
Exercises on Static Circuits

1. Modelling a compact disc player. The (left or right channel) output of a typical CD
player can be modeled as a voltage source that is able to produce voltage between −5V
and +5V and currents between −10mA and +10mA without distorting. The CD input
on a receiver can be modeled as a resistance of RΩ.

(a) For what values of R is the maximum output voltage of the CD player limited
by the ±5V voltage limit, and for what values of R is it limited by the ±10mA
current limit? (Typically, R exceeds 10kΩ.)

(b) For R = 10kΩ, find the maximum power in Watts that can be transferred from
the CD player (say, from the Left channel output) into the receiver (via the Left
channel CD input).

These values are typical of all consumer line-level audio electronics.

2. Connecting two diodes. Consider two diodes characterized by the exponential model
i = i0(e

v/vT − 1), with i0 = 10−14A and vT = 26mV.

(a) Suppose we form a two-terminal circuit element by connecting the diodes in par-
allel but oppositely oriented, as shown below:

PSfrag replacementsv

i

Give the v – i relation for this element and sketch it, or plot it using Matlab.
What is the slope of this curve at v = i = 0? Can you think of any practical use
for this element?

(b) Suppose we form a two-terminal circuit element by connecting the diodes in series
but oppositely oriented, as shown below:

PSfrag replacements
v

i

Give the v – i relation for this element and sketch it, or plot it using Matlab.
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3. A typical 10MΩ 1/8W resistor is 7mm long. As the voltage across it is increased, which
is likely to happen first:

(a) the 1/8W power rating is exceeded, or

(b) an arc forms from lead to lead?

4. Consider the circuit below:

PSfrag replacements

1V

iin 1Ω

2Ω RL = 2Ω

(a) Find iin.

(b) What fraction of the power delivered by the voltage source is dissipated in resistor
RL?

5. Deriving the v – i relation for a light bulb. Many circuit element models are derived
from physics, e.g., semiconductor physics, E&M, etc. In this problem you use some
simple physics to derive an electrical model of an ordinary light bulb.

An incandescent lamp works by heating up its filament to a temperature at which the
net heat lost from the filament equals the electrical power input pin = vi. The net heat
lost is a function of the filament temperature T , say, f(T ) (in units of Watts, with T
in degrees K). The function f increases with T and satisfies F (Tamb) = 0 where Tamb

is the ambient temperature (usually 300◦K), i.e., at ambient temperature, no net heat
is lost from the filament. The filament temperature of a typical incandescent lamp
operating at its standard voltage is between 2800◦K and 3400◦K.

A simple thermal model that includes only radiated heat is f(T ) = α(T 4 − T 4
amb)

where α > 0 is a constant that depends on the filament (surface area, emissivity).
More complicated thermal models would include terms for conduction and convection,
the effects of emissivity varying with temperature, and so on.

Electrically, the filament is a resistor, i.e., v = Ri. Because of the extreme variation in
filament temperature, however, we must take into account the variation in R with T .
it turns out that the filament resistance is accurately modeled by R = R0 +c(T −Tamb)
where R0 is the filament resistance at ambient temperature and c > 0 is a constant
called the resistance temperature coefficient.

When you first turn on an incandescent lamp, its resistance is R0 since its filament
temperature starts at T = Tamb. This resistance is lower than its steady-state or
equilibrium value (which it reaches in a fraction of a second, as the filament reaches its
operating temperature). Hence when you first turn on an incandescent lamp, a larger
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current flows (for a short period) than you’d expect from the power rating of the lamp.
This is called the cold inrush current, and it is an important practical effect. The cold
inrush current is often a factor of eight or more times the steady-state current.

From the relations given above we can derive the (steady-state) v – i relation for an
incandescent lamp. First verify that the relation is symmetric, i.e., if (v, i) lies on the
curve, then so does (−v,−i). So we will assume that v and i are positive. Now show
that

i =

(

f(T )

R0 + c(T − Tamb)

)1/2

, v = (f(T )(R0 + c(T − Tamb)))
1/2 .

These equations parametrize the v–i curve by the parameter T ; by varying T from
Tamb to the maximum filament temperature we can trace out the v–i curve (by hand,
or using Matlab, etc.).

Now consider a typical 125V/100W lamp that operates at 3000◦K (when v = 125V).
The cold inrush current is eight times the operating current. You can use the simplified
f described above.

(a) Use Matlab to plot the v–i curve of this lamp. Verify that it has the general shape
shown in the notes.

(b) What voltage results in a power that is one-half the rated power, i.e., 50W?
Compare this with the voltage that yields half-power for a (linear) resistor that
dissipates 100W at 125V.

(c) As we discussed in class, every model has limits of applicability. Briefly decribe
some of the limits of applicability for the model of a 125V/100W lamp found
above. For example, do you think that the model predicts the current accurately
for v = 400V? Does it accurately predict the current when the voltage is rapidly
varying? Roughly how accurately would you expect the model to predict i given
v, over the range |v| ≤ 125V? (i.e., 0.001%, 1%, or 10%?) You can give educated
guesses as your answers.

6. Consider the circuit below:

PSfrag replacements

2V −1A20Ω 5Ω

1Ω

(a) Find the power pvs delivered by the voltage source.

(b) Find the power pcs delivered by the current source.
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7. Does current takes the path of least resistance? The idea of the phrase “current takes
the path of least resistance” is essentially the approximation R1‖R2 ≈ min{R1, R2},
i.e., the parallel connection of two resistors yields a resistance about equal to the
minimum of the two resistances. Of course this approximation is never exact. But how
far off can it be?

(a) Show that whenever R1, R2 are positive we have

1

2
min{R1, R2} ≤ R1‖R2 ≤ min{R1, R2}.

Thus, the approximation is never off by more than 100%.

(b) Find an example where the approximation yields a 100% error.

(c) Find the conditions on R1 and R2 such that the approximation R1‖R2 ≈ min{R1, R2}
is accurate to 10%.

(d) Use Matlab to plot the relative error of the approximation as a function of the
resistance ratio R2/R1 (assuming both are positive). The relative error is given
by

|min{R1, R2} − R1‖R2|
|R1‖R2|

.

8. Zener diode voltage regulator. The circuit below shows a simple voltage regulator based
on a zener diode with zener voltage vz. In this circuit, the voltage across the load, vL,
is equal to vz over a range of input supply voltage vsupp and a range of load current iL.
Thus, the voltage vL has been regulated against variations in supply voltage and load
current. The resistor Rser is called the series resistor.

PSfrag replacements
Rser

vsupp

isupp

vL

iL

In this problem you will explore the design of such a regulator. You are given a
maximum load current and a range of supply voltages, i.e., you know imax, vmin, and
vmax such that:

0 ≤ iL ≤ imax, vmin ≤ vsupp ≤ vmax.

You may assume that the zener diode is described by the ideal zener diode characteristic
shown on page ?? of the notes.
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(a) First assume the circuit is regulating, i.e., vL = vz. Find expressions for the power
dissipated in the series resistance, the zener diode, and the load, in terms of Rser,
iL, vsupp, and vz. Given the voltage source and load current ranges above, find the
maximum power that can be dissipated in the zener diode. Repeat for the series
resistor.

Note: The answers to these questions are used to properly size the diode and
the resistor. A component that can safely dissipate a large power (e.g., 1W) will
cost more and be larger than one that handles a smaller power (say, 1/8W), so
it’s desirable to find the smallest safe power-rating for a component.

(b) Now we consider the conditions under which vL = vz (which you assumed in part
(a)). Show that this happens provided

vsupp − iLRser ≥ vz.

What conditions on Rser guarantee that we will have vL = vz over the full range
of vsupp and iL given above?

(c) Design a zener diode voltage regulator that operates for load currents between
0 and 100mA at vL = 15V, for supply voltages ranging between 18V and 25V.
(By design, we mean: find Rser and say what power ratings the resistor and diode
must have.) Your design should make the power rating of the series resistor and
diode as small as possible.

Note: these values are realistic.

In this problem, we investigate the design of a proper voltage regulator using a zener
diode. The problem walks us though the design of a circuit that keeps the voltage on
the load constant even while the source voltage and load current change. Also, bounds
on the source voltage and load current provide a means to design the circuit with the
least expensive series resistor and diode by sizing them appropriately.PSfrag replacements

Rser

vsupp

isupp

vL

iL

vd

id

(a) First, we assume the zener diode is operating at the zener voltage, vd = vz, and
develop expressions for the power dissipation in the specified circuit elements.

• Series Resistor: The voltage across the resistor is the source voltage minus
the zener/load voltage. Using p = v2

R
,

pser =
(vsupp − vz)

2

Rser

.
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• Zener Diode: Let the voltage across the diode be vz = vL and let the current
through the diode be id = isupp − iL. isupp can be found by applying Ohm’s
Law:

isupp =
vsupp − vz

Rser

,

so that,

pd = vz [isupp − iL] = vz

[

vsupp − vz

Rser

− iL

]

.

• Load: The power transferred to the load is simply:

pL = vziL.

We can now find the maximum possible power dissipated in the diode and the
series resistance by using the limits on load current and supply voltage given in
the problem description. The maximum power dissipated in both devices occurs
when the supply voltage is at a maximum (vsupp = vmax) and when the load
current is at a minimum (iL = 0).

max
vsupp,iL

pser =
(vmax − vz)

2

Rser

,

max
vsupp,iL

pd = vz

[

vmax − vz

Rser

]

.

(b) The v–i curve of the ideal zener diode appears on page 2-6 of the notes. The ref-
erence polarity for the curve in the notes is not the same as the polarity definition
for the diode in this solution (i.e. vd and id). With these reference polarities, the
zener diode operates at its zener voltage when the voltage drop across the diode
equals vz and the current through the diode is positive:

vd = vz = vsupp − isuppRser,

id ≥ 0.

Since the current flowing down through the diode is positive, we can conclude
that isupp ≥ iL, so that

vsupp − iLRser ≥ vsupp − isuppRser = vz.

Hence, the load voltage is regulated at vz when,

vsupp − iLRser ≥ vz.

Solving for the series resistance, we determine an upper bound on the possible
values for Rser such that the above equation holds:

Rser ≤
vsupp − vz

iL
.
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Given the variations in supplied voltage and load current, we need to find the
most conservative bound on Rser. This translates to finding the smallest upper
bound:

Rser ≤ min
{

vsupp − vz

iL

}

=
vmin − vz

imax

.

In other words, for any variations in vsupp and iL, a series resistance that holds
under the above condition will keep the voltage regulator working.

(c) Given values for imax,vmin, and vmax, we can find the range of possible series
resistances using the result in (b):

Rser ≤
18 − 15

.1
= 30Ω

Therefore, any resistance less that 30Ω will work. However, by examining the
results in part (a), one can see that the maximum power dissipated in the diode
and resistance is less when Rser is large. Hence, we choose Rser = 30Ω to minimize
the necessary power rating:

max pz = 5W

max pser = 3.33W

9. An inverting amplifier using an op-amp. This problem concerns the two op-amp cir-
cuits shown below:

PSfrag replacements

vin

vout

iin 1kΩ 10kΩ

1kΩ

Circuit A

Vo

PSfrag replacements

vin

vout

iin 1kΩ 10kΩ

1kΩ

Circuit B
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The only difference is the orientation of the input terminals on the op-amp.

(a) Using the ideal op-amp model (page ?? of lectures notes), find iin and vout in
circuit (A).

(b) Repeat for circuit (B).

(c) A more realistic model of an op-amp is a VCVS with a gain of 105, i.e., vout = 105ṽ
where ṽ is the voltage difference across the + and − input terminals of the op-amp.
Using this op-amp model, find iin and vout in the circuit (A).

(d) Repeat for circuit (B).

(e) With a real op-amp, the circuit (A) will work (meaning, iin and vout predicted by
the ideal op-amp model (a) will be very close to the actual current and voltage
in the real circuit) while the circuit (B) won’t. Do either of the op-amp models
considered in this problem predict this?

10. Reflected resistance seen through a transformer. Consider the circuit shown below:
PSfrag replacements

v

i

R

A

B 1 : n

Show that v = iReff for some appropriate Reff (the subscript stands for “effective”).

This means that this circuit, from the point of view of the terminals A and B, is
electrically equivalent to a resistor of value Reff . Reff is often called the “reflected
resistance of R seen through the transformer.”

11. Sketch the v – i characteristic of the two-terminal element below. The diode is char-
acterized by the ideal diode model.

PSfrag replacements

v

i

1Ω

1Ω

12. The op-amp in the circuit below is characterized by the ideal op-amp model. Find i1,
i2, and vout. What does this circuit do? Can you think of a practical application of
this circuit?
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v1 v2 vout

i1

i2

10kΩ

5kΩ
5kΩ

10kΩ

5kΩ

13. This problem concerns the two related circuits shown below.

(a) Find the Thevenin voltage vth and Thevenin resistance Rth of the circuit shown
below, with respect to the terminals A and B. (Your answers should be as explicit
as possible, but may contain the parameter vsupp.)

PSfrag replacements

A

B

vsupp 5kΩ

10kΩ

2.5kΩ

id
vd

(b) Now consider the circuit below. The vacuum tube rectifier is characterized by

id =

{

kv
3/2
d vd ≥ 0
0 vd < 0

where k = 0.3 mA/V3/2. (Please note the units: id is in milliamps and vd is in
volts.)

Find the value of vsupp that results in id = 30mA.
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PSfrag replacementsvsupp 5kΩ

10kΩ

2.5kΩ

id

vd

(c) Let vsupp have the value you found in part (b), so that id = 30mA. Find the
power pres dissipated in the 2.5kΩ resistor. and the power psupp delivered by the
voltage source.

(d) Suppose that vsupp is 5 volts less than the value you found in part (b). Give an
estimate of vd. Explain what you are doing.

14. Bias and small signal analysis of a MOS amplifier. This problem concerns the MOS
amplifier circuit shown at the top of page ?? of the notes, except we do not assume
that vin ≈ 4V. The MOS transistor characteristic is given on page ?? of the notes,
with parameters vth = 2V, β = 2mA/v2.

(a) Bias calculation. Determine what vin must be so that vout = 2V.

(b) Forming a linearized model. Determine the linearized model of the MOS transistor
accurate near the bias condition found in part (a). Give equations describing the
approximation and also a circuit model of the approximation.

(c) Small signal analysis. Find an expression for vout in terms of vin that is accurate
for vin near the bias value found in part (a).

15. Amplifiers. The schematic diagram below shows a general model of an (ideal, linear)
amplifier. The two terminals on the left are called the input port and the two terminals
on the right are called the output port. An amplifer is characterized by its input
resistance Rin, its voltage gain a, and its output resistance Rout.

PSfrag replacements

vin voutRin avin
Rout
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Note that when Rout = 0 and Rin = ∞, the amplifier reduces to a VCVS. Also note
that the voltage and current at the input port is completely unaffected by the voltage
and current at the output port.

Here are some typical values for amplifiers:

• For a line-level audio amplifier, we might have Rin ≈ 10kΩ, Rout ≈ 100Ω or less,
and a gain in the range 1 to 10.

• For an audio power amplifier (i.e., one that accepts a line-level input and drives
a speaker), we might have Rin ≈ 10kΩ, Rout ≈ 0.01Ω, and a gain in the range 10
to 100. Note: the output resistance of an audio power amplifer is not 4Ω or 8Ω.

• For high-frequency (e.g., video) circuits, we might have Rin = Rout = 50Ω or 75Ω
and a gain in the range of 1 to 10.

• A typical real op-amp is pretty well modeled by an amplifier with Rin ≈ 100kΩ,
Rout ≈ 100Ω, and a gain of about 105. (This model gives better predictions
than the ideal op-amp model, but is considerably harder to work with for hand
analysis.)

(a) Suppose we hook up two amplifiers in cascade, as shown below.
PSfrag replacements

vin vout

Amplifier 1 Amplifier 2
inputinput outputoutput

Amplifier 1 has parameters R
(1)
in , R

(1)
out, and a(1); Amplifier 2 has parameters R

(2)
in ,

R
(2)
out, and a(2).

Show that the resulting four-termimal element (enclosed by the dotted box) is
equivalent to a single amplifer. Find the parameters of the equivalent amplifer
(i.e., Rin, Rout and gain).

(b) Consider a video amplifier with Rin = Rout = 75Ω and a voltage gain of 10. Sup-
pose the amplifier is driven by a voltage source (i.e., a voltage source is connected
across the input terminals), and the output terminals are connected to a load
resistor which is 75Ω. Find the power gain of the amplifier, which is defined as
the ratio of the power flowing out of the output port to the power flowing into
the input port.

(c) The power gain of an amplifier depends on the load resistance. Find an expression
for the power gain of an amplifier in terms of the parameters Rin, Rout, a, and
the load resistance RL. What load resistance maximizes the power gain? The
resulting power gain is called the maximum power gain of the amplifier. Give an
expression for maximum power gain in terms of Rin, Rout, and a.
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16. Grounded (single-ended) amplifiers. In the amplifier model described in problem 15,
no current can flow between the input terminals and the output terminals, i.e., the
input terminals and output terminals form two separate “ports”. Sometimes this is
called a “floating” or “isolating” amplifier to emphasize this fact.

Many real amplifiers are better modeled by the circuit shown below:

PSfrag replacements

vin voutRin avin
Rout

Note that you can make a floating amplifier into a single-ended or grounded amplifier
by connecting its input and output − terminals together.

Are floating and grounded amplifiers electrically equivalent? If so, explain why. If
not, find a simple circuit that contains an amplifier, and behaves differently when the
amplifier is floating or grounded.

17. (a) Find the Thevenin equivalent for the circuit below:

PSfrag replacements

1V

2Ω 1Ω

2Ω

2Ω

(b) Find v and i in the circuit below. The diode is characterized by the ideal diode
model.

PSfrag replacements

1V v

i

2Ω 1Ω

2Ω

2Ω

18. Maximum power from a source with nonlinear v – i characteristic. Suppose that the
v – i characteristic of a battery is given by v = 10 − 5i − 5i2 for 0 ≤ i ≤ 1, where the
current reference direction for i is out of the positive battery terminal. (For batteries,
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power supplies, and the output of power amplifiers, it is common to use these reference
polarities, which are opposite the normally used ones. In this case p = vi is the power
delivered by or drawn from the battery or power supply.)

(a) Sketch the v – i characteristic of this battery, or use Matlab to plot it.

(b) Give an approximation of the v – i characteristic valid for small currents. Show
a Thevenin circuit that has the same v – i characteristic as your approximation.

(c) If the battery is terminated in a resistance whose value is equal to the Thevenin
resistance found in part (b), what is the power drawn from the battery?

(d) Find the resistance value that maximizes the power drawn from the battery. Find
the corresponding voltage, current, and power. Verify your answer by plotting
some constant power curves (with dotted line type) on top of the v – i character-
istic.

(e) Find an approximate Thevenin equivalent of the battery that is valid near the
voltage and current found in part (d).

(f) Conjecture a generalization of the maximum power transfer theorem to nonlinear
v – i characteristics.

19. Find a value of vs such that the lamp in the circuit below dissipates 1.5W. The lamp
characteristic is plotted at right. You can make reasonable estimates from the plot.

PSfrag replacements

vs

2Ω

vl

il

PSfrag replacements

vl (volts)

il (amps)

−2 −1 +1 +2

+2

+1

−1

−2

20. In the circuit below, vin can vary over the range ±5V.

What is the largest (magnitude) output current the op-amp must supply? I.e., what
is the maximum value of |iout| for −5V ≤ vin ≤ 5V?

(This is an important practical question, since real op-amps have output current limits.
A typical value is ±10mA.)

You can use the ideal op-amp model.
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vin

iout

1kΩ

1kΩ

1kΩ

21. In the circuit shown below, the voltage source delivers power psrc and the load resistor
RL dissipates power pL.

PSfrag replacements

10V

4Ω 4Ω

10Ω RL = 10Ω

Find the power transfer efficiency, i.e., pL/psrc.

22. The diode in the circuit below is characterized by the exponential model id = i0(e
vd/vt−

1), with i0 = 10−14A and vt = 26mV.

You can use the ideal model for the op-amp. The input voltage vin varies from 10mV
to 10V (always positive).

PSfrag replacements

vin vout

10kΩ

vd
id

Express vout as an explicit function of vin.
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23. An NPN transistor is described by the model

ib = i0e
vbe/vt , ic = β(1 + vce/va)ib

where i0 = 10−14A, vt = 26mV, β = 100, and va = 50V, and the terminal currents
and voltages are defined below. (This model captures the ‘Early effect’, in which ic
depends more strongly on vce than the Ebers-Moll model predicts. The parameter va

is called the ‘Early voltage’.)

PSfrag replacements
c

b

e

vce

vbe

ib

ic

Find the linearized circuit model of this transistor at the bias condition vbias
be = 0.7V,

vbias
ce = 10V.

Express the linearized model as a circuit. Your circuit may contain voltage and current
sources, resistors, and dependent sources. Be sure to clearly label the terminals c, b,
and e, and to indicate the values of elements (e.g., resistance, transconductance) in
your circuit.

24. The circuit below shows an amplifier (in the dashed-line box) with input resistance 1kΩ,
output resistance 0Ω, and gain 10, connected in a ‘negative feedback’ configuration
(since the output is connected to the − input terminal).

PSfrag replacements
v 10v1kΩ

A

B

Find the Thevenin resistance Rth looking into the terminals A and B.

25. Conservation of power. Consider the circuit shown below.
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−1V

2A

−1A

1Ω

3Ω

Determine the power dissipated in each element. Which elements are supplying (pos-
itive) power? Which elements are absorbing (positive) power? Verify that the total
power being supplied (by the elements supplying positive power) is equal to the total
power absorbed (by the elements absorbing positive power).

You must explain the steps in your circuit analysis.

26. v – i curve tracer. The following is a circuit used for curve tracing:

PSfrag replacements

vdrive

vdev

vvert

vhoriz

idev

1kΩ

10kΩ 10kΩ

10kΩ

10kΩ

The box is the device to be tested, sometimes called the ‘device under test’ (D.U.T.).
The output voltage vvert is connected to the vertical deflection input of the oscilliscope,
and the output voltage vhoriz is connected to the horizontal deflection input of the
oscilliscope. The oscilliscope is set to 1V per division, horizontal and vertical. The
voltage source vdrive is used to sweep out the v – i curve. During the demo it had the
form vdrive(t) = 10 sin 300t (approximately).

To analyze this circuit you can assume the op-amps are ideal.

Express the output voltages vvert and vhoriz in terms of the device voltage vdev, device
current idev, drive voltage vdrive, and any other relevant parameter. Describe the steps
in your analysis of this circuit.
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Explain how this circuit, connected to the oscilliscope as described, can be used to plot
the v — i curve of the device. What are the resulting axis sensitivities (in V and A
per oscilliscope division) and total range?

27. Extracting maximum power from a battery.

Consider a battery that can be modeled using a Thevenin equivalent.

When a 10Ω load resistance is connected to the battery, as shown at left below, 10W
is dissipated in the load resistor.

When the battery is connected to a 100mA charger, as shown at right below, the
voltage across the battery terminals is 13V.

PSfrag replacements

batterybattery charger10Ω 13V

100mA

A load resistance R is connected to the battery. Find the value of R that results in
maximum power dissipation in the load resistor.
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Exercises on Static Circuits: Part II

1. This problem concerns the circuit shown below, with the branches oriented and labeled
b1,. . . , b9, the nodes labeled 1 , . . . , 5 , and the voltage sources given specific numeric
values. In addition, the op-amp has been replaced by a VCVS with a gain of α = 100,
with a sense branch b6 and an output branch b7.
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10kΩ

10kΩ

5kΩ 5kΩ

5kΩ v6 αv6

3V −5V

b1

b2

b3

b4

b5

b6

b7

b8

b9

1

2

3

4

5

(a) Find the reduced incidence matrix for this circuit.

(b) Write out KCL, KVL, and the branch relations for this circuit. Express these
circuit equations in the form of a giant matrix equation Fx = g where F is a large
square matrix and x is a big vector consisting of i1, . . . , i9, v1, . . . , v9, e1, . . . , e5. In
writing down this big matrix, you don’t need to explicitly write zeros. What
percentage of the entries in the big matrix F are zero?

(c) Solve the equations you found in part 1b, i.e., find the solution vectors i, v, and
e. You can do this by hand (it’s not so bad!) or using Matlab.

(d) Verify that the matrix equations describing KCL and KVL hold: Ai = 0 and
v = AT e.

(e) Which branches are dissipating (absorbing) power and which branches are sup-
plying power?

(f) Calculate the quantity p = vT i. Can you explain the answer that you get?

2. The reduced incidence matrix of a circuit is:

A =







1 1 0 0 0
0 −1 1 1 0
0 0 0 −1 1





 .
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The branch relations are
















−1 0 0 0 0
0 −2 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 −3

















i +

















0 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1

















v =

















1
0
0
4
0

















.

Draw a conventional schematic diagram of this circuit. Label the branches and nodes,
and show the orientation of the branches. Give the numerical values of the elements,
e.g., give resistor values in ohms, the value in volts of any voltage source, etc.

3. Consider the circuit below:
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(a) Label the nodes and branches and assign orientations. Find the reduced node
incidence matrix A.

(b) Write out the equations that describe this circuit. Give these equations in explicit
form, i.e., as a set of 12 equations in 12 unknowns. Also give the equations as
one large matrix equation, with a 12 × 12 matrix. You can leave entries in the
matrix that are zero as blank.

(c) Formulate the node voltage equations in the form Y e = ĩ. Solve them.

(d) You know that if both of the current sources double in value, then all node
voltages, branch voltages and branch currents will also double. Suppose that
the three resistors in this circuit double in value. What happens?

4. A generalization of power conservation. Consider a circuit with b branches and n
nodes, with associated reference directions assigned. As in the notes, v denotes the
vector of branch voltages, i denotes the vector of branch currents, and e denotes the
vector of node potentials (excluding the reference node). We saw in the notes that no
matter what the branch elements are, we always have vT i = 0, i.e., the total net power
dissipated in the circuit is always zero.
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Now suppose we change one or more of the elements in this circuit, but we do not change
the topology (i.e., which branches are connected to which nodes, in what orientation).
For example, we might substitute a diode for a voltage source, change the value of
some resistors, and so on. We’ll suppose that this modified circuit has a solution; let
ṽ denote the branch voltages, ĩ denote the branch currents, and ẽ denote the node
potentials in this modified circuit. We know that ṽT ĩ = 0, i.e., the modified circuit
also satisfies power conservation.

This modified circuit can be quite different from the original circuit, so there is no
reason to think there is any relation at all between the circuit variables in the first
circuit (v, i, and e) and the circuit variables in the second circuit (ṽ, ĩ, and ẽ).

Remarkably, there is a relation, called Tellegen’s theorem. It is: ṽT i = 0. Note that
ṽT i looks very much like vT i and also ṽT ĩ, both of which we know to be zero by
power conservation. But Tellegen’s theorem relates the voltages in one circuit with the
currents in another!

(a) Prove Tellegen’s theorem, i.e., explain why it is true.

(b) First, find the vector i of branch currents in the circuit of problem 3. Now consider
the circuit below, which is the same as the one problem 3 except that an ideal
diode is substituted for the 2Ω resistor.
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Find ṽ, the vector of branch voltages for this modified circuit. Use the node and
branch labels and reference directions that you used in problem 3.

Verify that Tellegen’s theorem holds.

5. Newton-Raphson procedure for a resistor-diode circuit. Consider the nonlinear circuit
shown below:
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The diode is given by the exponential model with i0 = 10−14A and vT = 26mV. We
will try to find v and i using the Newton-Raphson method.

(a) We start with the initial guess v(0) = 0.7V. Form the linearized model of the diode
accurate near v ≈ 0.7V, and show the circuit that results when you substitute
this linearized model into the circuit above.

(b) Solve the resulting circuit, i.e., calculate the voltage that appears across the
linearized model of the diode. Call this voltage v(1) (the superscript stands for “v
after one iteration”).

(c) Do one more iteration of the Newton-Raphson method to find v(2).

(d) Do one more iteration of the Newton-Raphson method to find v(3).

(e) Now let’s see what happens if we start with a very bad initial guess. Repeat parts
(a-c) starting with the initial guess v(0) = −1.0V. Note the values of current that
you encounter. Can you guess what will happen if you keep going?

6. A linear circuit solver. Describe, in rough outline form, the code needed to make a
version of SPICE that analyzes circuits that contain linear elements and sources. You
may assume that you have a function (subroutine) that computes the solution x of the
linear equation Fx = g. (Since this is a vague problem, answers ranging from one page
of verbal description to complete C source will be accepted.)

7. Design a circuit with one op-amp and five resistors that produces output voltage vout =
v1 + 2v2 − 3v3 at the output of the op-amp (with respect to the ground or reference
node, to which the bottom output terminal of the op-amp is connected). v1, v2, and v3

are the voltages of three voltage sources that have negative terminals grounded (i.e.,
connected to the reference node). You may use the ideal op-amp model.

8. Sensitivity of load power to variations in load resistance. Suppose we have a load
resistor RL which we would like to dissipate pdes watts. (The load resistor might be a
heating element in some experiment.) One simple way to do this is to connect it to a

current source of
√

pdes/RL amps.

We will consider an important practical consideration: variation in RL. Suppose that
RL varies ±10%, i.e., 0.9Rnom ≤ RL ≤ 1.1Rnom, where Rnom is the nominal value of the
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load resistance. Such variation can arise in various ways. For example, when many load
resistors are manufactured, the individual load resistors might have values that vary
±10% from the nominal value Rnom. As another example, the resistance of the load
resistor might depend on some environmental variables such as ambient temperature
that we cannot control.

Now suppose we have a circuit consisting of linear elements, sources, and the load
resistor RL. Suppose that when RL = Rnom, the desired power pdes is dissipated in RL.
Of course, the power dissipated in the load resistor will depend on the value of RL;
hence as RL varies ±10%, the power dissipated in it will also vary by some amount. As
an example, consider the simple circuit described above, i.e., a current source of value
√

pdes/Rnom hooked up to the load resistor. In this circuit, as the load resistor varies

±10%, the power dissipated in it also varies ±10% (which is not too surprising!).

We’d like to design a circuit such that the variation in power dissipated, as the load
resistance varies ±10%, is as small as possible. Thus, our circuit will have the nice
property of minimizing the effect of ±10% variations in load resistance on the power
dissipated in it.

The problem is: design such a linear circuit. Fully explain the reasoning behind your
design and all steps of your calculations. You do not have to find the absolute best
circuit; a circuit that comes very close will do. Many circuits work well, so try to find
a simple one. For the circuit you design, give the percentage variation in the power
dissipated in the load resistor as the load resistor varies ±10%. Since I’ve already
described a circuit in which this variation is ±10%, your circuit should have a smaller
varation. The values of elements in your circuit cannot depend on RL, but can depend
on Rnom.

Note: this is not an easy problem; you won’t find the answer (directly) in the notes.
For experts, we can pose a further problem: can you design a circuit containing non-
linear elements that outperforms the circuit you designed above?

9. Superposition for powers? Consider the circuit shown below:
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We want to find the power p that will be dissipated in the 1Ω resistor with i1 = 3A
and i2 = 1A. Unfortunately we can only find two 1A current sources in the laboratory.
The resistor values R1, R2, and R3 are not known.
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Three experiments are performed. In the first experiment, the source i1 is turned on
(i1 = 1A), i2 is turned off (i2 = 0A), and the power dissipated in the 1Ω resistor is
measured to be 0.25W. In the second experiment, i1 is turned off, i2 turned on, and
the power dissipated in the 1Ω resistor is 0.25W. In the last experiment, i1 is turned
on, i2 is also turned on but in reverse direction (i2 = −1A) and the power dissipated
in RL is measured to be 0W. The following table summarizes these experiments:

Experiment i1 i2 Pwr. diss. in 1Ω res.
1 1 0 0.25
2 0 1 0.25
3 1 −1 0.00
— 3 1 p

(The bottom line of the table shows the experiment we’d perform if we could find a
3A current source.)

Can the power p be determined from these experiments? If your answer is yes, find
the power p. If your answer is no, then answer this further question: if we performed
a fourth experiment with i1 = i2 = 1A, could the power p be determined?

Note: Of course this problem is unlikely to arise in practice, but it does involve some
important concepts so understanding it is worthwhile.

10. Consider the circuit below:
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(a) Find an explicit expression for the power p supplied by the 2A current source. (is
and vs may appear in your answer.)

(b) Now suppose that you can adjust is over the range 0A to 1A, and vs over the
range 0V to 5V. Find the settings of is and vs that maximize the power supplied
by the 2A current source.
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11. Find the power dissipated in the 3Ω resistor in the circuit below:
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12. (a) Find the Thevenin equivalent of the circuit shown below.
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(b) Find the power p dissipated in the 3Ω resistor at the right in the circuit below:
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(c) Find the voltage vz that appears across the zener diode in the circuit below.
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The zener diode characteristic is shown below:
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13. Consider the circuit below, which is called a following amplifier. The transconductance
is given by g = 10mA/V.
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RLvin vout
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(a) Find vout when RL = 1kΩ.

(b) Find the value of RL that maximizes the power dissipated in it when vin = 3V.

14. Find the voltage v shown in the circuit below:

25



PSfrag replacements1Ω1Ω 1Ω

1Ω

1Ω
1V

1A

v

15. The circuit shown below is designed to operate with i1 = 1A and i2 = 1A. We need to
determine the power p supplied by the 2A current source in this operating condition,
but unfortunately we can find only one 1A current source in our laboratory. The
resistor values R1, R2, R3, and R4 are not known.
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Three experiments are performed. In the first experiment, the source i1 is turned off
(i1 = 0A), i2 is turned on (i2 = 1A), and the power supplied by the 2A source, p1,
is measured. In the second experiment, i1 is turned on, i2 turned off, and the power
supplied by the 2A source, p2, is measured. In the last experiment, both i1 and i2 are
turned off and the power supplied by the 2A source, p3, is measured. The following
table summarizes these experiments:

Experiment i1 i2 Power supplied by 2A source
1 0 1 p1

2 1 0 p2

3 0 0 p3

- 1 1 p

(The bottom line of the table shows the experiment we’d perform if we could find the
other 1A current source.)

Which one of the following statements is true? Explain your choice.
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(a) p = p1 + p2

(b) p = p1 + p2 + p3

(c) p = p1 + p2 − p3

(d) It is not possible to determine p from these experiments.

16. Consider the circuit below.
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The v–i characteristic of the neon lamp is shown below.PSfrag replacements
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(a) For what values of vs does this circuit have multiple solutions?

(b) Suppose that vs = 0. In this case there is only one solution: every branch voltage
and current is zero. In particular, v = i = 0. Suppose we use the Newton-Raphson
(N-R) method to try to find this solution, using the initial guess v(0) = 100,
i(0) = 200mA. Which one of the following statements is correct:

i. N-R will not converge because the initial guess and the solution are on dif-
ferent sides of the kinks in the v-i curve.
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ii. N-R will converge to the solution in one iteration.

iii. N-R will converge to a wrong solution.

iv. N-R will converge to the solution very slowly (after many iterations).

v. None of the above.

17.
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Find the value of v that maximizes the power dissipated in (i.e., absorbed by) the
voltage source v.

18. Tunnel diode negative resistance amplifier.

Consider the circuit shown below.
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The voltage vout is with respect to ground. The v – i characteristic of the tunnel diode
is shown below. In solving this problem you’ll need to make estimates from this plot.
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(a) Bias calculation. Suppose that vin(t) = 0. Find the value of vbias so that the diode
voltage vd is 0.5V. We’ll use this value of vbias in the remainder of this problem.

(b) Find the linearized model of the tunnel diode at the bias point vd = 0.5V. Express
the linearized model as a circuit. Clearly label the two terminals of the circuit.

(c) Suppose that vin(t) = 0.03 sin(400t). Give a (good) approximation of vout(t).

19. Differential input pair.

The circuit shown below is widely used, for example, as the first stage of an op-amp.
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All voltages shown are with respect to ground. The wire at top, which is connected
to a +15V source called the positive supply rail ; the wire at bottom is connected to
a −15V source called the negative supply rail. The wires labeled v1 and v2 are the
input voltages. They are connected to voltage sources with values v1 and v2. Note
that current can flow into any of these wires; they are connected to things that are not
shown in this schematic.

vout (i.e., the voltage at the point marked with respect to ground) is the output voltage.

You can assume that v1 and v2 are such that the following simple transistor model is
accurate:

ib = i0e
vbe/vt , ic = βib

where i0 = 10−14A, vt = 26mV, and β = 100. The currents and voltages are defined
in the standard way: vbe is the voltage from base to emitter, ib is current flowing into
the base, and ic is the current flowing into the collector.

Derive an expression for vout as a function of v1 and v2. Simplify your expression as
much as possible. Do not leave parameters like β in your answer: use the numerical
values given.

20. Duplex transmission with mismathed resistances. Consider the duplex transmission
circuit described in lecture 8. Our analysis was based on the assumption that the two
600Ω resistors are exactly matched. What if one of them, say the left one, is actually
500Ω instead of 600Ω? Analyze the circuit, expressing the two output voltages vout

and ṽout in terms of the two input voltages vin and ṽin. Do you think it would still work
in practice, in a telephone circuit?
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Exercises on Dynamic Circuits

1. Energy analysis of the charge/fire circuit. Consider the circuit on pages 11-17 and
11-18 of the notes. Assume that at t = 0 the capacitor is uncharged (vc(0) = 0), and
at t = 1000 the switch is thrown from “charge” to “fire.” For the questions below, we
want numerical answers.

(a) Find the total energy supplied by the 100V source.

(b) Find the total energy dissipated in the 100kΩ resistor.

(c) Find the total energy stored in the capacitor at t = 1000.

(d) Find the total energy dissipated in the 10Ω load resistor.

(e) What is the earliest time the switch could be thrown to “fire” and still have a
peak power of 300W dissipated in the load resistor?

2. Coasting through power interruptions. The circuit below is used to maintain some
power supply voltage for brief periods during which the normal supply fails. In normal
operation, vsupp(t) = vout(t) = 15V. For periods up to 3 seconds long, with no warning,
vsupp(t) = 0 (but thereafter returns to 15V). The current drawn by the critical circuit
varies between 0.3A and 1.5A. The critical circuit will work as long as vout ≥ 13V .
Find the smallest value of C that will allow the critical circuit to continue working
during a 3 second long power supply failure. You can assume the diode is ideal, and
that the time between power supply failures is very long.
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3. What does the following circuit do? Assume v1(0) = 0 and v2(0) = 1.

Hint: Show that d2v1(t)/dt2 + ω2v1(t) = 0, where ω = 1/(10kΩ · 0.01µF).
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4. A real problem involving inductors. This problem concerns the magnet for a commercial
magnetic resonance imaging (MRI) machine. The magnet creates a strong magnetic
field (about 0.4 Tesla) over a fairly large volume—very roughly, about 1m by 1m by
0.5m. The magnet consists of about 100 turns of an aluminum conductor which is
about 1/8in thick and 11in wide. The heat dissipated in the conductor is carried away
by forced water cooling. The magnet and its steel housing weighs about 13 tons.

A good electrical model of the magnet is an inductance of 15mH in series with the
resistance of the aluminum conductor and wires leading to the power supply, 0.012Ω.
The power supply that drives the magnet has a maximum output current of 2000A,
and a maximum output voltage of 26V. The operating condition of the magnet is
1850A.

Yes, some of these numbers are outside the range of typical electrical values that I told
you we encounter. The wires hooking up the power supply to the magnet are gauge
0000 (twice as thick as your thumb), with about 10 in parallel to carry the enormous
current. The AC input power to the power supply is about 69kW.

Note (for cultural enrichment only): Many other MRI magnets are superconducting,
so the resistance is essentially zero. After the initial current is established, the magnet
terminals are shorted together, forming a superconducting loop. The power supply is
then disconnected. Provided the loop remains superconducting, the magnet current
will flow indefinitely.

(a) What is the total energy in Joules stored in the magnetic field at operating con-
dition?

(b) How long does it take for this amount of energy to be dissipated as heat? The
ratio of stored energy to power dissipation gives a rough idea of a turn-over time,
relating the energy stored to the rate of energy turn-over.

(c) What is the voltage of the power supply at operating condition? What is the
power being supplied to the magnet?

(d) Suppose that the power supply puts out its maximum voltage, and the inductor
current is initially zero. How long does it take before the inductor current reaches
the operating condition of 1850A? How much longer does it take before the power
supply maximum current (2000A) is reached?

(e) Do you think it’s safe or wise to suddenly reduce the power supply voltage from
its maximum, 26V, to the operating voltage found in part (c), when the magnet
current first hits 1850A?

(f) What would happen if the bolts clamping the large wires to the aluminum magnet
conductor became loose, causing a bad connection between the power supply and
the magnet?

5. Truncation stability of simulation methods. Consider a simple LC circuit with L = 1H
and C = 1F, with zero initial current and 1V across the capacitor at t = 0. v(t) will
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denote the voltage across the capacitor and i(t) the current flowing out of the capacitor
(i.e., v and i are not associated references).

Of course you know the exact solution of this circuit. We’ll study the simulation
method described in the notes.

(a) The voltage and current don’t change too much in about 1msec, so it seems
reasonable to use a time step of 1msec. Show that the simulation method reduces
to the following recursion:

v̂(0.001(k + 1)) = v̂((0.001k) − 0.001î(0.001k),

î(0.001(k + 1)) = î((0.001k) + 0.001v̂(0.001k),

with initialization
î(0)) = 0, v̂(0) = 1.

We use the hat on the symbols v̂ and î to emphasize the fact that these are
approximations to the true voltage v and current i, respectively.

(b) We know that the total energy in this circuit is 0.5J and does not change with
time (p12-4), but our simulation algorithm doesn’t know this. So one check on
the accuracy of the simulation is to keep track of the total energy in the circuit
according to the simulation; hopefully this number should remain close to 0.5J.

Find a recursion for Ê(kh), the energy in the circuit based on the approximate
voltage and current from the simulation, i.e.,

Ê(kh) =
v̂(kh)2 + î(kh)2

2
.

Then give an explicit formula for Ê(kh). Is it constant? Does it remain near
0.5J?

(c) One student pointed out a potential flaw in the philosophy behind the simulation
method: each step is an approximation, so future steps are based on approxima-
tions of approximations of approximations . . . and there is no reason to believe
that the error doesn’t build up. The technical term for the build-up of error
is truncation instability. Does this problem provide an example of truncation
instability?

6. In the circuit below, the capacitor voltage and the inductor current are zero at t = 0.
The two switches are in the “charge” (CHG) position from t = 0 until t = Tsw (as
shown in the schematic) and are in the “oscillate” (OSC) position for t > Tsw. Thus,
Tsw denotes the time at which the switches are thrown from CHG to OSC. For t > Tsw

the LC circuit simply oscillates, with constant total energy E.
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(a) Find Tsw such that E = 8J.

(b) Assume that the switch is thrown at the time Tsw found in part (a). What is the
earliest (i.e., smallest) time Tind at which 8J is stored in the inductor?

7. An RCRC circuit.

Consider the circuit shown below. For t < 0, vin(t) = 1V and the circuit was in static
conditions. For t ≥ 0, vin(t) = 0V.
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(a) Find vout at t = 0, immediately after vin has switched to 0V.

(b) Find
dvout

dt
at t = 0, immediately after vin has switched to 0V.

(c) Find vout at t = 1.

8. In the circuit below, the switch is closed for t < 1sec and open for t ≥ 1sec. The
voltage across the capacitor is zero at t = 0.

PSfrag replacements

1Ω

4Ω

2F 10V

(a) Find the maximum energy stored in the capacitor over the time interval t ≥ 0.
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(b) Find the maximum power dissipated in the 4Ω resistor over the time interval
t ≥ 0.

9. Consider the circuit shown below, in which iL(0) = −2A.
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(a) Write out the equations that describe this circuit.

(b) Find iL(t).

(c) Suppose the 1A current source were replaced with a 0A current source. Find iL(t)
in this case.

(d) Suppose that the initial inductor current were 0A instead of −2A (the current
source is still 1A, however). Find iL(t) in this case.

(e) Verify that the solutions found in parts (c) and (d) add up to the solution found
in part (b).

(f) Use the simulation method described in the notes, with a time step-size of h =
0.01sec, to find (approximations of) iL(t) for t = 0, 0.01, 0.02, . . . Compare the
exact and (approximate) simulation values of the inductor current at t = 1sec.

10. In the circuit below, v1(0) = 1, v2(0) = −1, and v3(0) = 1.
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(a) Estimate v1(0.01), v2(0.01), and v3(0.01). Note: your estimate should be more
accurate than v1(0.01) ≈ 1, v2(0.01) ≈ −1, v3(0.01) ≈ 1.

(b) Estimate the decrease in total stored energy over the time interval [0, 0.01], i.e.,
quantity E(0)−E(0.01), where E(t) denotes the total energy stored in the circuit
at time t. Note: your estimate should be more accurate than E(0)−E(0.01) ≈ 0.

11. In the circuit below, vC(0) = 1V and iL(0) = 1A. Estimate vC(0.01sec) and iL(0.01sec).
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12. The voltage and current in the circuit at right are shown
in the plot below. Estimate both the inductance L and
the resistance R. Make sure to give the units for your
answers (e.g., ohms or kilohms).
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13. The waveform shown below is the current in a series RLC circuit. The value of the
resistor is 100Ω.
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(a) Estimate L and C.

(b) About how long will it be before 99% of the initial stored energy in the circuit
has dissipated?

14. In the circuit shown below, vin switches from 5 to 0 volts at t = 0:

vin(t) =

{

5 t < 0
0 t ≥ 0

You may assume that prior to t = 0, the circuit had reached its steady-state condition,
that is, iC(t) is zero for t < 0.

Find the smallest time Td for which vC(Td) = 3.5. (The subscript “d” stands for
“delay”.)
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15. This problem concerns the circuit shown below. Let EC(t) denote the energy (in Joules)
stored in the capacitor at time t and let EL(t) denote the energy (in Joules) stored in
the inductor at time t. The initial conditions are vC(0) = 4V and iL(0) = 30mA.
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(a) Find EL(0).

(b) Is iL(t) increasing or decreasing at t = 0?

(c) Find dEC

dt
(0).

(d) Find the maximum magnitude of the inductor current, that is, find maxt |iL(t)|.

16. This problem concerns the circuit shown below. The capacitor is initially uncharged
(that is, has no voltage across it at t = 0). The op-amp is described by the ideal
op-amp model. The voltage source is given by:

vin(t) =

{

0 t < 0
5 t ≥ 0

PSfrag replacements

vin(t)
vout(t)

iout(t)

0.01µF

10kΩ

10kΩ

10kΩ

(a) Find an explicit expression for vout(t) valid for t > 0.

(b) Find the maximum magnitude of the op-amp output current, that is, maxt |iout(t)|.
(As you know, real op-amps have limits on this quantity. Knowing this quantity
can help us determine the type of op-amp necessary for the application.)

17. Differential amplifier.

The circuit below shows a differential amplifier. You may use the ideal static op-amp
model in your analysis. In the following questions, the input terminals A and B are
connected in various ways to the circuit.
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A

B

10kΩ

10kΩ

10kΩ

10kΩ

2kΩ

0.01µF

vout(t)

(a) Suppose that A and B are connected to
grounded voltage sources vA and vB, re-
spectively, as shown at right. Find an
expression for vout, assuming static condi-
tions.

PSfrag replacements

A

B

vA vB

(b) We still assume static conditions. The resistance seen looking into the terminals A
and B in the differential amplifier circuit is denoted Rdiff and called the differential
input resistance. (Perhaps more precisely, Rdiff is the Thevenin resistance of the
differential amplifer circuit for the terminals A and B.) Find Rdiff .

(c) We still assume static conditions. The re-
sistance seen between ground and termi-
nals A and B, tied together, is denoted
Rcm and called the common-mode input
resistance. (More precisely, Rcm is the
Thevenin resistance for the terminals C
and D shown at right, with A and B con-
nected to the differential amplifier.) Find
Rcm.

PSfrag replacements

A

BC

D

(d) We no longer assume static conditions. Suppose that A and B are connected to
ground and vout(0) = 2V. Find vout(t).
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(e) Now assume that the circuit is operating in
sinusoidal steady-state and the terminals A
and B are connected to the circuit shown
at right, where v(t) = 2 cos(104t). Find
the voltage vout(t). Express your answer in
the form vout(t) = vm cos(104t + φ).

PSfrag replacementsA

B

v(t)

0.005µF

18. The RLRC circuit. In the series RLC circuit, current flow causes power to be dissi-
pated in the resistor as heat. In the parallel RLC circuit, voltage causes power to be
dissipated. In the RLRC circuit shown below, power is dissipated by both mechanisms.PSfrag replacements

Rp

Rs

CvC

iL

L

(a) Find a differential equation of the form

d2vc

dt2
+ b

dvc

dt
+ cvc = 0

that describes this circuit.

(b) Find an expression for the rate of change of the total stored energy, i.e.,

d

dt

(

LiL(t)2

2
+

CvC(t)2

2

)

,

in terms of iL(t) and vC(t). Give one sentence interpreting your result.

19. Transition from overdamped to critically damped to underdamped.

Consider three series RLC circuits with the same inductance and capacitance, L = 1H,
C = 1F, and the same initial conditions: 1V across the capacitor and zero current in
the circuit. The resistors in the three circuits differ slightly: in the first circuit we have
R = 1.99Ω; in the second circuit we have R = 2Ω, and in the third circuit we have
R = 2.01Ω.

You know from lecture 12 that the formulas for the solution v(t) (the voltage across
the capacitor) of these three circuits are quite different: In the first case, v(t) is an
exponentially decaying sinusoid; in the second, it is sum of an exponential and a strange
term involving t times an exponential; in the last case, v(t) is a sum of two decaying
exponentials.

One student says:
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The voltage response is quite different in these three cases: in the first case
the voltage crosses the value zero infinitely often; in the second and third
cases, just once or maybe twice. So the solutions of these three circuits are
indeed very different, even though the three resistor values are so close. The
reason is that the value R = 2Ω is a “critical value” for this circuit, as seen in
the formulas for lecture 12. It’s not surprising that the solution of a circuit
changes drastically as the resistance varies near a “critical value”.

A second student then responds:

Something is fishy here. I don’t see how such a miniscule change in the
resistor value can have such a great effect on the voltage across the capacitor.
It just doesn’t make physical sense to me.

Who is right? Discuss.

(At the very least, you should spend some time thinking about this problem, and maybe
discuss what you’d do to resolve it. Feel free to give plots, examples, or mathematical
proofs that support your discussion.)

20. In the circuit below, vC(0) = 0.
PSfrag replacements

5V vC(t)

10kΩ

10kΩ

5kΩ0.1µF

Find an explicit expression for vC(t).

21. Dynamic model of op-amp. The simplest model of a real op-amp is the ideal op-amp
model. The ideal op-amp model makes hand calculations and circuit analysis easy, and
often gives good predictions of what will happen in a circuit with a real op-amp. But
you already know that in some cases, the ideal op-amp model makes wrong predictions
about real circuits containing op-amps. For example, the ideal op-amp model makes
no distinction between the + and − input terminals: according to the ideal op-amp
model you can swap them without affecting the behavior of the circuit! In real circuits
containing op-amps, you can never swap the + and − input terminals (i.e., swapping
the + and − terminals will always have a drastic effect on the operation of the circuit).
As a specific example we considered two inverting amplifier circuits labeled circuit A
and circuit B, which differ only in the + and − input terminals being swapped. We told
you then that circuit A works (with a real op-amp), i.e., results in vout(t) ≈ −10Vin(t),
but circuit B doesn’t work with a real op-amp. In that problem you discovered that
a more complicated static model of a real op-amp (as a VCVS) still doesn’t predict
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that circuit B won’t work. In this problem we give a simple dynamic model of a real
op-amp, and once again analyze the two circuits.

A reasonable dynamic model of a real op-amp is that the current flowing into the +
and − terminals are both zero, and

vout + T
dvout

dt
= gṽ

where g is the gain of the op-amp and T is its time constant. Typical values are g = 105

and T = 1sec. Note that under static conditions (i.e., currents and voltages constant)
this model reduced to a VCVS with gain g.

Assume that vin = 1 for all t, and that vout(0) = 0 in circuits A and B of problem 9.
(Note that since our op-amp model is given by a differential equation, we have to specify
an initial condition for it!) Find vout(t) for each circuit, as predicted by this dynamic
model. Use the typical values for g and T mentioned above. Does this dynamic model
of an op-amp predict that something is fishy with circuit B?

Note: we say that circuit A is stable whereas circuit B is unstable. We’ll see alot more
about this in EE102.

22. A simple nonlinear dynamic circuit. In class we studied several simple circuits con-
taining capacitors, inductors, and resistors. For these simple circuits we found analytic
(“closed-form”) solutions for the voltages and currents as a function of time. In this
problem you study a simple dynamic circuit with a nonlinear element—an exponential
diode.

The diode in the circuit below is characterized by the exponential diode model with
Is = 10−12A and vt = 26mV. We have v(0) = 1V.

PSfrag replacements
v(t)0.001µF

(a) Give an intuitive, qualitative analysis of what happens. Try to avoid using any
equations, and especially differential equations, in your discussion. I will begin
the discussion for you: “Initially, the diode is reverse-biased, so a current of about
10−12A flows out of the capacitor. This leaks charge away from the capacitor, so
the voltage across it initially decreases at a rate of 10−12A/0.001µF = 10V/sec
. . . You finish.

Compare what happens in this circuit to what happens in an RC circuit.

(b) Find a differential equation that v obeys.

(c) Solve it. Compare the solution to your qualitative analysis in part (a). Hint for
solving it: first separate variables to write the differential equation in the form
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g(v)dv = dt where g is some appropriate function. Integrate to get f(v(t)) −
f(v(0)) = t where f is the integral of g, i.e., f ′ = g. Now solve the resulting
equation for v(t). You may find it useful to recall that for x > 0 the derivative of
log(1 − e−x) is 1/(ex − 1).

Remark: Congratulations, you’ve just solved one of about three nonlinear dynamic
circuits (in the whole world) that has an analytic solution. And it was not a pretty
sight. Recall that most nonlinear static circuits do not have analytic solutions; well,
even fewer nonlinear dynamic circuits have analytic solutions! In practice, nonlinear
dynamic circuits (such as this one) are “solved” by computer, and never analytically.
We’ll see later how this is done.

23. The spark coil circuit. In the lectures we studied a charge/fire circuit which is based
on the capacitor’s ability to store energy over a long period and then release the stored
energy in a short time interval. We noted that the output current could be very large
compared to the charging current. For example, using a small battery that can put
out, say, 100mA, we can charge a capacitor and then, for a brief period, put out a
current of many amperes!

In this problem we explore a similar circuit, shown below, that uses an inductor instead
of a capacitor to store and then release energy.

PSfrag replacements

1V

1Ω

1H RL = 1kΩ

The inductor current is zero at t = 0. The switch (which is shown open) is closed from
t = 0 until t = 10, at which point it opens (and stays open).

(a) Find vL(t), the voltage across RL. Of course you will have two different expres-
sions, one for 0 ≤ t ≤ 10, and one for t > 10. Are you surprised by your answer?

(b) Find the peak (i.e., maximum) power supplied by the battery. When does this
occur?

(c) Find the peak power dissipated in RL. When does this occur?

(d) Find the peak energy stored in the inductor. When does this occur?

You may use reasonable approximations in this problem, but state what they are as
you use them.

Remark: this is (roughly) how a 12V car battery can generate a 20kV pulse required
for the spark plugs. There is a practical lesson in this problem: generally, you would
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feel safe poking your fingers around in a circuit powered by a 1.5V battery; but if there
are inductors in the circuit you could get a big surprise.

24. An amplifier (modeled as the voltage source shown at left) drives a 2F capacitive
load. The plot at right shows the amplifier output voltage as a function of time t, for
0 ≤ t ≤ 10. Let p(t) denote the power supplied by the amplifier.

PSfrag replacements

vout(t)

vout(t)

2F

2V

−2V

t = 5sec t = 10sec

(a) Find the maximum power supplied by the amplifier over the time interval
shown, i.e.,

pmax = max
0 ≤ t ≤ 10

p(t).

(b) Find the average power supplied by the amplifier over the time interval shown,
i.e.,

pavg =
1

10

∫ 10

0
p(t) dt.

25. Defibrillators.

A defibrillator is used to deliver a strong shock across the chest of a person in cardiac
arrest or fibrillation. The shock contracts all the heart muscle, whereupon the normal
beating can (hopefully) start again. The first defibrillators used the simple circuit
shown below.

PSfrag replacements

vs

Rth = 10kΩ

Rchest = 500ΩC = 20µF

S D

With the switch in the standby mode, indicated as ‘S’, the 20µF capacitor is charged up
by a power supply represented by a Thevenin voltage vs and Thevenin resistance Rth =
10kΩ. When the switch is thrown to ‘D’ (for ‘defibrillate’), the capacitor discharges
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across the patient’s chest, which we represent (pretty roughly) as a resistance of 500Ω.
(The connections are made by two ‘paddles’ pushed against the sides of the chest.)

On most defibrillators you can select the ‘dose,’ i.e., total energy of the shock, which
is usually between 100J and 400J.

(a) Find vs so that the dose is 100J. You can assume the capacitor is fully charged
when the switch is thrown to ‘D’. We’ll use this value of vs in parts 1b, 1c, and 1d.

(b) How long after the switch is thrown to ‘D’ does it take for the defibrillator to
deliver 90% of its total dose, i.e., 90J?

(c) What is the maximum power pmax dissipated in the patient’s chest during defib-
rillation?

(d) Our model of the chest as a resistance of 500Ω is pretty crude. In fact the
resistance varies considerably, depending on, e.g., skin thickness. Suppose that the
chest resistance is 1000Ω instead of 500Ω. What is the total energy E dissipated
in the patient during defibrillation?

26. An improved defibrillator. One problem with the defibrillator described in problem 1
is that the maximum power pmax (which you found in part 1c) is large enough to some-
times cause tissue damage. An electrical engineer suggested the modified defibrillator
circuit shown below. The inductor is meant to ‘smooth out’ the current through the
chest during defibrillation, and yield a lower value of pmax for a given dose.

PSfrag replacements

vs

Rth = 10kΩ

Rchest = 500Ω

L

C = 20µF

S D

(a) Find the value of L that yields critical damping. We’ll use this value of L in
parts 2b and 2c.

(b) Find vs so that the dose is 100J. You can assume the capacitor is fully charged
when the switch is thrown to ‘D’.

(c) Suppose vs is equal to the value found in part 2b. What is the maximum power
pmax dissipated in the patient’s chest during defibrillation?

27. The current i through the inductor is zero at t = 0. Find i(t) for t ≥ 0.

Remember to show us what you are doing.
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1A 1V

1Ω

1Ω 1Ω

1H

i(t)

28. Shutting down an electromagnet.

An electromagnet is modeled as an inductance of 1H in series with a resistance of
1Ω. The electromagnet is driven by a programmable power supply (voltage source)
which is limited to ±5V. The circuit is shown below, with the dashed box showing the
electromagnet.

PSfrag replacementsvs(t)

i(t)

1H

1Ω

For t < 0, the electromagnet is in static steady-state with i(t) = 2A. The goal is to
turn the electromagnet off, i.e., reduce i(t) to 0, as rapidly as possible after t = 0. This
is done using a voltage supply waveform of the form

vs(t) =

{

α 0 ≤ t < T
0 t ≥ T

where −5 ≤ α ≤ 5 and T > 0 are constants.

Find the values of α and T that result in i(t) being reduced to zero as rapidly as
possible after t = 0.
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Exercises on Sinusoidal Steady States

1. Circuit equations for a SSS circuit. Write down a set of equations that completely
describes the circuit below, which is operating in sinusoidal steady-state. You must
label the nodes and branches, find the reduced node incidence matrix A, and find
complex matrices M, N, and a complex vector s such that the branch equations are
given by MI + NV = s.

PSfrag replacements

− sin t

3 cos t 4Ω

10mH

5mF

Use Matlab to solve this set of (complex, linear) equations.

2. Sinusoidal steady-state version of problem 16. Consider the circuit given in problem 16
of Problems on dynamic circuits, with vin(t) = a cos(ωt). You may assume the circuit
is operating in sinusoidal steady-state.

(a) Find an explicit expression for vout(t) in terms of a and ω.

(b) Find the value of ω for which the amplitude of the output voltage is half the
amplitude of the input voltage.

(c) If the circuit is driven at ω = 1, what is the maximum op-amp output current,
i.e., maxt |iout(t)|? (Still assuming sinusoidal steady-state.)

3. Maximum power transfer at two frequencies. This problem concerns the circuit below:

PSfrag replacements

165 cos ωt

10Ω 30mH

ZL

(a) Suppose that the voltage source has a frequency of 50Hz. What value of ZL

maximizes the average power dissipated in it?

(b) Suppose that the voltage source has a frequency of 60Hz. What value of ZL

maximizes the average power dissipated in it?
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(c) Can you design a simple circuit with inductors, capacitors, and resistors, that has
an impedance equal to the value found in part (a) at 50Hz and the value found in
part (b) at 60Hz? (Note that such a circuit has the nice property of dissipating
maximum average power whether the frequency is 50Hz or 60Hz.)

4. The output voltage of a CD player is sinusoidal, with amplitude 10V and frequency
20kHz. The CD player drives a power amplifier through a shielded cable that has a
capacitance of 50pF/ft. The input resistance of the power amplifier is 10kΩ. The CD
player can produce currents of ±10mA without distorting. (These values are realistic.)

What is the maximum cable length the CD player can drive without distorting?

5. The circuit below is operating in sinusoidal steady-state. Find vout(t). Express your
answer in the form vout(t) = a cos(ωt + φ).

PSfrag replacements

vin(t) = cos(2t) vout(t)3Ω

0.5F2H

6. Impedance of an exponential diode. When the voltage across a linear element such as an
inductor, capacitor, or resistor is sinusoidal, we can describe the element by V = ZI,
where V and I are the phasors corresponding to the voltage and current, respectively,
and Z is a complex number (the impedance) which depends on the type of element
and the frequency of the sinusoidal voltage. This description can be considered as
a sort of extension of Ohm’s law to cover dynamic elements (in sinusoidal steady-
state). The nice part about this description is that many of the formulas you know for
resistors and resistances remain true for impedances. For example, the formulas for
series connections, parallel connections, and ∆ − Y transformations are the same as
for resistances (except that the numbers can be complex).

Now suppose a sinusoidal voltage with phasor V appears across an exponential diode
with characteristic i(t) = Is(e

v(t)/Vt − 1). It is reasonable to guess that the current
flowing through the diode can be characterized by the relation I = Is(e

V/Vt − 1). In
words, we just plug in the appropriate phasors where the voltage and current appeared
in the static case. Of course, V can be complex, but we know what the exponential of
a complex number is, so the formula above does make sense.

Is this true? Discuss briefly.
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7. The voltage and current in the circuit at right are shown
in the plot below.
Estimate the voltage phasor V corresponding to v(t), the
current phasor I corresponding to i(t), the impedance Z

of the shaded device, and the freqency ω (in radians per
second).
Your answers need to be accurate to only ±20%, so a
calculator is unnecessary.
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8. The circuit below is operating in sinusoidal steady-state.

PSfrag replacements

cos(t) vc(t) 1Ω

.01F 100H

(a) What is the average power supplied by the voltage source?

(b) What is the average energy stored in the inductor?
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(c) What is the maximum value of |vc(t)|? (Real capacitors have a maximum voltage
rating which should not be exceeded. Usually, a capacitor with a higher voltage
rating is larger and costs more than a capacitor with the same capacitance but
lower voltage rating.)

9. Consider the circuit below, which is in sinusoidal steady-state. Find

(a) the maximum value of the current, max
t

|i(t)|, and

(b) the average power dissipated in the resistor, PR.

(c) the average energy stored in the capacitor.

PSfrag replacements

2 cos(2t)

i(t)

1H

1H

1Ω

0.5F

10. An electrical element that is described by an impedance at 100rad/sec is subjected
to four experiments. In the first experiment, the element is connected to a voltage
source and the steady-state current through the element is determined. In the second
experiment, the element is connected to a current source and the average power flowing
into the element is determined. In the third experiment, the element is connected to a
current source and the steady-state voltage across the element, and average power dis-
sipated in the element are determined. In the last experiment, the element is connected
to the voltage source and the steady-state current is determined. The experimental
data is shown below:

Experiment v(t) i(t) Pavg

1 10 sin(100t) 1.414 cos(100t − 45◦) —
2 — 2 sin(100t) 10
3 cos(100t − 45◦) cos(100t) 2.5
4 cos(100t) −0.1 sin(100t) + 0.1 cos(100t) —

Here, v(t) and i(t) denote the steady-state voltage across the element and current flow-
ing through the element, respectively, with standard associated reference directions.
Pavg denotes the average power dissipated in the element.

One (and only one) of these experiments was not conducted properly; the data from
that experiment is not correct.

(a) Find the impedance Z of the element at 100rad/sec.

50



(b) Identify the bad experiment.

11. In the circuit below,

vs(t) =

{

cos t t < 0
0 t ≥ 0

(You may assume that the circuit was in sinusoidal steady-state for t ≤ 0.)
PSfrag replacements

vs(t) vc(t)2F1Ω

1Ω

1Ω

Find an explicit expression for vc(t) for t > 0.

12. The circuit below is operating in sinusoidal steady-state. Find the amplitude a and
phase φ of the current source that minimizes the average power dissipated in the
resistor.
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cos(2t) a cos(2t + φ)

0.5F 0.5H

1Ω

13. Mutual inductance and transformers. We encountered the ideal (static) transformer in
lecture 4, where we noted that real transformers never operate under static conditions,
i.e., constant voltages and currents. In this problem we’ll see a much better model of a
real transformer as a pair of coupled inductors. The circuit variables for a transformer
are labeled in the schematic diagram below. We will refer to the left-hand pair of
terminals (i.e., port) as winding 1 or the primary winding and the right-hand port
as winding 2 or the secondary winding. (The term winding comes from the way real
transformers are made, i.e., by winding wire around a core, which is often made of
iron. Of course, which winding you call primary and which secondary is just a matter
of labeling.)

PSfrag replacements

v1(t) v2(t)

i1(t) i2(t)
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The model is

v1(t) = L1
di1
dt

+ M
di2
dt

, v2(t) = L2
di2
dt

+ M
di1
dt

.

L1 is called the inductance of winding 1, and similarly for L2. M is called the mutual
inductance between the two windings. Note that when M = 0 this model reduces
to a pair of independent inductors. The turns ratio of the transformer is defined as

n =
√

L2/L1, and the coupling coefficient is defined as k = M/
√

L1L2. Simple physics

arguments can be used to establish that L1 and L2 are positive, and |k| ≤ 1.

(a) Find the stored energy in the transformer at time t as a function of i1(t) and
i2(t). The stored energy should satisfy the following equation: the integral of the
total power entering the transformer (through both ports) over an arbitrary time
interval is equal to the increase in stored energy over the time interval. Does your
formula agree with the stored energy in two inductors when M = 0?

(b) Suppose that the voltages and currents are sinusoidal, with V1 denoting the pha-
sor corresponding to v1(t), and so on. Derive expressions for the secondary voltage
and current phasors (i.e., V2 and I2) in terms of the primary voltage and current
phasors (i.e., V1 and I1). Compare these expressions to the equations for the
ideal static transformer model, i.e., V2 = nV1, I2 = − 1

n
I1. What happens as

k → 1 and ω becomes large?

(c) The circuit below is operating in sinusoidal steady-state, with v(t) = 165 cos ω(120πt).
Find the voltage across the resistor.

PSfrag replacementsv(t) 1kΩ

The transformer has a primary inductance of 5H, a turns ratio n = 2, and a
coupling coefficient of 0.95.

(d) Repeat the analysis of part (c), but assume the transformer is described by the
ideal static model with a turns ratio of 2. Compare your answer to what you
obtained in part (c).

14. Circuit with DC and sinusoidal sources. You may assume the circuit below is in steady-
state.
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cos t v(t)1A

1F 1H

1Ω

2Ω

(a) Find the voltage v(t).

(b) Find the average power dissipated in the 2Ω resistor.

15. The circuit below is operating in sinusoidal steady-state.
PSfrag replacements

2 cos(3t) 1F 2F

2H 3H

3Ω

In this problem:

• Ps(t) is the power supplied by the voltage source at time t.

• Pr(t) is the power dissipated by the resistor at time t.

• E(t) is the total energy stored in the inductors and capacitors at time t.

For any periodic function f(t) we will use AVG(f) and max(f) to denote the time
average value of f(t) and the maximum value of f(t), respectively. For example,
max(Pr) is the maximum power dissipated in the resistor and AVG(Pr) is the average
power dissipated in the resistor.

Consider the following statements:

(a) AVG(Ps) = AVG(Pr).

(b) max(Ps) = max(Pr).

(c) max(Ps) ≥ max(dE/dt).

(d) max(dE/dt) ≤ 2ωAVG(E).

(e) max(Ps) = 2AVG(Ps).

(f) max(Pr) = 2AVG(Pr).
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Decide whether each statement is TRUE or FALSE.

16. Consider the circuit below:

PSfrag replacements

vline(t)

X Y

10Ω

The box at left is an electrical model of a power generation and distribution system.
You can assume that it consists of inductors, capacitors, resistors, transformers, and
several sinusoidal voltage sources with a frequency of 60Hz. You do not know the
model.

When the nodes X and Y are not connected we find that vline(t) = 165 cos(120πt).
When the nodes X and Y are connected by a wire (of zero resistance) we find that
vline(t) = 155 cos(120πt + 10◦).

You are allowed to put either a capacitor or an inductor between the nodes X and Y
(with positive capacitance or inductance, respectively). Your goal is to maximize the
average power dissipated in the 10Ω load.

Specify the type of element (inductor or capacitor) and its value (in Henrys or Farads,
respectively). Note that you cannot change the 10Ω load resistor.

17. Designing an optimal shunt capacitance.

The voltage source phasor Vline = 180V and resistance Rline = 0.8Ω in the circuit
below are the Thevenin equivalent of a power generation and distribution system that
is operating at 60Hz. The load impedance is Zl = (10 + 3j)Ω. It is common practice
to compensate for the load reactance by adding a capacitor across the load, called
a shunt capacitor, as shown in the circuit below. If the shunt capacitor is properly
designed, the average power delivered to the load will be larger than if there were no
shunt capacitor.

PSfrag replacements

Vline

Rline

Cshunt Zl

(a) Find the average power P delivered to the load impedance with no shunt capacitor,
i.e., Cshunt = 0.
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(b) The load impedance Zl can be represented as a parallel connection of a resistor
R and an inductor L (at 60Hz). Find R and L.

Note: we really do mean parallel, not series!

(c) Find the value of the shunt capacitor that maximizes the average power delivered
to the load impedance.

Hint: it may be useful to transform to a Norton equivalent and use the result of
part b.

18. Resonance in an active circuit. The circuit below is operating in sinusoidal steady-
state at a frequency ω rad/sec. You can assume the op-amps are given by the ideal
static op-amp model.
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0.001µF
0.001µF

10kΩ
10kΩ

(a) Find the ratio of the output voltage phasor Vout to the input voltage phasor Vin

as a function of frequency. This ratio is called the transfer function from the
input voltage to the output voltage.

(b) Find the frequency ω0 for which the magnitude of the transfer function is largest.

(c) Find the two frequencies 0 < ω1 < ω2 for which the magnitude of the transfer
function is a factor of

√
2/2 times the magnitude at the frequency ω0.

Hint: if you’re clever you can use some formulas from the notes.

19. The plot below shows the magnitude of the impedance
Z of a series connection of a resistance R, an inductance
L, and a capacitance C, as shown at right. Estimate R,
L, and C. Note that frequency and impedance are given
on a logarithmic scale.
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20. Six-phase power. Some systems operate on six power lines which are separated by 60◦

phase shifts:

v0(t) = 170 cos(120πt)

v1(t) = 170 cos(120πt + 60◦)

v2(t) = 170 cos(120πt + 120◦)

v3(t) = 170 cos(120πt + 180◦)

v4(t) = 170 cos(120πt + 240◦)

v5(t) = 170 cos(120πt + 300◦)

Find the amplitude and phase of the voltage from each leg to leg 0, i.e., v1−v0, . . . , v5−
v0.

Enter your answers in the table below. Express the phases in degrees.
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voltage amplitude phase

v1 − v0

v2 − v0

v3 − v0

v4 − v0

v5 − v0

21. The circuit below is operating in sinusoidal steady-state.
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2 sin(2t) vout(t)1F 0.5F

1H

1Ω

Find vout(t), expressed in the form vout(t) = a cos(ωt + φ), with φ in radians.

22. Series and parallel resistance/reactance representations.

Consider an impedance Z = R + jX. We can represent it as a resistance R in series
with a reactance jX. We can also represent it as a resistance R̃ in parallel with a
reactance jX̃.

Express R̃ and X̃ in terms of R and X. Try to simplify your expressions as much as
possible.

23. The function z(t) is sinusoidal with frequency 2 rad/sec, and satisfies the differential
equation

d2z

dt2
+

dz

dt
+ 2z + sin(2t) = 0.

Find the amplitude of z, i.e., maxt |z(t)|.

24. In this problem we consider a generator that drives a load through a two-wire cable.
The generator is modeled as a sinusoidal voltage source, vgen(t) = cos t. The cable is
modeled as a resistance of 0.5Ω in each wire, and the load is modeled as a resistance of
1Ω is series with an inductance of 2H. The circuit, which is in sinusoidal steady-state,
is shown below.

57



PSfrag replacements

vgen(t) = cos t

ic(t) il(t) 2H

1Ω
0.5Ω

0.5Ω

loadcable

(a) Find the maximum current in the cable, i.e., maxt |ic(t)|.
(b) Find the maximum current in the load, i.e., maxt |il(t)|.
(c) Find the average power pgen supplied by the generator.

(d) Find the average power pl dissipated in the load (i.e., the load inductor and the
load resistor).

(e) What fraction of the time does the generator absorb energy (i.e., dissipate positive
power)? Express your answer as a percentage.

25. This problem continues from the previous one. It is very common in practice to add a
shunt capacitance across the load, as shown below.PSfrag replacements

vgen(t) = cos t

ic(t) il(t) 2H

1Ω
0.5Ω

0.5Ω

C

loadcable

(a) Find the value of C that results in the cable current ic being in phase with the
generator voltage vgen(t). We will use this value of C in the rest of this problem.

(b) Find the maximum current in the cable, i.e., maxt |ic(t)|.
(c) Find the maximum current in the load, i.e., maxt |il(t)|.
(d) Find the average power pgen supplied by the generator.

(e) Find the average power pl dissipated in the load (i.e., the load inductor and the
load resistor).
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Exercises on Fourier Series

1. What is the fundamental period and fundamental frequency of the function f(t) =
| cos 2πt|? Find its Fourier series. Express the answer in both sine/cosine and complex
exponential form. This function is sometimes called a full-wave rectified sinusoid.

2. SCR and TRIAC dimmers. Dimmers for incandescant lights, power controllers for
heaters, and speed controllers for some motors are all based on circuits that use devices
called SCRs or TRIACs. These circuits work by varying the RMS value of the load
voltage, which in turn varies the average power supplied.

TRIACs (which are made from SCRs—silicon controlled rectifiers) are more common in
residential light dimmers and speed controllers, so we’ll describe them. The schematic
symbol for a TRIAC is shown below.
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A

B

trigger

A simple model of a TRIAC is a switch that can be controlled electronically by a third
terminal called the trigger input. When the TRIAC is “on” or “conducting” it behaves
like a wire (closed switch) connected between the terminals A and B; when it is “off”
or “open” it behaves like an open circuit between terminals A and B. If an appropriate
voltage is applied between the trigger terminal and terminal B, the TRIAC will turn
on, and remain on until the magnitude of the current flowing from A to B becomes
zero (even if the trigger voltage is removed). Thus a TRIAC can be turned on or
“triggered” by applying a pulse to the trigger terminal; it turns off (“extinguishes”)
whenever the current flowing from A to B is zero. It’s essentially a switch that can be
turned on at any time, but only goes off by itself, when the current through it becomes
zero.

The circuit below shows a basic TRIAC dimmer circuit. The trigger circuit pro-
vides a pulse of voltage sufficient to trigger the TRIAC on each half-cycle, whenever
cos(120πt − θ) passes through zero. θ is called the firing angle, and can be adjusted
between zero and 180◦. Note that the TRIAC turns off whenever 165 cos(120πt) passes
through zero, so θ/120π gives the delay between the TRIAC turning off (because the
load current becomes zero) and the TRIAC turning on again (because of the trigger
pulse). You can check that when the firing angle is very small and positive, the TRIAC
is on most of the time; when the firing angle is a little less than 180◦, the TRIAC is
off most of the time, and when the firing angle is 90◦, the TRIAC is on half the time
(for the second half of each half-cycle).
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165 cos(120πt)
vl(t)Rl

trigger
circuit

(a) Sketch the waveform of the load voltage vl for several different firing angles. (You
can use Matlab if you like.)

(b) Find the RMS value of vl as a function of the firing angle θ. Give a sketch of
RMS(vl) versus θ. (You can use Matlab if you like.)

(c) Find the average power dissipated in the TRIAC as a function of the firing angle
and load resistance (you can neglect the power of the trigger pulses). Comment
briefly on the practical implications. (This partially explains why a dimmer that
can handle many hundreds of watts of lighting load can fit inside a light switch
box without causing a fire.)

(d) Find the Fourier series of vl for the firing angle θ = 90◦.

3. The circuit below is operating in periodic steady-state. The voltage source is vs(t) =
sin t + 2 cos 3t and the current source is is(t) = cos t − sin 2t.
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vs(t) v is(t)1Ω 1F

1HA B

(a) Find the Fourier series (coefficients) of the voltage v.

(b) Find the average power flow from subcircuit A to subcircuit B at DC, the funda-
mental (w0 = 1) and all higher harmonics.

(c) Find the total average power flow from subcircuit A to subcircuit B.

(d) Find the average energy stored in the inductor.

(e) Could you find the maximum power flow from subcircuit A to subcircuit B? You
don’t need to find the specific number, but explain how you would do it.
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4. The voltage across an exponential diode is v(t) = 0.65 + 0.001 cos(2000πt). Estimate
the DC, fundamental, and second harmonic of the current i. (Please explain your
estimate; zero is not an acceptable answer.) You may use the parameters VT = 26mV,
I0 = 10−14A for the diode.

5. Three-phase rectified power. The circuit below is often used to connect three-phase
AC power to a load that can only handle voltages of one polarity. It is used in X-ray
machines and many electrochemical industrial processes.
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Vm 6 0◦

Vm 6 120◦

Vm 6 − 120◦

phase A

phase B

phase C

neutral

vl(t)Rl

The line-to-line voltage is 208V RMS, so Vm = 208
√

2/3 = 170V. The line frequency

is 60Hz. You can assume the diodes are ideal. (By the way, when diodes are used in
high power circuits such as this one, they are more commonly called rectifiers.)

(a) Sketch the waveform of vl.

(b) What is the fundamental frequency of vl?

(c) Find the average value and the RMS value of vl.

(d) The ripple of the voltage vl is defined as vl minus its average value. What is the
RMS value of the ripple of vl? Find the percent ripple, which is defined as the
ratio of the RMS ripple to the RMS value of vl.

(e) What fraction of the total average load power is contained in the DC and funda-
mental components?

6. Suppose that f is periodic with period T > 0 and has Fourier coefficients a0, a1, . . . ,
b1, b2, . . ., and complex Fourier coefficients c0, c1, . . .

(a) What is the Fourier series of the derivative of f? (You may assume that the
derivative exists and has a Fourier series.) Give your answer in terms of both of
the sine and cosine Fourier coefficients and also the complex Fourier coefficients.
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(b) Let g be the integral of f , i.e., g(t) =
∫ t
0 f(τ)dτ . Under what conditions on f

is the function g periodic? (i.e., always? never?) When g is periodic, give its
Fourier series.

7. Consider the circuit shown below. The voltage source is a sawtooth waveform with
fundamental frequency ωo = 1rad/sec and maximum amplitude 1V. Find the ampli-
tude and phase of the current source that minimizes the average power dissipated in
the resistor. How much smaller is this minimum average power than the average power
dissipated in the resistor when the current source is turned off? Explain what you are
doing.
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vs(t) Im cos(3t + φ)1Ω 1H

1F

8. The circuit at right is in periodic steady-
state. The voltage vs(t) is plotted below.
What is the average value of vout? Find the
fundamental component of vout, expressed
in the form Vm cos(ω0t + φ).
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9. The circuit at right is in periodic steady-
state.
Estimate the RMS values of vs and vout.
An accuracy of ±20% is sufficient.
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10. Extracting maximum power from a periodic generator. The power generator shown
below can be modeled as a circuit that contains a periodic voltage source, inductors,
capacitors, and resistors. You do not know the circuit or any of the component values.
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You measure the (periodic) voltage waveform voc(t), the open-circuit voltage that ap-
pears at the generator output with no load connected. You also measure the (periodic)
voltage waveform vld(t), the “loaded” voltage that appears at the generator output
with a 10Ω load connected. Roughly speaking, the loaded voltage waveform is a bit
smaller than the open-circuit voltage and has a bit of a different shape. You can as-
sume that both waveforms are pretty well described by a partial Fourier series with
five harmonics.

You are asked to design a series compensating network that results in maximizing the
total average power dissipated in the 10Ω load resistor in the circuit shown below.
Your compensating network can contain inductors, capacitors, and resistors.
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Generator

Compensation
Network

10Ω

Carefully explain how you would solve this problem. Describe the major steps and
reasoning involved. (Obviously you can’t actually solve the problem, i.e., find a specific
compensation network, since we haven’t given you the specific open-circuit and loaded
voltage waveforms.) Please address the following topics in your discussion: Do you
have enough information to design such a network? If not, what additional information
would you like to have? One simple compensation network is just a wire; hopefully
your network results in more average power being dissipated in the 10Ω resistor. How
much more?

Note: This problem is a bit vague but very important. It requires combining several
things you know from 101 and 102 along with some careful thinking.

11. The circuit below is operating in periodic steady-state. The voltage source is vs(t) =
1 + cos t.
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vs(t)

1H

1Ω1F vout

(a) Find vout(t). Express any sinusoidal terms in your answer in the form Vm cos(ωt+
φ).

(b) Find E, the average energy stored in the inductor.

(c) Find the percent RMS ripple of vout, defined as

% ripple = 100
RMS(vout − AVG(vout))

RMS(vout)
.

12. The circuit below is operating in periodic steady-state. The voltage source is a sawtooth
with period 2π and amplitude 1, i.e., vs(t) = t/(2π) for 0 ≤ t < 2π. Sketch vout(t).
Your sketch does not have to be perfect, but the important features of vout should be
clear (e.g., approximate maximum and minimum values, approximate shape).
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You may need the Fourier series of vs: vs(t) =
1

2
−

∞
∑

k=1

1

πk
sin kt.

13. The circuit below is operating in periodic steady-state. The voltage source is a square-
wave of frequency 1Hz between values 0 and 1, i.e.,

vin(t) =

{

1 k ≤ t ≤ k + 1/2, k = 0,±1,±2 . . .
0 k + 1/2 < t < k + 1, k = 0,±1,±2 . . .
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Find the Fourier series of vin and vout.

Give a simple, approximate description of vout.

14. Numerical experiments with Fourier Series.

You’ll need to use Matlab for the following problem. Matlab is installed on the work-
stations in Sweet Hall, as well as the Macintoshes in most public clusters on campus.
A student version of Matlab is available at the Stanford Bookstore for about the cost
of a textbook. For information on how to use Matlab, you can consult the Matlab
primer available from http://www-leland.stanford.edu/class/ee101/primer.ps.

For this particular problem you’ll need three files: ekg.m, fourier coeff.m, and
fourier sum.m. They are available at /afs/ir/usr/class/ee102/hw2/ from your
leland account (or any machine with afs); you can copy them from there to your
working directory.

The first file is a Matlab m-file, and the latter two are Matlab functions (that we wrote
for you). A Matlab m-file is a sequence of Matlab commands in an ascii file (e.g.,
created using a text editor) with a name that ends in “.m” You can execute an m-file
from within matlab by typing its name (without the “.m” extension) at the command
prompt. 1 Matlab then executes the commands within the m-file exactly as if they
were typed individually in the command window. For instance, you can type ekg to
run ekg.m.

In this problem you will also need the two functions fourier coeff.m and fourier sum.m,
which we wrote for you, and encourage you to examine. You can invoke them ex-
actly like you would use built-in functions like sin or abs. You can even type help

fourier coeff to see the first few lines of fourier coeff.m, which explains the details
of how the function operates.

Matlab manipulates matrices and vectors: it cannot directly handle periodic signals.
In Matlab we can approximately represent a periodic signal by giving a large vector
which is a “sampled version” of the periodic signal. To represent a periodic signal
fc(t), which has period T , we use a Matlab vector f whose coefficients are the values
of fc at equally spaced time intervals:

f(k) = fc((k − 1)T/N), k = 1, . . . , N,

where N is the length of f, i.e., the number of time samples. For the problems we’ll
encounter in this class, we can take N to be between 100 and 1000.

The time t in the periodic signal fc(t) that corresponds to the index k in the Matlab
vector f(k) is given by t = (k − 1)T/N . As k ranges from 1 to N , t ranges from 0 to
(N − 1)T/N . We can make up a Matlab vector that gives the sample times by

1Actually, when a name is typed into Matlab, Matlab first checks to see if it is a defined variable in
memory, then checks if it is a built-in function, then looks in the working directory (the directory where you
started Matlab) for an m-file of the same name, and finally looks in the Matlab path for an m-file of the
same name.
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t=0:T/N:T*(N-1)/N; % vector of times of length N

Then to plot one cycle of the periodic function fc, you could use the following command:

plot(t,f);

(If you type just plot(f), you’ll get the wrong X-axis scale — it will use the index k.)

When working with periodic signals in Matlab, we often have to evaluate integrals (in
RMS calculations, Fourier coefficients calculations, etc.). This is handled by simply
approximating the integral as a sum: we use the approximation

∫ T

0
fc(t) dt ≈ T

N

N
∑

k=1

fc((k − 1)T/N)

which is accurate provided N is big enough that fc doesn’t change too much between
time samples. (If you examine our function fourier coeff, you’ll see that we used
such an approximation.)

Finally, we get to the problems:

(a) Generate a sawtooth waveform in a Matlab vector called sawtooth with period
2sec and amplitude 4. Your sawtooth should be stored in a row vector containing
one period of the waveform, as described above. Use a sufficiently large number
of samples, perhaps N = 200. Plot one or two cycles of your waveform.

(b) Use fourier coeff to (approximately) compute the first 30 Fourier coefficients
of your sawtooth signal. Check the computed coefficients against the coefficients
found analytically in the notes, and briefly explain any discrepancy.

(c) Use fourier sum to reconstruct a waveform from the first 30 Fourier coefficients.
Plot two cycles. Does your plot resemble your original sawtooth waveform?

(d) Repeat steps 2-3, this time using only 10 coefficients.

(e) For fun, change the term 1
π3

sin(3ωt) into 2
π3

cos(3ωt), reconstruct, and plot. Does
the plot change alot or little?

(f) Now let’s consider a real periodic signal: Jon Carter’s EKG. The m-file ekg.m

defines a vector ekg and also t which is a sampled version of Jon’s EKG and the
corresponding times, over one heartbeat period, which is one second. Plot two
cycles.

(g) Find the RMS value of Jon’s EKG. You will have to approximate the integral as
a sum.

(h) Find the first 30 fourier coefficients of Jon’s EKG.

(i) Plot the spectrum, up to the 30th coefficient. What fraction of the total energy
in Jon’s EKG is contained in the first 10 terms? The first 30?
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(j) Reconstruct the partial Fourier series of Jon’s EKG using 10 terms and also 30
terms. Plot these and compare to the original EKG. For each case, find the RMS
value of the error function (as defined in the class notes), and express it as a
fraction of the total RMS value. Is it consistent with your calculations from the
spectrum?

15. Consider the periodic function f with period T = 1, two cycles of which are shown
below. This function is sometimes called a “25% duty cycle squarewave” since it is
“on” (i.e., assumes its high value) 25% of the time.
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Find its average value a0, its fundamental frequency coefficients a1 and b1, and its
root-mean-square value RMS(f).

16. Suppose f is periodic and satisfies

f ′′ + 2f ′ + f = q(t),

where q is a (periodic) ‘reverse triangle wave’ with frequency 5Hz, i.e.,

q(t) = 1 − 5t for 0 ≤ t < 0.2.

What is the average value of f?
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17. Output voltage waveform as load resistance varies.

The generator shown at right can be mod-
eled as a circuit containing a DC (constant)
voltage source, a sinusoidal current source,
and several resistors, capacitors, and in-
ductors. You do not know the circuit.
Throughout this problem we assume pe-
riodic steady-state.
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The two plots below show the load voltage waveform vL(t) for two different values of
load resistance, RL = 200Ω and RL = 100Ω.
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(a) From the data given, can you determine the voltage waveform for a load resistance
RL = 50Ω? If you can, do so. If not give “can’t determine” as your answer.

(b) Suppose the frequency of the sinusoidal source in the generator exactly doubles,
and the load resistance is RL = 100Ω. From the data given above, can you
determine the load voltage waveform? If you can, do so. If not give “can’t
determine” as you answer.

18. Some problems involving RMS value of periodic signals.

(a) Suppose f is a periodic function with period 2π. We know that RMS(f) = 2, and
RMS(f +1) = 1. (f +1 denotes the periodic function g given by g(t) = f(t)+1.)
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What is AVG(f)? Either find (the specific number) AVG(f) or state ‘cannot be
determined’ if it cannot be determined from the information given.

(b) Consider two functions p and q, with period 1, and RMS(p) = RMS(q) = 2.
These two functions are never ‘on’ at the same time, i.e., whenever p(t) 6= 0, we
have q(t) = 0.

Can you determine RMS(p − 2q) from the information given? Either give (the
specific number) RMS(p − 2q), or state ‘cannot be determined’ if it cannot be
determined from the information given. (p− 2q is the periodic function r defined
by r(t) = p(t) − 2q(t).)
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Exercises on Bode Plots

1. Draw a rough sketch of the Bode magnitude and phase plot of the transfer function

H(s) =
s2 − 0.1s + 4

s2 + 0.1s + 1
.

Use a magnitude range of −40dB to +40dB, and a phase range of −360◦ to +360◦.
Don’t worry about corrections on the order of a few dB or a few tens of degrees.

Label the key features of your plot. Check your plot at a few obvious frequencies.

2. An amplifier with a transfer function H has a DC gain H(0) = 103, poles at s =
−100rad/sec and s = −106rad/sec, and a zero at s = +104rad/sec. (Note the signs of
the poles and zeros!)

Sketch the Bode magnitude and phase plots of H. Draw both a straight-line approxi-
mation and a “smooth”curve.

3. This problem concerns the circuit shown below. You can assume that the op-amps is
ideal.
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(a) Find the transfer function H from vin to vout.

(b) Plot the poles and zeros in the complex plane. Verify that this circuit is stable.

(c) Sketch the Bode plot of H. Label important features of the plots. Would you
describe this system as low-pass, band-pass, high-pass, or none of these?

(d) Assume the capacitors are initially uncharged. Suppose that for t ≥ 0, vin is a
sinusoid with amplitude 1V, frequency 3kHz, and phase 0◦. You know that vout

will approach the sinusoidal steady-state response as t → ∞. But how long will
it take? Find a time T such that for t ≥ T the actual and steady-state responses
are within about 1% of the amplitude of the steady-state response. Your number
T does not have to be the smallest possible such T , just within a factor of two or
three.
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(e) Can you find appropriate initial capacitor voltages such that the system is in
sinusoidal steady-state immediately, i.e., from t = 0 on?

4. A delay system. Consider a system with input u and output y described by y(t) = 0
for 0 ≤ t < 1 and y(t) = u(t − 1) for t ≥ 1. Thus the output is the same as the input
but delayed one second. Find the transfer function H of this system. What is its DC
gain? Sketch the Bode plot of H. Can you sketch its poles and zeros in the complex
plane?

5. A system with undershoot.

In this problem we consider a system described by the transfer function

H(s) =
1 − s

(1 + s)(1 + 2s)
,

with input u and output y.

(a) Sketch the Bode plot of H. Be careful with the phase plot. Does the magnitude
plot look like the magnitude plot of a simpler transfer function? Can you explain
this?

(b) Sketch the step response. Make sure the final value and the slope at t = 0+ are
correct. The interesting effect you see for small t is called undershoot.

(c) Suppose that at t = 200 the input switched from the value 3 to −1, i.e., u(t) = 3
until t = 200; after that u(t) = −1. Sketch y(t) for t near 200, say, several seconds
before to several seconds after. Systems with undershoot are sometimes descibed
this way: “when you change the input rapidly from one constant value to another,
the output first moves in the wrong direction”. Does this make sense?

(d) Can you find u such that y(t) = 1−e−t/2? Any comments about the u you found?
Can you trace the interesting feature of u to some particular property of H, e.g.,
its DC gain, pole locations, etc.?

6. The impulse response of a system described by a transfer function H is measured
experimentally, and plotted below:
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(a) Estimate H(0), i.e., the DC gain of this system.

(b) Estimate H(jω) for ω = 2π · 500Hz, ω = 2π · 5kHz, ω = 2π · 10kHz, and ω =
2π · 1MHz. Explain your approximations. An answer of the form “small” is OK
provided you give some rough maximum as in “H(jω) is small, probably less than
10−4 or so”.

(c) Sketch the step response of this system.

(d) The (10%-90%)rise-time of a system is defined as the time elapsed between the
first time the step response reaches 10% of its final value and the last time the
step response equals 90% of its final value. Estimate the (10%-90%) rise-time of
this system.

7. Using Matlab for impulse, step, and Bode plots.

In Matlab, it’s very easy to plot the impulse response, step response, or frequency
response of a transfer function H(s) = b(s)/a(s) when b and a are polynomials. We
will the two Matlab code examples below for illustration:

num = [ 0.3, 1 ] num2 = 3 * poly( [ -3, +1 ] )

den = [ 1, 0.3, 1 ] den2 = poly( [ 1+3*j,1-3*j,-2 ] )

impulse( num, den ) bode( num2, den2 )

print print saveplot

step( num, den )

print

First, you have to know how to enter polynomials into Matlab. Polynomials are rep-
resented by a vector of their coefficients, stored in descending order of the exponent.
In other words, the polynomial

b(s) = bmsm + bm−1s
m−1 + · · · + b1s + b0

is represented by the row vector

[ bm bm−1 · · · b1 b0 ]

in Matlab. So in the above examples, num = [0.3,1] represents 0.3s + 1, and den =

[1,0.3,1] represents s2 + 0.3s + 1.

You can also create a polynomial from its roots using the poly command. To do so, you
simply supply poly with a vector of the roots, stored in any order. For example, the
line den = poly([1+3*j,1-3*j,-2]) above is equivalent to den = [1,0,6,20] (try
it and see!) Likewise, num = 3 * poly([-3,+1]) is equivalent to num = [3,6,-9].

It’s quite easy to find the roots of a polynomial in Matlab; just type roots(<poly>)

to get a vector that contains the roots of the polynomial <poly>. In the first example
above, typing roots(den) would produce
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ans = -0.1500 + 0.9887i -0.1500 - 0.9887i

Of course, for many polynomials you can find the roots yourself. But Matlab can
compute the roots of a 20th order polynomial very quickly, and you can’t.

Once you have constructed the numerator and denominator polynomials in the above
fashion, it is quite simple to make some useful plots with them. Above, we have used:

• impulse(num,den) to generate an impulse response plot,

• step(num,den) to generate a step response plot, and

• bode(num2,den2) to (you guessed it!) generate a Bode plot (both magnitude and
phase).

There is also an analogous command nyquist for making Nyquist plots.

To print the current plot, you can usually just type print. To choose a specific printer,
however, type print -P<printername> instead. And to save a plot to the PostScript
file <filename>.ps to print later, type print <filename>.

If you want to explore Matlab a bit more, type demo at the prompt; for help on any
particular command, type help <command>.

Once you start using Matlab for these chores, you might resent the fact that we ask
you to know how to (approximately) sketch these plots by hand. The important part
is that you understand the plots, what they mean, and how they relate. (As far as we
know, Matlab does not understand what the plots mean . . . )

Go ahead and run Matlab (on a UNIX workstation, typing matlab will do the trick).
Try out this examples above; but save a tree—don’t print just yet! Once you get the
feel of it, move on to the problem:

(a) Use Matlab to plot the Bode plot of the transfer function of problems 1 and 2, to
verify your sketches.

(b) Consider the transfer function H(s) = (s + 1)/(s2 + s + 1). Find the poles and
zeros, and plot the impulse response, step response, and Bode plot using Matlab.

(c) Now consider the transfer function

G(s) = H(s)
s + 3

s + 3.1
.

Intuition suggests that G is not much different from H since we have added a
pole and a zero that almost cancel each other out. Before doing the next part,
guess how the Bode plots of G and H will differ. Give a geometric explanation.
Give the partial fraction expansion of H, and compare it to the partial fraction
expansion of G.

(d) Now use Matlab to plot the impulse response, step response, and Bode plot of G
using Matlab. Compare with your prediction.
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8. Notch filter design. Find a transfer function H that has the Bode magnitude plot
shown below. Note that the vertical axis is given in dB and the horizontal axis, which
is linear, is given in Hz.

Express your answer as the ratio of two unfactored polynomials. Justify your choice
of poles and/or zeros. An accuracy of ±10% for the coefficients is acceptable.

Once the design is complete, use Matlab to create a full (magnitude and phase) Bode
plot for the filter.
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9. The circuit below is a simple one-pole lowpass filter.

PSfrag replacements

vin(t)

vout(t)

10kΩ

R

C

Find (positive) R and C such that:

• The (magnitude of the) DC gain is +12dB.

• The magnitude of the transfer function at the frequency 1kHz is 3dB less than
the magnitude of the DC gain.
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You can assume the op-amp is ideal. Give numerical values for R and C. Since you
can’t use a calculator, an accuracy of 10% will suffice.

10. For parts (a)–(e) you can assume the circuit is initially relaxed, i.e., the capacitor
voltage and the inductor current are both zero at t = 0.

PSfrag replacements

vin(t)

0.1H 1F

1.1Ω vout(t)

(a) Find the transfer function H from vin to vout. Please check your answer carefully
since other parts of this problem may depend on it. Try to express H in simple
form.

(b) Find the poles, zeros, and DC gain of H.

(c) Find the unit step response s(t) from vin to vout.

(d) Sketch the Bode magnitude and phase plot of H at the bottom of this page. Be
sure to clearly label the axes and key features of your plot.

(e) Suppose that the input voltage is constrained to have a peak value less than one,
i.e., |vin(t)| ≤ 1. How large can y(3) be? Briefly give your reasoning.

(f) Suppose that vin(t) is a periodic and the circuit is in periodic steady-state. (We no
longer assume that the capacitor voltage and inductor current are zero at t = 0.)
Suppose that the RMS value of vin is less than one. How large can the RMS value
of vout be? Briefly give your reasoning.

11. The unit step response s(t) of a system described by a transfer function H, which has
three poles, is shown in the two plots below. The two plots have different ranges; the
second plot allows you to see details for small t.
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(a) Estimate the poles. An accuracy of ±20% is acceptable.

(b) At high frequencies |H(jω)| becomes small. From the data given, can you de-
termine the rate at which it decreases for large frequency (e.g., 12 db/octave)?
Either give the rate (in dB/octave) or state “cannot determine” if the data given
is not sufficient to determine the high-frequency rolloff rate.

12. An op-amp filter circuit.

This problem concerns the filter circuit shown below. The voltages vin and vout are
with respect to ground, and the op-amp is ideal. The transfer function from vin to vout

will be denoted H.
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C2

(a) Find the DC gain, poles, and zeros of H. (Express them in terms of the component
values R1, R2, R3, C1, and C2.) If there are no zeros (or poles), give your answer
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as ‘none’. Express your answers in a simple form, and check them carefully, since
you may want to use them in parts b and c.

(b) Suppose that R1 = R2 = R3 = 1Ω and C1 = C2 = 1F. Find the unit step response
s(t) of the filter. (Assume zero initial voltage across C1 and C2.)

(c) A filter synthesis problem. For an audio application a filter is required with the
magnitude Bode plot shown below:
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For this application, the phase of H does not matter.

The resistor R3 is fixed to be 10kΩ. Find (numerical, explicit values for) R1, R2,
C1, and C2 so that the magnitude Bode plot of H matches (at least approximately)
the required form shown above. (Needless to say, you cannot use negative values
for R1, R2, C1, and C2.)
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Exercises on Laplace Transform

1. Find the Laplace transform of the following functions.

(a) f(t) = (1 + t − t2)e−3t.

(b) f(t) =











0 0 ≤ t < 1
1 1 ≤ t < 2

−1 2 ≤ t

(c) f(t) = 1 − e−t/T where T > 0.

2. The “raised cosine pulse” is a signal used in applications such as radar and communi-
cations. It is defined by

f(t) =

{

1 − cos t 0 ≤ t ≤ 2π
0 t > 2π

and plotted below.
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Find F , the Laplace transform of f .

3. Can you find the Laplace transform of a function that is periodic for t ≥ 0, given its
Fourier series? (The expression you write down should be explicit, if not easy to work
with or use . . . )

4. The plot below shows f(t). Its Laplace transform, F , has three poles. Estimate the
specific numerical values of the poles. An accuracy of ±30% is sufficient.

Note: We are looking for three specific complex numbers, not just qualitative descrip-
tions of the pole locations! You do not have to estimate the residues.
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5. Solve the following differential equations using Laplace transforms. Verify that the
solution you find satisfies the initial conditions and the differential equation.

(a) dv/dt = −2v + 3, v(0) = −1.

(b) d2i/dt2 + 9i = 0, i(0) = 1, di/dt(0) = 0.

6. Time scale property of Laplace transform. Let α > 0 and define g by g(t) = f(αt).
Pick some particular waveform f , and plot it and the corresponding waveform g for
α = 1/2. Repeat for α = 2. Returning to the general case, find the Laplace transform
of g in terms of the Laplace transform of f . Check your result by finding the Laplace
transform of cos ω0t, using the Laplace transform of cos t derived in class.

7. Consider the circuit shown below.
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2 + 4 cos t

1H

1Ω1F vout

(a) Suppose that the circuit is in periodic steady-state. Find vout(t).
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(b) Suppose that the inductor current and capacitor voltage at t = 0 are both zero.
Find vout(t). Does vout(t) converge to the periodic steady-state solution you found
in part (a), as t → ∞? What are the poles of the Laplace transform of vout?

8. In the circuit shown below, the op-amp is ideal and the initial capacitor voltage (i.e.,
at t = 0) is zero.
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vin(t)
vout(t)

1Ω

1Ω

1Ω

1F

(a) Find the transfer function H(s) from vin to vout.

(b) Now assume that vin(t) = e−2t for t ≥ 0. Find vout(t).

9. Suppose that f satisfies d3f/dt3 = f , f(0) = 1, df/dt(0) = d2f/dt2(0) = 0. Find f(t).

10. Positive real zeros and sign changes in f . Suppose that F (z) = 0 for some real, positive
z. You may assume that z is such that the defining integral for the Laplace transform
converges. Show that f must change sign, i.e., assume both negative and positive
values at various times. Another way to say this is, f cannot be nonnegative for all
t ≥ 0 or nonpositive for all t ≥ 0.

11. For each of the following rational functions, find the poles and zeros (giving multiplici-
ties of each), the real factored form, the partial fraction expansion, and inverse Laplace
transform. (In some cases, the expression may already be in one of these forms.)

(a)
1

s + 1
+

1

s + 2
+

1

s + 3

(b)
s2 + 1

s3 − s

(c)
(s − 2)(s − 3)(s − 4)

s4 − 1

12. The circuit below is a small signal model of a typical transistor amplifier. You can
assume zero initial voltage across the capacitor.
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vout(t)

(a) Find the transfer function from vin to vout. (This is usually simply refered to as
the transfer function of the amplifier.) Find its poles and zeros.

(b) Find Zin(s), the input impedance of the amplifier, defined as the ratio of Vin(s)
to Iin(s). (Zin is the transfer function from iin to vin.)

(c) Suppose vin(t) = 10mV for t ≥ 0 (i.e., the input is a 10mV step at t = 0). Find
vout(t). How long does it take before vout settles to within 90% of its limiting
value?

13. The circuit below, called a Sallen-Key filter section, is widely used. You can assume
the op-amp is ideal, and both capacitors have zero initial voltage. Note that there are
two free design parameters: the capacitance C (which of course must be positive) and
the (gain) a, which is required to satisfy a ≥ 1.
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vin(t)

10kΩ 10kΩ

10kΩ

(a − 1)10kΩ

C

C

vout(t)

(a) Find the transfer function from vin to vout.

(b) Pick C and a to yield poles at (−104 ± j104)rad/sec.

(c) Suppose we hook up two of the filters you designed in part (b) in cascade, i.e., con-
nect vout of one to vin of the other. Find the transfer function from the remaining
input to the remaining output.

(d) Continuing part (c), suppose that vin(t) = 1V, i.e., a step of one volt is applied
at t = 0 to the (free) input. Find the output voltage.
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14. Stability analysis of a general second order system. Consider the transfer function

H(s) =
b(s)

a(s)
, b(s) = b1s + b0, a(s) = a2s

2 + a1s + a0.

You can assume that b and a have no common roots and a2 6= 0, so the degree of a
is two. What are the conditions on a0, a1, a2, b0, and b1 under which this system is
stable? Try to express your answer in the simplest form. Hint 1: in your analysis
you’ll have to consider the cases a2

1 ≥ 4a0a2 and a2
1 < 4a0a2 separately. Hint 2: the

answer is very simple; it can expressed in one short sentence.

15. Stability analysis of the Sallen-Key filter. Consider the Sallen-Key filter studied in
problem 13.

(a) Find the values of C and a that render the filter stable. If all values of a and C
result in stability, say so. If not, find the conditions that ensure stability. You
can assume that C > 0 and a ≥ 1.

(b) The actual resistance of a real (physical) resistor varies a little bit from its stated
or nominal value. The maximum deviation is called the tolerance. Some typical
tolerances are ±20%, ±10%, ±5%, and ±1%. Components with small tolerances
are more expensive. For example, a (physical) 1kΩ, ±20% resistor can have a real
resistance anywhere between 800Ω and 1200Ω, but is less expensive than a 1kΩ,
±1% resistor, which has a resistance between 990Ω and 1010Ω.

Now suppose you design a Sallen-Key filter with poles at −100 ± 104j. How
accurate (i.e., what tolerance) does the feedback resistor (i.e., the one with value
(a − 1)10kΩ) have to be ensure that the real filter remains stable? Express your
answer as a percentage of its value. Any comments?

To simplify your analysis, you can assume that all the other resistors (and the
capacitors) are perfect, i.e., have zero tolerance. It would be more difficult, but
more correct, to take into account the variations in all component values; this is
what is done in practice.

How do you think this filter would behave as the temperature varies between
−10◦C and +50◦C? (The value 23◦C is often used as the nominal temperature,
i.e., the temperature at which a component is supposed to have its nominal value.)
The temperature coefficient for a typical composition resistor is on the order of
−0.15%/◦C. There are special (and more expensive) resistors that have a much
smaller temperature coefficient.

16. What is e−t ∗ e−2t? (These signals are not defined for t < 0.) Do this two ways: via
Laplace transforms and also via direct integration. Sketch the two signals and their
convolution.

Repeat for e−t ∗ (3δ(t − 1) − 2δ(t − 3)).

17. The signals f and g are plotted below. Plot f ∗ g.
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18. So, you thought problem 12 was safely behind you . . .

(a) Find the impulse response of the amplifier in problem 12 (from vin to vout).

(b) Find the DC gain of the amplifier in problem 12 (from vin to vout). Verify that it
is consistent with the transfer function and the final value of the response to the
10mV step you found. Verify also that your DC gain is consistent with a static
analysis of the amplifier circuit.

(c) Repeat parts (a) and (b) for the Sallen-Key filter. (Just the single filter, not the
cascaded version.)

19. In the circuit shown below you may assume the op-amp is ideal, and the voltage across
each of the capacitors is zero at t = 0.
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1F

1F

vout(t)
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(a) Find the transfer function H from vin to vout. Try to express H in simple form.

(b) Find the poles, zeros and DC gain of H.

(c) Suppose that vin(t) = 1 for t ≥ 0. Find vout(t).

20. The system shown below is described by a transfer function G. The poles of G are at
s = −1 and s = −4; G has only one zero, at s = −2. The DC gain of G is 1.

PSfrag replacements
u(t) y(t)

G(s)

(a) Find the impulse response g(t) of this system.

(b) Suppose that u(t) = e−2t for t ≥ 0. Find y(t).

21. Consider the circuit shown below. You can assume the capacitor voltage and the
inductor current are zero at t = 0.

PSfrag replacements

1H 0.25F

1Ω
vin(t)

vout(t)

Two plots are shown below. The top plot shows the unit step response from vin to
vout, i.e., vout(t) with vin(t) = 1. Note that it exhibits some ringing, i.e., oscillation,
and settles (converges) in about 5sec or so.

The bottom plot shows the desired output voltage, which is vdes(t) = 1 − e−3t. Note
that it exhibits no oscillation and settles quite a bit faster than the step response, i.e.,
in about 1sec.
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Finally, the problem: can you find an appropriate vin(t) such that we have vout = vdes?

If there is no such vin, give your answer as “impossible”. Otherwise, give vin that yields
vout = vdes.

22. An engineer is looking for a function v that satisfies

d4v

dt4
− v = 0, v(0) = 2, lim

t→∞
v(t) = 0.

What can you say about such a v? If you believe no such v exists, give your answer as
“impossible”. If you can give v expicitly, do so. If you can give a qualitative description
of what such a v would look like, do so. Give the most specific answer you can.

23. The top plot below shows the step response of a system described by a transfer function.
Below that is a plot of an input u(t) that we apply to this system. Sketch the response
(output) y(t).
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24. In the circuit at right, vout(0) = 0 and
vin(t) = 1 − e−2t for t ≥ 0.
Find the Laplace transform Vin(s) of vin(t).
Find the output voltage, vout(t), for t ≥ 0.
(Not just its Laplace transform.)
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25. Consider the L-C filter circuit shown below.
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Part 1. Find the transfer function H(s) from vin to vout.

Part 2. Find the unit step response s(t) from vin to vout.

26. Suppose that the raised cosine pulse in problem 2 is applied as the input to the system
of question 6. Discuss what the output will look like, as a function of the parameter
T .

For example, for T large enough, y will also have a shape close to a raised cosine
pulse. Give more details, e.g., how large does T have to be? What is the approximate
maximum amplitude of the output? At what time does this maximum occur?
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What happens if T is very small? What does the output look like then? Roughly how
small does T have to be for your analysis to hold?

When you can, give your discussion in both the time and frequency domain.

27. The plot below shows the unit step response s(t) of a system described by a transfer
function.
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Suppose the input u(t) = sin(2πt) for t ≥ 0 is applied to this system. Sketch the
resulting output at the bottom of this page. Make sure you clearly label the axes and
key features of your plot.

28. Transfer function from rainfall to river height.

The height of a certain river depends on the past rainfall in the region. Specifically,
let u(t) denote the rainfall rate, in inches-per-hour, in a region at time t, and let y(t)
denote the river height, in feet, above a reference (dry period) level, at time t. The
time t is measured in hours; we’ll only consider t ≥ 0.

Analysis of past data shows that the relation between rainfall and river height can be
accurately described by a transfer function:

Y (s) = H(s)U(s), H(s) =
10

(3s + 1)(30s + 1)

(You don’t need to know any hydrology to do this problem, but you might be interested
in the physical basis of this two-pole transfer function. The fast pole is due to runoff
from surface water and small tributaries, which contribute a relatively small amount
of water relatively quickly. The slow pole is due to flow from larger tributaries and
deeper ground water, which contribute more water into the river, over a much longer
time scale.)

A brief but intense downpour. (Parts a and b.) Suppose that after a long dry spell
(i.e., no rain) it rains intensely at 12 inches-per-hour, for 5 minutes. This causes the
river height to rise for a while, and then later recede.
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(a) How long does it take, after the beginning of the brief downpour, for the river to
reach its maximum height? We’ll denote this delay as tmax (in hours).

(b) What is the maximum height of the river? We’ll denote this maximum height as
ymax (in feet).

Note: you can make a reasonable approximation provided you say what you are
doing.

A continual rain. (Parts c and d.) Suppose that after a long dry spell it starts
raining continuously at a rate of 1 inch-per-hour (and doesn’t stop). This causes
the river height to rise.

(c) What is the ultimate height of the river, i.e., yult = limt→∞ y(t)?

(d) A flood occurs when the river height y(t) reaches 8 feet. How long will it take,
after the onset of the steady rain, to reach flood condition? We’ll denote this time
as tflood. If the river never reaches 8 feet, give your answer as ‘never’.

Note: you can make a reasonable approximation provided you say what you are
doing.

29. Reducing the rise-time of a signal.

In a certain digital system a voltage signal should ideally switch from 0V to 5V infinitely
fast, i.e., with zero rise-time. But due to the finite bandwidth of the electronics that
generates the signal, it has the form

vin(t) = 5
(

1 − e−t/T
)

for t ≥ 0

where T = 1µsec. Thus, the signal has a rise-time around a few µsec.

An engineer claims that the circuit shown below can be used to reduce the rise-time of
the signal, provided the component values R and C are chosen correctly. Specifically,
the engineer claims that by choosing R and C correctly, we can have

vout(t) = a
(

1 − e−10t/T
)

for t ≥ 0

where a is some nonzero constant. Thus, the rise-time of vout is a factor of 10 smaller
than the rise-time of vin, i.e., a few hundred nsec.
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Here is the problem: determine whether the engineer’s claim is true or false. If the
claim is true, find specific, numerical values of R and C that validate the claim. If the
claim is false, briefly explain why the engineer’s idea will not work.

(You can assume the circuit starts in the relaxed state, i.e., no charge on the capacitor.
And no, you cannot use negative R or C.)

30. A simple two-way crossover circuit.

A typical high-fidelity speaker has separate drivers for low and high frequencies. (The
driver is the physical device that vibrates to create the sound you hear. The old terms
for the low and high frequency drivers are woofer and tweeter, respectively.)

The circuit shown below, called a speaker crossover network, is used to divide the audio
signal coming from the amplifier into a low frequency part for the low frequency driver
(LFD) and a high frequency part for the high frequency driver (HFD). Since the audio
spectrum is divided into two parts, this is called a two-way system (three-way are also
common).

The amplifier is modeled as a voltage source (which is a very good model), and the low
and high frequency drivers are modeled as 8Ω resistances (which is not a good model
of real drivers, but we will use it for this problem).
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The crossover network is designed so that the transfer function from the amplifier to
each driver has magnitude −3dB at a frequency ωc called the crossover frequency of
the speaker.

(a) Choose C and L so that the crossover frequency is 2kHz. Do this carefully as you
will need your answers in part b.

(b) Using the values found in a, find Zspeaker(s), the impedance of the two-way speaker
seen by the amplifier (as indicated in the schematic).
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Exercises on Fourier Transform

1. Find the Fourier transform of the following signals. In each case sketch a plot of the
signal and its spectrum, i.e., the magnitude-squared of its Fourier transform. For each
signal give a rough idea of its “time-width” and “bandwidth”.

(a) f(t) = te−|t|. Hint: try to use Laplace transforms . . .

(b) The signal

f(t) =

{

sin 10πt 0 ≤ t ≤ 1
0 t > 1 or t < 0

which is called a tone-burst.

(c) f(t) = e−0.2|t| cos 2πt.

(d) A raised cosine pulse of duration T , i.e.,

f(t) =

{

1 + cos(2πt/T ) |t| ≤ T/2
0 |t| > T/2

2. Find the inverse Fourier transform of e−|ω|−jω.

3. Two signals u and y are related by

u(t) = −y(t) + 2
∫ ∞

0
e−τu(t − τ) dτ.

(a) Express this relation in the frequency domain.

(b) What can you say about the two quantities

α =
∫ ∞

−∞
u(t)2 dt, β =

∫ ∞

−∞
y(t)2 dt ?

For example, is one always less than the other, no matter what u is?

4. Consider the function

f(t) =

{

et t ≤ 0
0 t > 0

(a) Find its Fourier transform, f̂ .

(b) Let g denote the function

g(t) =
1

2π

∫ 2

−2
f̂(ω)ejωt dω,

which can be considered an approximation of the Fourier inversion formula in
which we integrate only over the frequency band −2 ≤ ω ≤ 2 instead of all
frequencies.
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Let e(t) = f(t) − g(t), i.e., e is the error between f and the approximation g.
Find the total energy of the error, i.e.,

Eerr =
∫ +∞

−∞
e(t)2dt.

Is the function g a fairly good approximation of f? Why or why not?

5. Fourier coefficients of convolution of periodic signals.

Suppose f and g are both periodic signals with period T . We define the convolution
of f and g as

h(t) =
∫ T

0
f(τ)g(t − τ) dτ.

The function h is also periodic with period T .

Let ck denote the kth complex Fourier coefficient of f (where k = 0,±1,±2, . . .).
Similarly, let dk denote the kth complex Fourier coefficient of g, and let ek denote the
kth complex Fourier coefficient of h.

How do you think ek is related to ck and dk? First guess the relation, and then verify
your answer.

6. Fourier coefficients of product of periodic signals.

Here is yet another time/frequency domain relation we haven’t encountered, but won’t
surprise you. Suppose f and g are both periodic signals with period T . Let h denote
the product of f and g, i.e.,

h(t) = f(t)g(t),

which is also periodic with period T .

Find an expression for the Fourier coefficients of h in terms of the Fourier coefficients
of f and g (which we’ll call ck and dk, respectively).

Hint: If xk and yk are both sequences of real or complex numbers, then we define the
convolution of the two sequences, denoted z = x ∗ y, as

zk =
∞
∑

i=−∞

xiyk−i

(which shouldn’t surprise you; it looks just like our definition of convolution of contin-
uous signals, with summation substituted for integration).

7. Analysis of synchronous demodulation including channel transfer function.

In the lecture notes we analyzed synchronous demodulation assuming the local oscil-
lator signal was exactly the same as the carrier signal, cos ωct. We also assumed that
the channel was just a wire, i.e., the modulated signal was available directly to the
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demodulator. In this problem we (that is to say, you) analyze what happens when
these assumptions don’t hold.

As in the notes, x(t) will denote the signal, which is bandlimited to W . The modulated
signal will be y(t) = x(t) cos ωct, where ωc > W . The modulated signal then passes
through the channel, which has transfer function Hchan. This signal is demodulated by
multiplication by cos(ωct + φ), then lowpass filtering through Hlowpass. This is shown
in the block diagram below.

PSfrag replacements

x(t) y(t) z(t) u(t)

cos ωct cos(ωct + φ)

Hchan(s) Hlowpass(s)

For this problem we will make two simplifying assumptions. You can assume that
Hlowpass is a perfect lowpass filter:

Hlowpass(jω) =

{

1 |w| ≤ W
0 |w| > W

(although a more realistic analysis includes a non-ideal lowpass filter . . . ). You may
also assume that over the band of frequencies between ωc−W and ωc +W , the channel
transfer is approximately constant, and equal to Hchannel(jωc) (which is a complex
number!). This second assumption is often realistic, if W � ωc, and the channel
transfer function doesn’t change too much with frequency.

(a) Find an expression for Z(ω) and U(ω). Your answer will involve the local oscillator
phase angle φ and also the complex constant Hchannel(jωc).

(b) Give an interpretation of what you found in (a). For example, how is u(t) related
to the input signal x(t), and what effect does the phase angle φ have?

(c) Find the ‘best’ phase angle φ for the demodulator. You will have to first think
about, decide, and explain what ‘best’ means here, and then solve the problem.

(d) Consider the case where the channel is a wire, i.e., Hchannel(s) = 1. What happens
if the local oscillator is 90◦ out of phase with the carrier, i.e., φ = ±90◦?

8. Time and frequency widths of a signal.

One specific definition of the time-width of a signal f is the smallest number T such
that 90% of the total energy in the signal is contained in the time interval [−T, T ], i.e.,

∫ T

−T
f(t)2 dt = 0.90

∫ ∞

−∞
f(t)2 dt.
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In a similar way we can define the frequency width as the smallest number W such that
90% of the total energy in the signal is contained in the frequency interval [−W,W ],
i.e.,

1

2π

∫ W

−W
|f̂(ω)|2 dω = 0.90

1

2π

∫ ∞

−∞
|f̂(ω)|2 dω,

where f̂ denotes the Fourier transform of f .

Using these definitions, find the time width T and frequency width W for the signal

f(t) =

{

e−at t ≥ 0
0 t < 0

where a > 0 is a (constant) parameter. (Obviously, your answer will depend on a.)

Hint: you may need the following indefinite integral:

∫ 1

1 + x2
dx = arctan x
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