottom) large X
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Signal reconstruction

I bi-objective problem:

minimize (w.r.t. R2
+) (‖x̂ − xcor‖2, q(x̂))

– x ∈ Rn is unknown signal
– xcor = x + v is (known) corrupted version of x, with additive noise v
– variable x̂ (reconstructed signal) is estimate of x
– q : Rn → R is regularization function or smoothing objective

I examples:
– quadratic smoothing, qquad (x̂) =

∑n−1
i=1 (x̂i+1 − x̂i)2

– total variation smoothing, qtv (x̂) =
∑n−1

i=1 |x̂i+1 − x̂i |
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Quadratic smoothing example
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original signal x and noisy signal xcor
three solutions on trade-off curve

‖x̂ − xcor‖2 versus qquad (x̂)
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Reconstructing a signal with sharp transitions
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original signal x and noisy signal xcor
three solutions on trade-off curve

‖x̂ − xcor‖2 versus qquad (x̂)

I quadratic smoothing smooths out noise and sharp transitions in signal
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Total variation reconstruction
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three solutions on trade-off curve

‖x̂ − xcor‖2 versus qtv (x̂)

I total variation smoothing preserves sharp transitions in signal
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Robust approximation

I minimize ‖Ax − b‖ with uncertain A

I two approaches:
– stochastic: assume A is random, minimize E ‖Ax − b‖
– worst-case: set A of possible values of A, minimize supA∈A ‖Ax − b‖

I tractable only in special cases (certain norms ‖ · ‖, distributions, sets A)
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Example

A(u) = A0 + uA1, u ∈ [−1, 1]
I xnom minimizes ‖A0x − b‖2

2
I xstoch minimizes E ‖A(u)x − b‖2

2
with u uniform on [−1, 1]

I xwc minimizes sup−1≤u≤1 ‖A(u)x − b‖2
2

plot shows r(u) = ‖A(u)x − b‖2 versus u

u
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Stochastic robust least-squares

I A = Ā + U, U random, E U = 0, E UTU = P

I stochastic least-squares problem: minimize E ‖(Ā + U)x − b‖2
2

I explicit expression for objective:

E ‖Ax − b‖2
2 = E ‖Āx − b + Ux‖2

2

= ‖Āx − b‖2
2 + E xTUTUx

= ‖Āx − b‖2
2 + xTPx

I hence, robust least-squares problem is equivalent to: minimize ‖Āx − b‖2
2 + ‖P1/2x‖2

2

I for P = XI, get Tikhonov regularized problem: minimize ‖Āx − b‖2
2 + X‖x‖2

2
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Worst-case robust least-squares
I A = {Ā + u1A1 + · · · + upAp | ‖u‖2 ≤ 1} (an ellipsoid in Rm×n)
I worst-case robust least-squares problem is

minimize supA∈A ‖Ax − b‖2
2 = sup‖u‖2≤1 ‖P(x)u + q(x)‖2

2

where P(x) =
[

A1x A2x · · · Apx
]
, q(x) = Āx − b

I from book appendix B, strong duality holds between the following problems
maximize ‖Pu + q‖2

2
subject to ‖u‖2

2 ≤ 1
minimize t + _

subject to


I P q
PT _I 0
qT 0 t

 � 0

I hence, robust least-squares problem is equivalent to SDP
minimize t + _

subject to


I P(x) q(x)
P(x)T _I 0
q(x)T 0 t

 � 0
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Example

I r(u) = ‖(A0 + u1A1 + u2A2)x − b‖2, u uniform on unit disk
I three choices of x:

– xls minimizes ‖A0x − b‖2
– xtik minimizes ‖A0x − b‖2

2 + X‖x‖2
2 (Tikhonov solution)

– xrls minimizes supA∈A ‖Ax − b‖2
2 + ‖x‖2

2

r(u)

xls

xtik

xrls

fr
e
q

u
e
n
c
y

0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

Convex Optimization Boyd and Vandenberghe 6.24



7. Statistical estimation
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Maximum likelihood estimation

I parametric distribution estimation: choose from a family of densities px (y), indexed by
a parameter x (often denoted \)

I we take px (y) = 0 for invalid values of x
I px (y), as a function of x, is called likelihood function
I l(x) = log px (y), as a function of x, is called log-likelihood function

I maximum likelihood estimation (MLE): choose x to maximize px (y) (or l(x))
I a convex optimization problem if log px (y) is concave in x for fixed y
I not the same as log px (y) concave in y for fixed x, i.e., px (y) is a family of log-concave

densities
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Linear measurements with IID noise

linear measurement model
yi = aT

i x + vi, i = 1, . . . ,m

I x ∈ Rn is vector of unknown parameters
I vi is IID measurement noise, with density p(z)
I yi is measurement: y ∈ Rm has density px (y) =

∏m
i=1 p(yi − aT

i x)

maximum likelihood estimate: any solution x of

maximize l(x) = ∑m
i=1 log p(yi − aT

i x)

(y is observed value)
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Examples
I Gaussian noise N(0, f2): p(z) = (2cf2)−1/2e−z2/(2f2 ) ,

l(x) = −m
2

log(2cf2) − 1
2f2

m∑
i=1

(aT
i x − yi)2

ML estimate is least-squares solution
I Laplacian noise: p(z) = (1/(2a))e−|z |/a,

l(x) = −m log(2a) − 1
a

m∑
i=1

|aT
i x − yi |

ML estimate is ℓ1-norm solution
I uniform noise on [−a, a]:

l(x) =
{
−m log(2a) |aT

i x − yi | ≤ a, i = 1, . . . ,m
−∞ otherwise

ML estimate is any x with |aT
i x − yi | ≤ a

Convex Optimization Boyd and Vandenberghe 7.4



Logistic regression
I random variable y ∈ {0, 1} with distribution

p = prob(y = 1) = exp(aTu + b)
1 + exp(aTu + b)

I a, b are parameters; u ∈ Rn are (observable) explanatory variables
I estimation problem: estimate a, b from m observations (ui, yi)
I log-likelihood function (for y1 = · · · = yk = 1, yk+1 = · · · = ym = 0):

l(a, b) = log

(
k∏

i=1

exp(aTui + b)
1 + exp(aTui + b)

m∏
i=k+1

1
1 + exp(aTui + b)

)
=

k∑
i=1

(aTui + b) −
m∑

i=1
log(1 + exp(aTui + b))

concave in a, b
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Example

u
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=
1
)
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1

I n = 1, m = 50 measurements; circles show points (ui, yi)
I solid curve is ML estimate of p = exp(au + b)/(1 + exp(au + b))
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Gaussian covariance estimation

I fit Gaussian distribution N(0, Σ) to observed data y1, . . . , yN

I log-likelihood is

l(Σ) =
1
2

N∑
k=1

(
−2cn − log detΣ − yTΣ−1y

)
=

N
2

(
−2cn − log detΣ − trΣ−1Y

)
with Y = (1/N)∑N

k=1 ykyT
k , the empirical covariance

I l is not concave in Σ (the log detΣ term has the wrong sign)

I with no constraints or regularization, MLE is empirical covariance Σml = Y
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Change of variables

I change variables to S = Σ−1

I recover original parameter via Σ = S−1

I S is the natural parameter in an exponential family description of a Gaussian

I in terms of S, log-likelihood is

l(S) = N
2
(−2cn + log det S − tr SY)

which is concave

I (a similar trick can be used to handle nonzero mean)

Convex Optimization Boyd and Vandenberghe 7.8



Fitting a sparse inverse covariance

I S is the precision matrix of the Gaussian

I Sij = 0 means that yi and yj are independent, conditioned on yk, k ≠ i, j

I sparse S means
– many pairs of components are conditionally independent, given the others
– y is described by a sparse (Gaussian) Bayes network

I to fit data with S sparse, minimize convex function

− log det S + tr SY + _
∑
i≠j

|Sij |

over S ∈ Sn, with hyper-parameter _ ≥ 0
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Example

I example with n = 4, N = 10 samples generated from a sparse Strue

Strue =


1 0 0.5 0
0 1 0 0.1

0.5 0 1 0.3
0 0.1 0.3 1


I empirical and sparse estimate values of Σ−1 (with _ = 0.2)

Y−1 =


3 0.8 3.3 1.2

0.8 1.2 1.2 0.9
3.2 1.2 4.6 2.1
1.2 0.9 2.1 2.7

 , Ŝ =


0.9 0 0.6 0
0 0.7 0 0.1

0.6 0 1.1 0.2
0 0.1 0.2 1.2

 .
I estimation errors:



Strue − Y−1


2

F = 49.8,


Strue − Ŝ



2
F = 0.2
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(Binary) hypothesis testing

detection (hypothesis testing) problem
given observation of a random variable X ∈ {1, . . . , n}, choose between:
I hypothesis 1: X was generated by distribution p = (p1, . . . , pn)
I hypothesis 2: X was generated by distribution q = (q1, . . . , qn)

randomized detector
I a nonnegative matrix T ∈ R2×n, with 1TT = 1T

I if we observe X = k, we choose hypothesis 1 with probability t1k, hypothesis 2 with
probability t2k

I if all elements of T are 0 or 1, it is called a deterministic detector
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Detection probability matrix

D =
[

Tp Tq
]
=

[
1 − Pfp Pfn

Pfp 1 − Pfn

]
I Pfp is probability of selecting hypothesis 2 if X is generated by distribution 1 (false positive)
I Pfn is probability of selecting hypothesis 1 if X is generated by distribution 2 (false

negative)

I multi-objective formulation of detector design

minimize (w.r.t. R2
+) (Pfp,Pfn) = ((Tp)2, (Tq)1)

subject to t1k + t2k = 1, k = 1, . . . , n
tik ≥ 0, i = 1, 2, k = 1, . . . , n

variable T ∈ R2×n
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Scalarization

I scalarize with weight _ > 0 to obtain

minimize (Tp)2 + _(Tq)1
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

I an LP with a simple analytical solution

(t1k , t2k) =
{

(1, 0) pk ≥ _qk
(0, 1) pk < _qk

I a deterministic detector, given by a likelihood ratio test
I if pk = _qk for some k, any value 0 ≤ t1k ≤ 1, t1k = 1 − t2k is optimal (i.e., Pareto-optimal

detectors include non-deterministic detectors)
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Minimax detector

I minimize maximum of false positive and false negative probabilities

minimize max{Pfp,Pfn} = max{(Tp)2, (Tq)1}
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

I an LP; solution is usually not deterministic
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Example

[
p q

]
=


0.70 0.10
0.20 0.10
0.05 0.70
0.05 0.10


Pfp

P
fn

1

2

3
4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector
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Experiment design
I m linear measurements yi = aT

i x + wi, i = 1, . . . ,m of unknown x ∈ Rn

I measurement errors wi are IID N(0, 1)
I ML (least-squares) estimate is

x̂ =

(
m∑

i=1
aiaT

i

)−1 m∑
i=1

yiai

I error e = x̂ − x has zero mean and covariance

E = E eeT =

(
m∑

i=1
aiaT

i

)−1

I confidence ellipsoids are given by {x | (x − x̂)TE−1 (x − x̂) ≤ V}
I experiment design: choose ai ∈ {v1, . . . , vp} (set of possible test vectors) to make E

‘small’
Convex Optimization Boyd and Vandenberghe 7.18



Vector optimization formulation

I formulate as vector optimization problem

minimize (w.r.t. Sn
+) E =

(∑p
k=1 mkvkvT

k

)−1

subject to mk ≥ 0, m1 + · · · + mp = m
mk ∈ Z

I variables are mk, the number of vectors ai equal to vk

I difficult in general, due to integer constraint
I common scalarizations: minimize log det E, tr E, _max (E), …
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Relaxed experiment design

I assume m � p, use _k = mk/m as (continuous) real variable

minimize (w.r.t. Sn
+) E = (1/m)

(∑p
k=1 _kvkvT

k

)−1

subject to _ � 0, 1T_ = 1

I a convex relaxation, since we ignore constraint that m_k ∈ Z
I optimal value is lower bound on optimal value of (integer) experiment design problem
I simple rounding of _km gives heuristic for experiment design problem
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D-optimal design

I scalarize via log determinant

minimize log det
(∑p

k=1 _kvkvT
k

)−1

subject to _ � 0, 1T_ = 1

I interpretation: minimizes volume of confidence ellipsoids
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Dual of D-optimal experiment design problem

dual problem
maximize log det W + n log n
subject to vT

k Wvk ≤ 1, k = 1, . . . , p

interpretation: {x | xTWx ≤ 1} is minimum volume ellipsoid centered at origin, that includes all
test vectors vk

complementary slackness: for _, W primal and dual optimal

_k (1 − vT
k Wvk) = 0, k = 1, . . . , p

optimal experiment uses vectors vk on boundary of ellipsoid defined by W
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Example

(p = 20)

_1 = 0.5

_2 = 0.5

design uses two vectors, on boundary of ellipse defined by optimal W

Convex Optimization Boyd and Vandenberghe 7.23



Derivation of dual

first reformulate primal problem with new variable X:

minimize log det X−1

subject to X =
∑p

k=1 _kvkvT
k , _ � 0, 1T_ = 1

L(X, _, Z, z, a) = log det X−1 + tr

(
Z

(
X −

p∑
k=1

_kvkvT
k

))
− zT_ + a(1T_ − 1)

I minimize over X by setting gradient to zero: −X−1 + Z = 0
I minimum over _k is −∞ unless −vT

k Zvk − zk + a = 0
dual problem

maximize n + log det Z − a

subject to vT
k Zvk ≤ a, k = 1, . . . , p

change variable W = Z/a, and optimize over a to get dual of slide 7.21
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8. Geometric problems
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Minimum volume ellipsoid around a set

I Löwner-John ellipsoid of a set C: minimum volume ellipsoid E with C ⊆ E

I parametrize E as E = {v | ‖Av + b‖2 ≤ 1}; can assume A ∈ Sn
++

I vol E is proportional to det A−1; to find Löwner-John ellipsoid, solve problem

minimize (over A, b) log det A−1

subject to supv∈C ‖Av + b‖2 ≤ 1

convex, but evaluating the constraint can be hard (for general C)

I finite set C = {x1, . . . , xm}:

minimize (over A, b) log det A−1

subject to ‖Axi + b‖2 ≤ 1, i = 1, . . . ,m

also gives Löwner-John ellipsoid for polyhedron conv{x1, . . . , xm}
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Maximum volume inscribed ellipsoid
I maximum volume ellipsoid E with E ⊆ C, C ⊆ Rn convex
I parametrize E as E = {Bu + d | ‖u‖2 ≤ 1}; can assume B ∈ Sn

++

I vol E is proportional to det B; can find E by solving

maximize log det B
subject to sup‖u‖2≤1 IC (Bu + d) ≤ 0

(where IC (x) = 0 for x ∈ C and IC (x) = ∞ for x ∉ C)
convex, but evaluating the constraint can be hard (for general C)

I polyhedron {x | aT
i x ≤ bi, i = 1, . . . ,m}:

maximize log det B
subject to ‖Bai‖2 + aT

i d ≤ bi, i = 1, . . . ,m

(constraint follows from sup‖u‖2≤1 aT
i (Bu + d) = ‖Bai‖2 + aT

i d)
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Efficiency of ellipsoidal approximations

I C ⊆ Rn convex, bounded, with nonempty interior
I Löwner-John ellipsoid, shrunk by a factor n (around its center), lies inside C
I maximum volume inscribed ellipsoid, expanded by a factor n (around its center) covers C

I example (for polyhedra in R2)

I factor n can be improved to
√

n if C is symmetric
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Centering
I many possible definitions of ‘center’ of a convex set C

I Chebyshev center: center of largest inscribed ball
– for polyhedron, can be found via linear programming

I center of maximum volume inscribed ellipsoid
– invariant under affine coordinate transformations

xchebxcheb xmve
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Analytic center of a set of inequalities

I the analytic center of set of convex inequalities and linear equations

fi (x) ≤ 0, i = 1, . . . ,m, Fx = g

is defined as solution of
minimize −∑m

i=1 log(−fi (x))
subject to Fx = g

I objective is called the log-barrier for the inequalities

I (we’ll see later) analytic center more easily computed than MVE or Chebyshev center

I two sets of inequalities can describe the same set, but have different analytic centers
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Analytic center of linear inequalities
I aT

i x ≤ bi, i = 1, . . . ,m
I xac minimizes q(x) = −∑m

i=1 log(bi − aT
i x)

I dashed lines are level curves of q

xac
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Inner and outer ellipsoids from analytic center

I we have
Einner ⊆ {x | aT

i x ≤ bi, i = 1, . . . ,m} ⊆ Eouter

where

Einner = {x | (x − xac)T∇2q(xac) (x − xac) ≤ 1}
Eouter = {x | (x − xac)T∇2q(xac) (x − xac) ≤ m(m − 1)}

I ellipsoid expansion/shrinkage factor is
√

m(m − 1)
(cf. n for Löwner-John or max volume inscribed ellpsoids)
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Linear discrimination
I separate two sets of points {x1, . . . , xN }, {y1, . . . , yM} by a hyperplane
I i.e., find a ∈ Rn, b ∈ R with

aTxi + b > 0, i = 1, . . . ,N , aTyi + b < 0, i = 1, . . . ,M

I homogeneous in a, b, hence equivalent to

aTxi + b ≥ 1, i = 1, . . . ,N , aTyi + b ≤ −1, i = 1, . . . ,M

a set of linear inequalities in a, b, i.e., an LP feasibility problem
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Robust linear discrimination

(Euclidean) distance between hyperplanes

H1 = {z | aT z + b = 1}
H2 = {z | aT z + b = −1}

is dist(H1,H2) = 2/‖a‖2

to separate two sets of points by maximum margin,

minimize (1/2)‖a‖2
2

subject to aTxi + b ≥ 1, i = 1, . . . ,N
aTyi + b ≤ −1, i = 1, . . . ,M

(2)

a QP in a, b
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Approximate linear separation of non-separable sets

minimize 1Tu + 1Tv
subject to aTxi + b ≥ 1 − ui, i = 1, . . . ,N , aTyi + b ≤ −1 + vi, i = 1, . . . ,M

u � 0, v � 0

I an LP in a, b, u, v
I at optimum, ui = max{0, 1 − aTxi − b}, vi = max{0, 1 + aTyi + b}
I equivalent to minimizing the sum of violations of the original inequalities
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Support vector classifier

minimize ‖a‖2 + W(1Tu + 1Tv)
subject to aTxi + b ≥ 1 − ui, i = 1, . . . ,N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

produces point on trade-off curve between inverse of margin 2/‖a‖2 and classification error,
measured by total slack 1Tu + 1Tv

example on previous slide, with W = 0.1:
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Nonlinear discrimination

I separate two sets of points by a nonlinear function f : find f : Rn → R with

f (xi) > 0, i = 1, . . . ,N , f (yi) < 0, i = 1, . . . ,M

I choose a linearly parametrized family of functions f (z) = \TF (z)
– \ ∈ Rk is parameter
– F = (F1, . . . ,Fk) : Rn → Rk are basis functions

I solve a set of linear inequalities in \:

\TF (xi) ≥ 1, i = 1, . . . ,N , \TF (yi) ≤ −1, i = 1, . . . ,M
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Examples

I quadratic discrimination: f (z) = zTPz + qT z + r, \ = (P, q, r)
I solve LP feasibility problem with variables P ∈ Sn, q ∈ Rn, r ∈ R

xT
i Pxi + qTxi + r ≥ 1, yT

i Pyi + qTyi + r ≤ −1

I can add additional constraints (e.g., P � −I to separate by an ellipsoid)

I polynomial discrimination: F (z) are all monomials up to a given degree d
I e.g., for n = 2, d = 3

F (z) = (1, z1, z2, z2
1, z1z2, z2

2, z3
1, z2

1z2, z1z2
2, z3

2)
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Example

separation by ellipsoid separation by 4th degree polynomial
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Placement and facility location

I N points with coordinates xi ∈ R2 (or R3)

I some positions xi are given; the other xi’s are variables

I for each pair of points, a cost function fij (xi, xj)

I placement problem: minimize
∑

i≠j fij (xi, xj)

I interpretations
– points are locations of plants or warehouses; fij is transportation cost between facilities i and

j
– points are locations of cells in an integrated circuit; fij represents wirelength
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Example
I minimize

∑
(i,j) ∈E h(‖xi − xj ‖2), with 6 free points, 27 edges

I optimal placements for h(z) = z, h(z) = z2, h(z) = z4

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

I histograms of edge lengths ‖xi − xj ‖2, (i, ) ∈ E
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B. Numerical linear algebra background
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Flop count

I flop (floating-point operation): one addition, subtraction, multiplication, or division of two
floating-point numbers

I to estimate complexity of an algorithm
– express number of flops as a (polynomial) function of the problem dimensions
– simplify by keeping only the leading terms

I not an accurate predictor of computation time on modern computers, but useful as a
rough estimate of complexity
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Basic linear algebra subroutines (BLAS)

vector-vector operations (x, y ∈ Rn) (BLAS level 1)
I inner product xTy: 2n − 1 flops (≈ 2n, O(n))
I sum x + y, scalar multiplication Ux: n flops

matrix-vector product y = Ax with A ∈ Rm×n (BLAS level 2)
I m(2n − 1) flops (≈ 2mn)
I 2N if A is sparse with N nonzero elements
I 2p(n + m) if A is given as A = UVT , U ∈ Rm×p, V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n, B ∈ Rn×p (BLAS level 3)
I mp(2n − 1) flops (≈ 2mnp)
I less if A and/or B are sparse
I (1/2)m(m + 1) (2n − 1) ≈ m2n if m = p and C symmetric
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BLAS on modern computers

I there are good implementations of BLAS and variants (e.g., for sparse matrices)
I CPU single thread speeds typically 1–10 Gflops/s (109 flops/sec)
I CPU multi threaded speeds typically 10–100 Gflops/s
I GPU speeds typically 100 Gflops/s–1 Tflops/s (1012 flops/sec)
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Complexity of solving linear equations

I A ∈ Rn×n is invertible, b ∈ Rn

I solution of Ax = b is x = A−1b

I solving Ax = b, i.e., computing x = A−1b
– almost never done by computing A−1, then multiplying by b
– for general methods, O(n3)
– (much) less if A is structured (banded, sparse, Toeplitz, …)
– e.g., for A with half-bandwidth k (Aij = 0 for |i − j | > k, O(k2n)

I it’s super useful to recognize matrix structure that can be exploited in solving Ax = b
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Linear equations that are easy to solve

I diagonal matrices: n flops; x = A−1b = (b1/a11, . . . , bn/ann)

I lower triangular: n2 flops via forward substitution

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

I upper triangular: n2 flops via backward substitution
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Linear equations that are easy to solve

I orthogonal matrices (A−1 = AT ):
– 2n2 flops to compute x = AT b for general A
– less with structure, e.g., if A = I − 2uuT with ‖u‖2 = 1, we can compute

x = AT b = b − 2(uT b)u in 4n flops

I permutation matrices: for c = (c1, c2, . . . , cn) a permutation of (1, 2, . . . , n)

aij =

{
1 j = ci
0 otherwise

– interpretation: Ax = (xc1 , . . . , xcn )
– satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops
– example:

A =


0 1 0
0 0 1
1 0 0

 , A−1 = AT =


0 0 1
1 0 0
0 1 0


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Factor-solve method for solving Ax = b

I factor A as a product of simple matrices (usually 2–5):

A = A1A2 · · ·Ak

I e.g., Ai diagonal, upper or lower triangular, orthogonal, permutation, …

I compute x = A−1b = A−1
k · · ·A−1

2 A−1
1 b by solving k ‘easy’ systems of equations

A1x1 = b, A2x2 = x1, . . . Akx = xk−1

I cost of factorization step usually dominates cost of solve step
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Solving equations with multiple righthand sides

I we wish to solve
Ax1 = b1, Ax2 = b2, . . . Axm = bm

I cost: one factorization plus m solves

I called factorization caching

I when factorization cost dominates solve cost, we can solve a modest number of equations
at the same cost as one (!!)
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LU factorization

I every nonsingular matrix A can be factored as A = PLU with P a permutation, L lower
triangular, U upper triangular

I factorization cost: (2/3)n3 flops

Solving linear equations by LU factorization.
given a set of linear equations Ax = b, with A nonsingular.

1. LU factorization. Factor A as A = PLU ((2/3)n3 flops).
2. Permutation. Solve Pz1 = b (0 flops).
3. Forward substitution. Solve Lz2 = z1 (n2 flops).
4. Backward substitution. Solve Ux = z2 (n2 flops).

I total cost: (2/3)n3 + 2n2 ≈ (2/3)n3 for large n
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Sparse LU factorization

I for A sparse and invertible, factor as A = P1LUP2

I adding permutation matrix P2 offers possibility of sparser L, U

I hence, less storage and cheaper factor and solve steps

I P1 and P2 chosen (heuristically) to yield sparse L, U

I choice of P1 and P2 depends on sparsity pattern and values of A

I cost is usually much less than (2/3)n3; exact value depends in a complicated way on n,
number of zeros in A, sparsity pattern

I often practical to solve very large sparse systems of equations
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Cholesky factorization

I every positive definite A can be factored as A = LLT

I L is lower triangular with positive diagonal entries

I Cholesjy factorization cost: (1/3)n3 flops

Solving linear equations by Cholesky factorization.
given a set of linear equations Ax = b, with A ∈ Sn

++.
1. Cholesky factorization. Factor A as A = LLT ((1/3)n3 flops).
2. Forward substitution. Solve Lz1 = b (n2 flops).
3. Backward substitution. Solve LT x = z1 (n2 flops).

I total cost: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n
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Sparse Cholesky factorization

I for sparse positive define A, factor as A = PLLTPT

I adding permutation matrix P offers possibility of sparser L

I same as
– permuting rows and columns of A to get Ã = PT AP
– then finding Cholesky factorization of Ã

I P chosen (heuristically) to yield sparse L

I choice of P only depends on sparsity pattern of A (unlike sparse LU)

I cost is usually much less than (1/3)n3; exact value depends in a complicated way on n,
number of zeros in A, sparsity pattern
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Example

I sparse A with upper arrow sparsity pattern

A =


∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

 L =


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


L is full, with O(n2) nonzeros; solve cost is O(n2)

I reverse order of entries (i.e., permute) to get lower arrow sparsity pattern

Ã =


∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗ ∗ ∗

 L =


∗

∗
∗

∗
∗ ∗ ∗ ∗ ∗


L is sparse with O(n) nonzeros; cost of solve is O(n)
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LDLT factorization

I every nonsingular symmetric matrix A can be factored as

A = PLDLTPT

with P a permutation matrix, L lower triangular, D block diagonal with 1 × 1 or 2 × 2
diagonal blocks

I factorization cost: (1/3)n3

I cost of solving linear equations with symmetric A by LDLT factorization:
(1/3)n3 + 2n2 ≈ (1/3)n3 for large n

I for sparse A, can choose P to yield sparse L; cost � (1/3)n3
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Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination
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Equations with structured sub-blocks

I express Ax = b in blocks as [
A11 A12
A21 A22

] [
x1
x2

]
=

[
b1
b2

]
with x1 ∈ Rn1 , x2 ∈ Rn2 ; blocks Aij ∈ Rni×nj

I assuming A11 is nonsingular, can eliminate x1 as

x1 = A−1
11 (b1 − A12x2)

I to compute x2, solve
(A22 − A21A−1

11 A12)x2 = b2 − A21A−1
11 b1

I S = A22 − A21A−1
11 A12 is the Schur complement
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Block elimination method

Solving linear equations by block elimination.
given a nonsingular set of linear equations with A11 nonsingular.

1. Form A−1
11 A12 and A−1

11 b1.
2. Form S = A22 − A21A−1

11 A12 and b̃ = b2 − A21A−1
11 b1.

3. Determine x2 by solving Sx2 = b̃.
4. Determine x1 by solving A11x1 = b1 − A12x2.

dominant terms in flop count
I step 1: f + n2s (f is cost of factoring A11; s is cost of solve step)
I step 2: 2n2

2n1 (cost dominated by product of A21 and A−1
11 A12)

I step 3: (2/3)n3
2

total: f + n2s + 2n2
2n1 + (2/3)n3

2
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Examples

I for general A11, f = (2/3)n3
1, s = 2n2

1

#flops = (2/3)n3
1 + 2n2

1n2 + 2n2
2n1 + (2/3)n3

2 = (2/3) (n1 + n2)3

so, no gain over standard method

I block elimination is useful for structured A11 (f � n3
1)

I for example, A11 diagonal (f = 0, s = n1): #flops ≈ 2n2
2n1 + (2/3)n3

2
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Structured plus low rank matrices

I we wish to solve (A + BC)x = b, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n

I assume A has structure (i.e., Ax = b easy to solve)
I first uneliminate to write as block equations with new variable y[

A B
C −I

] [
x
y

]
=

[
b
0

]
I now apply block elimination: solve

(I + CA−1B)y = CA−1b,

then solve Ax = b − By
I this proves the matrix inversion lemma: if A and A + BC are nonsingular,

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1
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Example: Solving diagonal plus low rank equations

I with A diagonal, p � n, A + BC is called diagonal plus low rank

I for covariance matrices, called a factor model

I method 1: form D = A + BC, then solve Dx = b
– storage n2

– solve cost (2/3)n3 + 2pn2 (cubic in n)

I method 2: solve (I + CA−1B)y = CA−1b, then compute x = A−1b − A−1By
– storage O(np)
– solve cost 2p2n + (2/3)p3 (linear in n)
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Unconstrained minimization

I unconstrained minimization problem

minimize f (x)

I we assume
– f convex, twice continuously differentiable (hence dom f open)
– optimal value p★ = infx f (x) is attained at x★ (not necessarily unique)

I optimality condition is ∇f (x) = 0

I minimizing f is the same as solving ∇f (x) = 0

I a set of n equations with n unknowns
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Quadratic functions

I convex quadratic: f (x) = (1/2)xTPx + qTx + r, P � 0

I we can solve exactly via linear equations

∇f (x) = Px + q = 0

I much more on this special case later
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Iterative methods

I for most non-quadratic functions, we use iterative methods

I these produce a sequence of points x (k) ∈ dom f , k = 0, 1, . . .

I x (0) is the initial point or starting point

I x (k) is the kth iterate

I we hope that the method converges, i.e.,

f (x (k) ) → p★, ∇f (x (k) ) → 0
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Initial point and sublevel set

I algorithms in this chapter require a starting point x (0) such that
– x (0) ∈ dom f
– sublevel set S = {x | f (x) ≤ f (x (0) )} is closed

I 2nd condition is hard to verify, except when all sublevel sets are closed
– equivalent to condition that epi f is closed
– true if dom f = Rn

– true if f (x) → ∞ as x → bd dom f

I examples of differentiable functions with closed sublevel sets:

f (x) = log

(
m∑

i=1
exp(aT

i x + bi)
)
, f (x) = −

m∑
i=1

log(bi − aT
i x)

Convex Optimization Boyd and Vandenberghe 9.5



Strong convexity and implications

I f is strongly convex on S if there exists an m > 0 such that

∇2f (x) � mI for all x ∈ S

I same as f (x) − (m/2)‖x‖2
2 is convex

I if f is strongly convex, for x, y ∈ S,

f (y) ≥ f (x) + ∇f (x)T (y − x) + m
2
‖x − y‖2

2

I hence, S is bounded
I we conclude p★ > −∞, and for x ∈ S,

f (x) − p★ ≤ 1
2m

‖∇f (x)‖2
2

I useful as stopping criterion (if you know m, which usually you do not)
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Descent methods

I descent methods generate iterates as

x (k+1) = x (k) + t (k)Δx (k)

with f (x (k+1) ) < f (x (k) ) (hence the name)

I other notations: x+ = x + tΔx, x := x + tΔx

I Δx (k) is the step, or search direction

I t (k) > 0 is the step size, or step length

I from convexity, f (x+) < f (x) implies ∇f (x)TΔx < 0

I this means Δx is a descent direction
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Generic descent method

General descent method.
given a starting point x ∈ dom f .
repeat

1. Determine a descent direction Δx.
2. Line search. Choose a step size t > 0.
3. Update. x := x + tΔx.

until stopping criterion is satisfied.
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Line search types

I exact line search: t = argmint>0 f (x + tΔx)

I backtracking line search (with parameters U ∈ (0, 1/2), V ∈ (0, 1))
– starting at t = 1, repeat t := Vt until f (x + tΔx) < f (x) + Ut∇f (x)TΔx

I graphical interpretation: reduce t (i.e., backtrack) until t ≤ t0

t

f (x + tΔx)

t = 0 t0

f (x) + Ut∇f (x)TΔxf (x) + t∇f (x)TΔx
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Gradient descent method
I general descent method with Δx = −∇f (x)

given a starting point x ∈ dom f .
repeat

1. Δx := −∇f (x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tΔx.

until stopping criterion is satisfied.

I stopping criterion usually of the form ‖∇f (x)‖2 ≤ n

I convergence result: for strongly convex f ,

f (x (k) ) − p★ ≤ ck (f (x (0) ) − p★)

c ∈ (0, 1) depends on m, x (0) , line search type
I very simple, but can be very slow
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Example: Quadratic function on R2

I take f (x) = (1/2) (x2
1 + Wx2

2), with W > 0
I with exact line search, starting at x (0) = (W, 1):

x (k)1 = W

(
W − 1
W + 1

)k
, x (k)2 =

(
−W − 1
W + 1

)k

– very slow if W � 1 or W � 1

– example for W = 10 at right
– called zig-zagging

x1
x
2

x
(0)

x
(1)

−10 0 10

−4

0

4
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Example: Nonquadratic function on R2

I f (x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x
(0)

x
(1)

x
(2)

x
(0)

x
(1)

backtracking line search exact line search
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Example: A problem in R100

I f (x) = cTx − ∑500
i=1 log(bi − aT

i x)
I linear convergence, i.e., a straight line on a semilog plot

k

f
(x

(k
)
)
−

p
★

exact line search

backtracking line search

0 50 100 150 200
10

−4

10
−2

10
0

10
2

10
4
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Steepest descent method

I normalized steepest descent direction (at x, for norm ‖ · ‖):

Δxnsd = argmin{∇f (x)Tv | ‖v‖ = 1}

I interpretation: for small v, f (x + v) ≈ f (x) + ∇f (x)Tv;

I direction Δxnsd is unit-norm step with most negative directional derivative

I (unnormalized) steepest descent direction: Δxsd = ‖∇f (x)‖∗Δxnsd

I satisfies ∇f (x)TΔxsd = −‖∇f (x)‖2
∗

I steepest descent method
– general descent method with Δx = Δxsd
– convergence properties similar to gradient descent
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Examples

I Euclidean norm: Δxsd = −∇f (x)
I quadratic norm ‖x‖P = (xTPx)1/2 (P ∈ Sn

++): Δxsd = −P−1∇f (x)
I ℓ1-norm: Δxsd = −(mf (x)/mxi)ei, where |mf (x)/mxi | = ‖∇f (x)‖∞
I unit balls, normalized steepest descent directions for quadratic norm and ℓ1-norm:

−∇f (x)

Δxnsd

−∇f (x)
Δxnsd
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Choice of norm for steepest descent

x
(0)

x
(1)

x
(2)

x
(0)

x
(1)

x
(2)

I steepest descent with backtracking line search for two quadratic norms
I ellipses show {x | ‖x − x (k) ‖P = 1}
I interpretation of steepest descent with quadratic norm ‖ · ‖P: gradient descent after

change of variables x̄ = P1/2x
I shows choice of P has strong effect on speed of convergence
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Newton step

I Newton step is Δxnt = −∇2f (x)−1∇f (x)

I interpretation: x + Δxnt minimizes second order approximation

f̂ (x + v) = f (x) + ∇f (x)Tv + 1
2

vT∇2f (x)v

f

f̂

(x, f (x))

(x + Δxnt, f (x + Δxnt))
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Another intrepretation

I x + Δxnt solves linearized optimality condition

∇f (x + v) ≈ ∇̂f (x + v) = ∇f (x) + ∇2f (x)v = 0

f ′

f̂ ′

(x, f ′ (x))

(x + Δxnt, f
′ (x + Δxnt))
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And one more interpretation

I Δxnt is steepest descent direction at x in local Hessian norm ‖u‖∇2f (x) =
(
uT∇2f (x)u

)1/2

x

x + Δxnt

x + Δxnsd

I dashed lines are contour lines of f ; ellipse is {x + v | vT∇2f (x)v = 1}
I arrow shows −∇f (x)
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Newton decrement

I Newton decrement is _(x) =
(
∇f (x)T∇2f (x)−1∇f (x)

)1/2

I a measure of the proximity of x to x★

I gives an estimate of f (x) − p★, using quadratic approximation f̂ :

f (x) − inf
y

f̂ (y) = 1
2
_(x)2

I equal to the norm of the Newton step in the quadratic Hessian norm

_(x) =
(
ΔxT

nt∇2f (x)Δxnt

)1/2

I directional derivative in the Newton direction: ∇f (x)TΔxnt = −_(x)2

I affine invariant (unlike ‖∇f (x)‖2)
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Newton’s method

given a starting point x ∈ dom f , tolerance n > 0.
repeat

1. Compute the Newton step and decrement.
Δxnt := −∇2f (x)−1∇f (x); _2 := ∇f (x)T∇2f (x)−1∇f (x).

2. Stopping criterion. quit if _2/2 ≤ n .
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tΔxnt.

I affine invariant, i.e., independent of linear changes of coordinates
I Newton iterates for f̃ (y) = f (Ty) with starting point y(0) = T−1x (0) are y(k) = T−1x (k)
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Classical convergence analysis

assumptions
I f strongly convex on S with constant m
I ∇2f is Lipschitz continuous on S, with constant L > 0:

‖∇2f (x) − ∇2f (y)‖2 ≤ L‖x − y‖2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants [ ∈ (0,m2/L), W > 0 such that
I if ‖∇f (x)‖2 ≥ [, then f (x (k+1) ) − f (x (k) ) ≤ −W
I if ‖∇f (x)‖2 < [, then

L
2m2 ‖∇f (x (k+1) )‖2 ≤

(
L

2m2 ‖∇f (x (k) )‖2

)2
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Classical convergence analysis

damped Newton phase (‖∇f (x)‖2 ≥ [)
I most iterations require backtracking steps
I function value decreases by at least W

I if p★ > −∞, this phase ends after at most (f (x (0) ) − p★)/W iterations

quadratically convergent phase (‖∇f (x)‖2 < [)
I all iterations use step size t = 1
I ‖∇f (x)‖2 converges to zero quadratically: if ‖∇f (x (k) )‖2 < [, then

L
2m2 ‖∇f (xl)‖2 ≤

(
L

2m2 ‖∇f (xk)‖2

)2l−k

≤
(
1
2

)2l−k

, l ≥ k
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Classical convergence analysis

conclusion: number of iterations until f (x) − p★ ≤ n is bounded above by

f (x (0) ) − p★

W
+ log2 log2 (n0/n)

I W, n0 are constants that depend on m, L, x (0)

I second term is small (of the order of 6) and almost constant for practical purposes
I in practice, constants m, L (hence W, n0) are usually unknown
I provides qualitative insight in convergence properties (i.e., explains two algorithm phases)
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Example: R2

(same problem as slide 9.13)

x
(0)

x
(1)

k

f
(x

(k
)
)
−

p
★

0 1 2 3 4 5
10

−15

10
−10

10
−5

10
0

10
5

I backtracking parameters U = 0.1, V = 0.7
I converges in only 5 steps
I quadratic local convergence
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Example in R100

(same problem as slide 9.14)

k

f
(x

(k
)
)
−

p
★

exact line search

backtracking

0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

10
5

k

s
te

p
s
iz

e
t
(k
)

exact line search

backtracking

0 2 4 6 8
0

0.5

1

1.5

2

I backtracking parameters U = 0.01, V = 0.5
I backtracking line search almost as fast as exact l.s. (and much simpler)
I clearly shows two phases in algorithm
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Example in R10000

(with sparse ai)

f (x) = −
10000∑

i=1
log(1 − x2

i ) −
100000∑

i=1
log(bi − aT

i x)

k

f
(x

(k
)
)
−

p
★

0 5 10 15 20

10
−5

10
0

10
5

I backtracking parameters U = 0.01, V = 0.5.
I performance similar as for small examples
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Self-concordance

shortcomings of classical convergence analysis
I depends on unknown constants (m, L, …)
I bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)
I does not depend on any unknown constants
I gives affine-invariant bound
I applies to special class of convex self-concordant functions
I developed to analyze polynomial-time interior-point methods for convex optimization
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Convergence analysis for self-concordant functions

definition
I convex f : R → R is self-concordant if |f ′′′ (x) | ≤ 2f ′′ (x)3/2 for all x ∈ dom f
I f : Rn → R is self-concordant if g(t) = f (x + tv) is self-concordant for all x ∈ dom f , v ∈ Rn

examples on R
I linear and quadratic functions
I negative logarithm f (x) = − log x
I negative entropy plus negative logarithm: f (x) = x log x − log x

affine invariance: if f : R → R is s.c., then f̃ (y) = f (ay + b) is s.c.:

f̃ ′′′ (y) = a3f ′′′ (ay + b), f̃ ′′ (y) = a2f ′′ (ay + b)
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Self-concordant calculus

properties
I preserved under positive scaling U ≥ 1, and sum
I preserved under composition with affine function
I if g is convex with dom g = R++ and |g′′′ (x) | ≤ 3g′′ (x)/x then

f (x) = log(−g(x)) − log x

is self-concordant

examples: properties can be used to show that the following are s.c.
I f (x) = −∑m

i=1 log(bi − aT
i x) on {x | aT

i x < bi, i = 1, . . . ,m}
I f (X) = − log det X on Sn

++
I f (x) = − log(y2 − xTx) on {(x, y) | ‖x‖2 < y}
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Convergence analysis for self-concordant functions

summary: there exist constants [ ∈ (0, 1/4], W > 0 such that
I if _(x) > [, then f (x (k+1) ) − f (x (k) ) ≤ −W
I if _(x) ≤ [, then 2_(x (k+1) ) ≤

(
2_(x (k) )

)2

([ and W only depend on backtracking parameters U, V)

complexity bound: number of Newton iterations bounded by

f (x (0) ) − p★

W
+ log2 log2 (1/n)

for U = 0.1, V = 0.8, n = 10−10, bound evaluates to 375(f (x (0) ) − p★) + 6
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Numerical example

I 150 randomly generated instances of f (x) = −∑m
i=1 log(bi − aT

i x), x ∈ Rn

I ◦: m = 100, n = 50; �: m = 1000, n = 500; ^: m = 1000, n = 50

f (x(0) ) − p★
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25

I number of iterations much smaller than 375(f (x (0) ) − p★) + 6
I bound of the form c(f (x (0) ) − p★) + 6 with smaller c (empirically) valid
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Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

HΔx = −g

where H = ∇2f (x), g = ∇f (x)

via Cholesky factorization

H = LLT , Δxnt = −L−TL−1g, _(x) = ‖L−1g‖2

I cost (1/3)n3 flops for unstructured system
I cost � (1/3)n3 if H is sparse, banded, or has other structure
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Example

I f (x) = ∑n
i=1 ki (xi) + k0 (Ax + b), with A ∈ Rp×n dense, p � n

I Hessian has low rank plus diagonal structure H = D + ATH0A
I D diagonal with diagonal elements k′′

i (xi); H0 = ∇2k0 (Ax + b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3)

method 2 (block elimination): factor H0 = L0LT
0 ; write Newton system as

DΔx + ATL0w = −g, LT
0 AΔx − w = 0

eliminate Δx from first equation; compute w and Δx from

(I + LT
0 AD−1ATL0)w = −LT

0 AD−1g, DΔx = −g − ATL0w

cost: 2p2n (dominated by computation of LT
0 AD−1ATL0)
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Equality constrained minimization

I equality constrained smooth minimization problem:

minimize f (x)
subject to Ax = b

I we assume
– f convex, twice continuously differentiable
– A ∈ Rp×n with rank A = p
– p★ is finite and attained

I optimality conditions: x★ is optimal if and only if there exists a a★ such that

∇f (x★) + AT a★ = 0, Ax★ = b
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Equality constrained quadratic minimization

I f (x) = (1/2)xTPx + qTx + r, P ∈ Sn
+

I ∇f (x) = Px + q
I optimality conditions are a system of linear equations[

P AT

A 0

] [
x★
a★

]
=

[
−q
b

]
I coefficient matrix is called KKT matrix
I KKT matrix is nonsingular if and only if

Ax = 0, x ≠ 0 =⇒ xTPx > 0

I equivalent condition for nonsingularity: P + ATA � 0
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Eliminating equality constraints

I represent feasible set {x | Ax = b} as {Fz + x̂ | z ∈ Rn−p}
– x̂ is (any) particular solution of Ax = b
– range of F ∈ Rn×(n−p) is nullspace of A (rank F = n − p and AF = 0)

I reduced or eliminated problem: minimize f (Fz + x̂)

I an unconstrained problem with variable z ∈ Rn−p

I from solution z★, obtain x★ and a★ as

x★ = Fz★ + x̂, a★ = −(AAT )−1A∇f (x★)
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Example: Optimal resource allocation

I allocate resource amount xi ∈ R to agent i
I agent i cost if fi (xi)
I resource budget is b, so x1 + · · · + xn = b
I resource allocation problem is

minimize f1 (x1) + f2 (x2) + · · · + fn (xn)
subject to x1 + x2 + · · · + xn = b

I eliminate xn = b − x1 − · · · − xn−1, i.e., choose

x̂ = ben, F =

[
I

−1T

]
∈ Rn×(n−1)

I reduced problem: minimize f1 (x1) + · · · + fn−1 (xn−1) + fn (b − x1 − · · · − xn−1)
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Newton step

I Newton step Δxnt of f at feasible x is given by solution v of[
∇2f (x) AT

A 0

] [
v
w

]
=

[
−∇f (x)

0

]
I Δxnt solves second order approximation (with variable v)

minimize f̂ (x + v) = f (x) + ∇f (x)Tv + (1/2)vT∇2f (x)v
subject to A(x + v) = b

I Δxnt equations follow from linearizing optimality conditions

∇f (x + v) + ATw ≈ ∇f (x) + ∇2f (x)v + ATw = 0, A(x + v) = b

Convex Optimization Boyd and Vandenberghe 10.7



Newton decrement

I Newton decrement for equality constrained minimization is

_(x) =
(
ΔxT

nt∇2f (x)Δxnt

)1/2
=

(
−∇f (x)TΔxnt

)1/2

I gives an estimate of f (x) − p★ using quadratic approximation f̂ :

f (x) − inf
Ay=b

f̂ (y) = _(x)2/2

I directional derivative in Newton direction:

d
dt

f (x + tΔxnt)
����
t=0

= −_(x)2

I in general, _(x) ≠
(
∇f (x)T∇2f (x)−1∇f (x)

)1/2
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Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance n > 0.
repeat

1. Compute the Newton step and decrement Δxnt, _(x).
2. Stopping criterion. quit if _2/2 ≤ n .
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tΔxnt.

I a feasible descent method: x (k) feasible and f (x (k+1) ) < f (x (k) )
I affine invariant
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Newton’s method and elimination

I reduced problem: minimize f̃ (z) = f (Fz + x̂)
– variables z ∈ Rn−p

– x̂ satisfies Ax̂ = b; rank F = n − p and AF = 0

I (unconstrained) Newton’s method for f̃ , started at z(0) , generates iterates z(k)

I iterates of Newton’s method with equality constraints, started at x (0) = Fz(0) + x̂, are

x (k) = Fz(k) + x̂

I hence, don’t need separate convergence analysis
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Newton step at infeasible points

I with y = (x, a), write optimality condition as r(y) = 0, where

r(y) = (∇f (x) + AT a,Ax − b)

is primal-dual residual

I consider x ∈ dom f , Ax ≠ b, i.e., x is infeasible

I linearizing r(y) = 0 gives r(y + Δy) ≈ r(y) + Dr(y)Δy = 0:[
∇2f (x) AT

A 0

] [
Δxnt
Δant

]
= −

[
∇f (x) + AT a

Ax − b

]
I (Δxnt,Δant) is called infeasible or primal-dual Newton step at x
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Infeasible start Newton method

given starting point x ∈ dom f , a, tolerance n > 0, U ∈ (0, 1/2), V ∈ (0, 1).
repeat

1. Compute primal and dual Newton steps Δxnt, Δant.
2. Backtracking line search on ‖r‖2.

t := 1.
while ‖r(x + tΔxnt, a + tΔant)‖2 > (1 − Ut)‖r(x, a)‖2, t := Vt.

3. Update. x := x + tΔxnt, a := a + tΔant.
until Ax = b and ‖r(x, a)‖2 ≤ n .

I not a descent method: f (x (k+1) ) > f (x (k) ) is possible
I directional derivative of ‖r(y)‖2 in direction Δy = (Δxnt,Δant) is

d
dt

‖r(y + tΔy)‖2

����
t=0

= −‖r(y)‖2
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Solving KKT systems

I feasible and infeasible Newton methods require solving KKT system[
H AT

A 0

] [
v
w

]
= −

[
g
h

]
I in general, can use LDLT factorization

I or elimination (if H nonsingular and easily inverted):
– solve AH−1AT w = h − AH−1g for w
– v = −H−1 (g + AT w)
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Example: Equality constrained analytic centering

I primal problem: minimize −∑n
i=1 log xi subject to Ax = b

I dual problem: maximize −bT a + ∑n
i=1 log(AT a)i + n

– recover x★ as x★i = 1/(AT a)i

I three methods to solve:
– Newton method with equality constraints
– Newton method applied to dual problem
– infeasible start Newton method

these have different requirements for initialization

I we’ll look at an example with A ∈ R100×500, different starting points

Convex Optimization Boyd and Vandenberghe 10.16



Newton’s method with equality constraints
I requires x (0) � 0, Ax (0) = b
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Newton method applied to dual problem
I requires AT a (0) � 0
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Infeasible start Newton method
I requires x (0) � 0
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Complexity per iteration of three methods is identical

I for feasible Newton method, use block elimination to solve KKT system[
diag(x)−2 AT

A 0

] [
Δx
w

]
=

[
diag(x)−11

0

]
reduces to solving A diag(x)2ATw = b

I for Newton system applied to dual, solve A diag(AT a)−2ATΔa = −b + A diag(AT a)−11
I for infeasible start Newton method, use block elimination to solve KKT system[

diag(x)−2 AT

A 0

] [
Δx
Δa

]
=

[
diag(x)−11 − AT a

b − Ax

]
reduces to solving A diag(x)2ATw = 2Ax − b

I conclusion: in each case, solve ADATw = h with D positive diagonal
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Example: Network flow optimization

I directed graph with n arcs, p + 1 nodes
I xi: flow through arc i; qi: strictly convex flow cost function for arc i
I incidence matrix Ã ∈ R(p+1)×n defined as

Ãij =


1 arc j leaves node i

−1 arc j enters node i
0 otherwise

I reduced incidence matrix A ∈ Rp×n is Ã with last row removed
I rank A = p if graph is connected
I flow conservation is Ax = b, b ∈ Rp is (reduced) source vector

I network flow optimization problem: minimize
∑n

i=1 qi (xi) subject to Ax = b
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KKT system

I KKT system is [
H AT

A 0

] [
v
w

]
= −

[
g
h

]
I H = diag(q′′1 (x1), . . . , q′′n (xn)), positive diagonal
I solve via elimination:

AH−1ATw = h − AH−1g, v = −H−1 (g + ATw)

I sparsity pattern of AH−1AT is given by graph connectivity

(AH−1AT )ij ≠ 0 ⇐⇒ (AAT )ij ≠ 0
⇐⇒ nodes i and j are connected by an arc
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Analytic center of linear matrix inequality

I minimize − log det X subject to tr(AiX) = bi, i = 1, . . . , p
I optimality conditions

X★ � 0, −(X★)−1 +
p∑

j=1
a★j Ai = 0, tr(AiX★) = bi, i = 1, . . . , p

I Newton step ΔX at feasible X is defined by

X−1 (ΔX)X−1 +
p∑

j=1
wjAi = X−1, tr(AiΔX) = 0, i = 1, . . . , p

I follows from linear approximation (X + ΔX)−1 ≈ X−1 − X−1 (ΔX)X−1

I n(n + 1)/2 + p variables ΔX, w
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Solution by block elimination

I eliminate ΔX from first equation to get ΔX = X − ∑p
j=1 wjXAjX

I substitute ΔX in second equation to get
p∑

j=1
tr(AiXAjX)wj = bi, i = 1, . . . , p

I a dense positive definite set of linear equations with variable w ∈ Rp

I form and solve this set of equations to get w, then get ΔX from equation above
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Flop count

I find Cholesky factor L of X (1/3)n3

I form p products LTAjL (3/2)pn3

I form p(p + 1)/2 inner products tr((LTAiL) (LTAjL)) to get coefficent matrix (1/2)p2n2

I solve p × p system of equations via Cholesky factorization (1/3)p3

I flop count dominated by pn3 + p2n2

I cf. naïve method, (n2 + p)3
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Inequality constrained minimization

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

we assume
I fi convex, twice continuously differentiable
I A ∈ Rp×n with rank A = p
I p★ is finite and attained
I problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi (x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained
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Examples

I LP, QP, QCQP, GP

I entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi
subject to Fx � g, Ax = b

with dom f0 = Rn
++

I differentiability may require reformulating the problem, e.g., piecewise-linear minimization
or ℓ∞-norm approximation via LP

I SDPs and SOCPs are better handled as problems with generalized inequalities (see later)
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Logarithmic barrier

I reformulation via indicator function:

minimize f0 (x) +
∑m

i=1 I− (fi (x))
subject to Ax = b

where I− (u) = 0 if u ≤ 0, I− (u) = ∞ otherwise
I approximation via logarithmic barrier:

minimize f0 (x) − (1/t)∑m
i=1 log(−fi (x))

subject to Ax = b

I an equality constrained problem
I for t > 0, −(1/t) log(−u) is a smooth approximation of I−
I approximation improves as t → ∞
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I −(1/t) log u for three values of t, and I− (u)

u
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Logarithmic barrier function

I log barrier function for constraints f1 (x) ≤ 0, . . . , fm (x) ≤ 0

q(x) = −
m∑

i=1
log(−fi (x)), dom q = {x | f1 (x) < 0, . . . , fm (x) < 0}

I convex (from composition rules)
I twice continuously differentiable, with derivatives

∇q(x) =

m∑
i=1

1
−fi (x)

∇fi (x)

∇2q(x) =

m∑
i=1

1
fi (x)2 ∇fi (x)∇fi (x)T +

m∑
i=1

1
−fi (x)

∇2fi (x)

Convex Optimization Boyd and Vandenberghe 11.7



Central path
I for t > 0, define x★(t) as the solution of

minimize tf0 (x) + q(x)
subject to Ax = b

(for now, assume x★(t) exists and is unique for each t > 0)
I central path is {x★(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx★(t) is tangent to level curve of
q through x★(t)

c

x
★

x
★(10)
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Dual points on central path

I x = x★(t) if there exists a w such that

t∇f0 (x) +
m∑

i=1

1
−fi (x)

∇fi (x) + ATw = 0, Ax = b

I therefore, x★(t) minimizes the Lagrangian

L(x, _★(t), a★(t)) = f0 (x) +
m∑

i=1
_★i (t)fi (x) + a★(t)T (Ax − b)

where we define _★i (t) = 1/(−tfi (x★(t)) and a★(t) = w/t
I this confirms the intuitive idea that f0 (x★(t)) → p★ if t → ∞:

p★ ≥ g(_★(t), a★(t)) = L(x★(t), _★(t), a★(t)) = f0 (x★(t)) − m/t
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Interpretation via KKT conditions

x = x★(t), _ = _★(t), a = a★(t) satisfy
1. primal constraints: fi (x) ≤ 0, i = 1, . . . ,m, Ax = b
2. dual constraints: _ � 0
3. approximate complementary slackness: −_ifi (x) = 1/t, i = 1, . . . ,m
4. gradient of Lagrangian with respect to x vanishes:

∇f0 (x) +
m∑

i=1
_i∇fi (x) + AT a = 0

difference with KKT is that condition 3 replaces _ifi (x) = 0
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Force field interpretation

I centering problem (for problem with no equality constraints)

minimize tf0 (x) −
∑m

i=1 log(−fi (x))

I force field interpretation
– tf0 (x) is potential of force field F0 (x) = −t∇f0 (x)

– − log(−fi (x)) is potential of force field Fi (x) = (1/fi (x))∇fi (x)
I forces balance at x★(t):

F0 (x★(t)) +
m∑

i=1
Fi (x★(t)) = 0
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Example: LP
I minimize cTx subject to aT

i x ≤ bi, i = 1, . . . ,m, with x ∈ Rn

I objective force field is constant: F0 (x) = −tc
I constraint force field decays as inverse distance to constraint hyperplane:

Fi (x) =
−ai

bi − aT
i x

, ‖Fi (x)‖2 =
1

dist(x,Hi)

where Hi = {x | aT
i x = bi}

−c

−3c

t = 1 t = 3
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Barrier method

given strictly feasible x, t := t (0) > 0, ` > 1, tolerance n > 0.
repeat

1. Centering step. Compute x★(t) by minimizing tf0 + q, subject to Ax = b.
2. Update. x := x★(t).
3. Stopping criterion. quit if m/t < n .
4. Increase t. t := `t.

I terminates with f0 (x) − p★ ≤ n (stopping criterion follows from f0 (x★(t)) − p★ ≤ m/t)
I centering usually done using Newton’s method, starting at current x
I choice of ` involves a trade-off: large ` means fewer outer iterations, more inner

(Newton) iterations; typical values: ` = 10 or 20
I several heuristics for choice of t (0)
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Example: Inequality form LP
(m = 100 inequalities, n = 50 variables)

Newton iterations
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I starts with x on central path (t (0) = 1, duality gap 100)
I terminates when t = 108 (gap 10−6)
I total number of Newton iterations not very sensitive for ` ≥ 10
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Example: Geometric program in convex form
(m = 100 inequalities and n = 50 variables)

minimize log
(∑5

k=1 exp(aT
0kx + b0k)

)
subject to log

(∑5
k=1 exp(aT

ikx + bik)
)
≤ 0, i = 1, . . . ,m

Newton iterations
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Family of standard LPs
(A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances
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number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Phase I methods

I barrier method needs strictly feasible starting point, i.e., x with

fi (x) < 0, i = 1, . . . ,m, Ax = b

I (like the infeasible start Newton method, more sophisticated interior-point methods do not
require a feasible starting point)

I phase I method forms an optimization problem that
– is itself strictly feasible
– finds a strictly feasible point for original problem, if one exists
– certifies original problem as infeasible otherwise

I phase II uses barrier method starting from strictly feasible point found in phase I
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Basic phase I method

I introduce slack variable s in phase I problem

minimize (over x, s) s
subject to fi (x) ≤ s, i = 1, . . . ,m

Ax = b

with optimal value p̄★

– if p̄★ < 0, original inequalities are strictly feasible
– if p̄★ > 0, original inequalities are infeasible
– p̄★ = 0 is an ambiguous case

I start phase I problem with
– any x̃ in problem domain with Ax̃ = b
– s = 1 + maxi fi (x̃)
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Sum of infeasibilities phase I method

I minimize sum of slacks, not max:

minimize 1T s
subject to s � 0, fi (x) ≤ si, i = 1, . . . ,m

Ax = b

I will find a strictly feasible point if one exists

I for infeasible problems, produces a solution that satisfies many (but not all) inequalities

I can weight slacks to set priorities (in satifying constraints)
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Example

I infeasible set of 100 linear inequalities in 50 variables
I left: basic phase I solution; satisfies 39 inequalities
I right: sum of infeasibilities phase I solution; satisfies 79 inequalities
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Example: Family of linear inequalities

I Ax � b + WΔb; strictly feasible for W > 0, infeasible for W < 0
I use basic phase I, terminate when s < 0 or dual objective is positive
I number of iterations roughly proportional to log(1/|W |)
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Number of outer iterations

I in each iteration duality gap is reduced by exactly the factor `

I number of outer (centering) iterations is exactly⌈
log(m/(n t (0) ))

log `

⌉
plus the initial centering step (to compute x★(t (0) ))

I we will bound number of Newton steps per centering iteration using self-concordance
analysis
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Complexity analysis via self-concordance

same assumptions as on slide 11.2, plus:
I sublevel sets (of f0, on the feasible set) are bounded
I tf0 + q is self-concordant with closed sublevel sets

second condition
I holds for LP, QP, QCQP
I may require reformulating the problem, e.g.,

minimize
∑n

i=1 xi log xi
subject to Fx � g

−→ minimize
∑n

i=1 xi log xi
subject to Fx � g, x � 0

I needed for complexity analysis; barrier method works even when self-concordance
assumption does not apply
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Newton iterations per centering step
I we compute x+ = x★(`t), by minimizing `tf0 (x) + q(x) starting from x = x★(t)

I from self-concordance theory,

#Newton iterations ≤ `tf0 (x) + q(x) − `tf0 (x+) − q(x+)
W

+ c

I W, c are constants (that depend only on Newton algorithm parameters)

I we will bound numerator `tf0 (x) + q(x) − `tf0 (x+) − q(x+)

I with _i = _★i (t) = −1/(tfi (x)), we have −fi (x) = 1/(t_i), so

q(x) =
m∑

i=1
− log(−fi (x)) =

m∑
i=1

log(t_i)

so

q(x) − q(x+) =
m∑

i=1

(
log(t_i) + log(−fi (x+))

)
=

m∑
i=1

log(−`t_ifi (x+)) − m log `
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using log u ≤ u − 1 we have q(x) − q(x+) ≤ −`t
∑m

i=1 _ifi (x+) − m − m log `, so

`tf0 (x) + q(x) − `tf0 (x+) − q(x+)

≤ `tf0 (x) − `tf0 (x+) − `t
m∑

i=1
_ifi (x+) − m − m log `

= `tf0 (x) − `t

(
f0 (x+) +

m∑
i=1

_ifi (x+) + aT (Ax+ − b)
)
− m − m log `

= `tf0 (x) − `tL(x+, _, a) − m − m log `

≤ `tf0 (x) − `tg(_, a) − m − m log `

= m(` − 1 − log `)

using L(x+, _, nu) ≥ g(_, a) in second last line and f0 (x) − g(_, a) = m/t in last line
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Total number of Newton iterations

#Newton iterations ≤ N =

⌈
log(m/(t (0)n))

log `

⌉ (
m(` − 1 − log `)

W
+ c

)

`

N

1 1.1 1.2
0

1 10
4

2 10
4

3 10
4

4 10
4

5 10
4

N versus ` for typical values of W, c;
m = 100, initial duality gap m

t (0) n = 105

I confirms trade-off in choice of `
I in practice, #iterations is in the tens; not very sensitive for ` ≥ 10
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Polynomial-time complexity of barrier method

I for ` = 1 + 1/
√

m:

N = O
(√

m log
(
m/t (0)

n

))
I number of Newton iterations for fixed gap reduction is O(

√
m)

I multiply with cost of one Newton iteration (a polynomial function of problem dimensions),
to get bound on number of flops

I this choice of ` optimizes worst-case complexity; in practice we choose ` fixed and larger
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Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities
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Generalized inequalities

minimize f0 (x)
subject to fi (x) �Ki 0, i = 1, . . . ,m

Ax = b

I f0 convex, fi : Rn → Rki , i = 1, . . . ,m, convex with respect to proper cones Ki ∈ Rki

I we assume
– fi twice continuously differentiable
– A ∈ Rp×n with rank A = p
– p★ is finite and attained
– problem is strictly feasible; hence strong duality holds and dual optimum is attained

I examples of greatest interest: SOCP, SDP

Convex Optimization Boyd and Vandenberghe 11.32



Generalized logarithm for proper cone

k : Rq → R is generalized logarithm for proper cone K ⊆ Rq if:
I domk = int K and ∇2k(y) ≺ 0 for y �K 0
I k(sy) = k(y) + \ log s for y �K 0, s > 0 (\ is the degree of k)

examples
I nonnegative orthant K = Rn

+: k(y) = ∑n
i=1 log yi, with degree \ = n

I positive semidefinite cone K = Sn
+: k(Y) = log det Y , with degree \ = n

I second-order cone K = {y ∈ Rn+1 | (y2
1 + · · · + y2

n)1/2 ≤ yn+1}:

k(y) = log(y2
n+1 − y2

1 − · · · − y2
n) with degree (\ = 2)
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Properties
I (without proof): for y �K 0,

∇k(y) �K∗ 0, yT∇k(y) = \

I nonnegative orthant Rn
+: k(y) = ∑n

i=1 log yi

∇k(y) = (1/y1, . . . , 1/yn), yT∇k(y) = n

I positive semidefinite cone Sn
+: k(Y) = log det Y

∇k(Y) = Y−1, tr(Y∇k(Y)) = n

I second-order cone K = {y ∈ Rn+1 | (y2
1 + · · · + y2

n)1/2 ≤ yn+1}:

∇k(y) = 2
y2

n+1 − y2
1 − · · · − y2

n


−y1
...

−yn
yn+1


, yT∇k(y) = 2
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Logarithmic barrier and central path

logarithmic barrier for f1 (x) �K1 0, …, fm (x) �Km 0:

q(x) = −
m∑

i=1
ki (−fi (x)), dom q = {x | fi (x) ≺Ki 0, i = 1, . . . ,m}

I ki is generalized logarithm for Ki, with degree \i

I q is convex, twice continuously differentiable

central path: {x★(t) | t > 0} where x★(t) is solution of

minimize tf0 (x) + q(x)
subject to Ax = b
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Dual points on central path
x = x★(t) if there exists w ∈ Rp,

t∇f0 (x) +
m∑

i=1
Dfi (x)T∇ki (−fi (x)) + ATw = 0

(Dfi (x) ∈ Rki×n is derivative matrix of fi)
I therefore, x★(t) minimizes Lagrangian L(x, _★(t), a★(t)), where

_★i (t) =
1
t
∇ki (−fi (x★(t))), a★(t) = w

t

I from properties of ki: _★i (t) �K∗
i

0, with duality gap

f0 (x★(t)) − g(_★(t), a★(t)) = (1/t)
m∑

i=1
\i
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Example: Semidefinite programming
(with Fi ∈ Sp)

minimize cTx
subject to F (x) = ∑n

i=1 xiFi + G � 0

I logarithmic barrier: q(x) = log det(−F (x)−1)
I central path: x★(t) minimizes tcTx − log det(−F (x)); hence

tci − tr(FiF (x★(t))−1) = 0, i = 1, . . . , n

I dual point on central path: Z★(t) = −(1/t)F (x★(t))−1 is feasible for

maximize tr(GZ)
subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0

I duality gap on central path: cTx★(t) − tr(GZ★(t)) = p/t
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Barrier method

given strictly feasible x, t := t (0) > 0, ` > 1, tolerance n > 0.
repeat

1. Centering step. Compute x★(t) by minimizing tf0 + q, subject to Ax = b.
2. Update. x := x★(t).
3. Stopping criterion. quit if (∑i \i)/t < n .
4. Increase t. t := `t.

I only difference is duality gap m/t on central path is replaced by
∑

i \i/t
I number of outer iterations: ⌈

log((∑i \i)/(n t (0) ))
log `

⌉
I complexity analysis via self-concordance applies to SDP, SOCP
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Example: SOCP

(50 variables, 50 SOC constraints in R6)

Newton iterations
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Example: SDP

(100 variables, LMI constraint in S100)

Newton iterations
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Example: Family of SDPs
(A ∈ Sn, x ∈ Rn)

minimize 1Tx
subject to A + diag(x) � 0

n = 10, . . . , 1000; for each n solve 100 randomly generated instances
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Primal-dual interior-point methods

I more efficient than barrier method when high accuracy is needed

I update primal and dual variables, and ^, at each iteration; no distinction between inner
and outer iterations

I often exhibit superlinear asymptotic convergence

I search directions can be interpreted as Newton directions for modified KKT conditions

I can start at infeasible points

I cost per iteration same as barrier method
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12. Conclusions



Modeling

mathematical optimization
I problems in engineering design, data analysis and statistics, economics, management, …,

can often be expressed as mathematical optimization problems
I techniques exist to take into account multiple objectives or uncertainty in the data

tractability
I roughly speaking, tractability in optimization requires convexity
I algorithms for nonconvex optimization find local (suboptimal) solutions, or are very

expensive
I surprisingly many applications can be formulated as convex problems
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Theoretical consequences of convexity

I local optima are global
I extensive duality theory

– systematic way of deriving lower bounds on optimal value
– necessary and sufficient optimality conditions
– certificates of infeasibility
– sensitivity analysis

I solution methods with polynomial worst-case complexity theory
(with self-concordance)
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Practical consequences of convexity

(most) convex problems can be solved globally and efficiently
I interior-point methods require 20 – 80 steps in practice
I basic algorithms (e.g., Newton, barrier method, …) are easy to implement and work well

for small and medium size problems (larger problems if structure is exploited)
I high-quality solvers (some open-source) are available
I high level modeling tools like CVXPY ease modeling and problem specification
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How to use convex optimization

to use convex optimization in some applied context
I use rapid prototyping, approximate modeling

– start with simple models, small problem instances, inefficient solution methods
– if you don’t like the results, no need to expend further effort on more accurate models or

efficient algorithms
I work out, simplify, and interpret optimality conditions and dual
I even if the problem is quite nonconvex, you can use convex optimization

– in subproblems, e.g., to find search direction
– by repeatedly forming and solving a convex approximation at the current point
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Further topics

some topics we didn’t cover:
I methods for very large scale problems
I subgradient calculus, convex analysis
I localization, subgradient, proximal and related methods
I distributed convex optimization
I applications that build on or use convex optimization

these are all covered in EE364b.
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Related classes

I EE364b — convex optimization II (Pilanci)
I EE364m — mathematics of convexity (Duchi)
I CS261, CME334, MSE213 — theory and algorithm analysis (Sidford)
I AA222 — algorithms for nonconvex optimization (Kochenderfer)
I CME307 — linear and conic optimization (Ye)
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