EE102 Prof. S. Boyd

EE102 exercises

1. Optimizing gains in a two-stage amplifier. Consider the two-stage amplifier described on
page 2-12 of the lecture notes. In this problem you will determine optimal values for the two
amplifier gains a1 and as. The constraints and specifications are:

e The amplifier gains can be varied from 5 (14dB) to 20 (26dB).

e Each of the noises is a voltage with a magnitude no more than 100pV, i.e., |ni| < 1074,
Ing| < 1074

e The input signal voltage ranges between +100mV.

e The gain from the input signal to the output signal must be 100, i.e., if the noises were
zero we would have y = 100u.

e The maximum allowed voltage magnitude is 1V at the output of the first amplifier, and
10V at the output of the second amplifier. (Effects of the noise voltages can be ignored
in this calculation.)

Find choices for a; and as that satisfy the specifications while minimizing the largest possible
effect of the noise voltages at the output. Explain what you are doing, and what your
reasonning is.

2. Small signals. In lecture 1 we mentioned several methods for determining the size of a signal.
Intuition suggests that even though they are not the same, the measures shouldn’t be too
different. After all, a small signal is a small signal, right? In this problem we explore this
issue.

Consider a family of signals described by

_f1/Vd, 0<t<d
u(t)_{o, d<t<l1

for 0 < t < 1, and periodic with period 1 (i.e., the signal repeats every second). The
parameter d, which satisfies 0 < d < 1, is called the duty cycle of the periodic pulse signal.

Sketch the signal for a few values of d. What is its peak, RMS, and average-absolute value?
As the duty-cycle d approaches 0, is the signal getting smaller or larger?

3. A sawtooth signal u has the form u(t) = at/T for 0 <t < T, and is T-periodic (i.e., repeats
every T seconds). The constant a is called the amplitude of the signal, and the constant T’
(which is positive) is called the period of the signal. You can assume that a > 0.

(a) Find the peak value of a sawtooth signal.
(

)
b) Find the RMS (root-mean-square) value of a sawtooth signal.
(c) Find the AA (average-absolute) value of a sawtooth signal.

)

(d) In the space below, sketch the derivative of a sawtooth signal. Be sure to label all axes,
slopes, magnitudes of any impulses, etc.



4. Sample and hold system. A sample and hold (S/H) system, with sample time h, is described
by y(t) = u(h|t/h]), where |a] denotes the largest integer that is less than or equal to a.

Sketch an input and corresponding output signal for a S/H, to illustrate that you understand
what it does.

Is a S/H system linear?

5. CRT deflection circuit. In a CRT (cathode ray tube) the horizontal and vertical deflection of
the light spot are proportional to the currents in the horizontal and vertical deflection coils,
respectively. In a simple raster scan, the spot scans across one row, left to right at a uniform
speed, then rapidly moves down the next row (which is called horizontal retrace). After the
bottom row is scanned, the spot rapidly moves from the bottom right corner of the screen to
the top left (which is called vertical retrace) and starts scanning the next image or frame.

A good electrical model of a deflection coil is an inductance in series with a resistance.

Describe and sketch the current and voltage waveforms for a deflection coil. You can use the
(not so good in practice) assumption that the horizontal and vertical retraces take neglible
time.

6. A voltage source drives a load consisting of a resistance and a capacitance in parallel, as
shown below.

v <j> 10pF —— § 1IMQ

The voltage signal is a rectangular pulse:

o(#) = 5 0<t<10
10, t<Oort>10,
where v is given in V and ¢ is given in usec.

Sketch the current signal ¢. Label the axes and all critical values on your plot, giving physical
units (e.g., mA, psec, ...). If there are impulses in the current, you must give the magnitude
of each impulse. We want to know the ezact signal ¢, not its general form.

7. Some convolution systems. Consider a convolution system,
+oo
yt) = [ ult = )h(r) dr.
—00
where h is a function called the kernel or impulse response of the system.

(a) Suppose the input is a unit impulse function, i.e., uw = 6. What is the output y? (This
explains the terminology above.)

(b) Suppose h = d. What does the system do?



Suppose h is a unit step function. What does the system do?
Suppose h = §’. What does the system do?
Suppose h(t) = §(t —1). What does the system do?

Suppose h is a rectangular pulse signal that is one between 0 and 1. What does the
system do?
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8. Describe the system shown below as an LCCODE. Hint: first label all signals, then write
down how they are related.

/\/fy

9. The circuit shown below is a simple model of a real wire in which we take into account
its (presumably small) inductance, capacitance, and resistance. Describe this system as an
LCCODE. The input is the driving voltage u, and the output is the voltage y at the other
end of the wire.
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10. Block diagram from equations. An interconnected set of systems is described by the following
equations:

v=Au—-v), w=DBv-2), z=C(w).

Here u, v, w, z are signals and A, B, C are systems. You can consider u as the external input
to the interconnected systems, and z as the external output of the interconnected system.

(a) Draw a pretty block diagram representing these equations. Hint: it usually takes two
or three passes to get a pretty block diagram.

(b) Now suppose that the systems A, B, C' are scaling systems with gains a, b, ¢, respectively.
Express z in terms of u. (In other words, eliminate the signals v and w from the
equations. )

11. Consider the block diagram shown below:



The triangle shaped blocks represent scaling systems with gains a, b, and c.

Find a simple mathematical expression for the output y in terms of the input w and the
constants a, b, and ¢. Your answer should be only in terms of the input u and the scale
factors a, b, and c.

12. Commuting systems. We say that two systems A and B commute if the composition or
cascade connection of A and B is the same in either order, i.e., A(B(u)) = B(A(u)) for any
signal u. For example, a linear system commutes with any scaling system (that’s what it
means for a linear system to be homogenous).

Which pairs of the following systems commute?

e a scaling system with gain 3

e an inverter, ¢.e., a scaling system with gain —1
e a delay system with delay 2sec

e a S/H operating at 1 sample/sec: y(t) = u(|t])
e an integrator

e a 1-bit limiter

e a l-second averaging system: y(t) = [/ | u(r) dr

e a square-law system, for which y(t) = u(t)?

(Every system commutes with itself. That leaves 28 other pairs of systems for you to think
about ...)

You might want to organize your answer in a table. You do not have to justify your answers.
13. Find the Laplace transform of the following functions.

(a) f(t)=(1+t—t2)e 3

0 0<t«1
(b) f(t) = 1 1<t<?2
-1 2<t¢

(¢) f(t)=1—e*T where T > 0.



14.

15.

16.

17.

18.

Laplace transform monotonicity properties. Let f and g be two real-valued functions (or
signals) defined on {t|t > 0}. Let F' and G denote the Laplace transforms of f and g,
respectively. We will assume that f and g are bounded, so the Laplace transforms are defined
at least for all s with s > 0.

a) Suppose that f(t) > ¢g(f) for all £ > 0. Is it true that F'(s) > G(s) for all real, positive

S h for all 0. Is'i hat F G(s) for all real it
s? If true, explain why. If false, provide a counterexample.

(b) Is the converse true? That is, if FI(s) > G(s) for all real positive s, is it true that
f(t) > g(t) for t > 07 If true, explain why. If false, provide a counterexample.

Laplace transform of reversed signal. So, you thought we covered all the Laplace transform
rules in lecture 37 Suppose f is a signal that only lasts T seconds, i.e., f(t) =0 for t > T.
Define the signal g by ‘reversing’ f, i.e., g(t) = f(T'—t) for 0 < ¢ < T, and g(t) =0 fort > T.
Express G, the Laplace transform of g, in terms of F', the Laplace tranform of f.

Convolution and the Laplace transform.

(a) Evaluate h(t) = et % e72 using direct itegration. (These signals are not defined for
t<0.)

(b) Find H, the Laplace transform of h, using the expression for h you found in part (a).

(c) Verify that H is the product of the Laplace transforms of e~ and e~%.

The “raised cosine pulse” is a signal used in applications such as radar and communications.
It is defined by

1—cost 0<t<2mw
f(t)_{() t> 2w

and plotted below.

Find F, the Laplace transform of f.

Consider the system shown below.




(a) Express the relation between u and y as an LCCODE. Hint: if the signal z is the output
of an integrator, then its input is the signal z’.

(b) Assuming that y(0) = 3/(0) = y”(0) = 0, derive an expression for Y (the Laplace
transform of y) in terms of U (the Laplace transform of w).

19. Solve the following LCCODEs using Laplace transforms. Verify that the solution you find
satisfies the initial conditions and the differential equation.

(a) dv/dt = —2v+ 3, v(0) = —1.
(b) d%i/dt* + 9i = 0, i(0) = 1, di/dt(0) = 0.

20. Four signals a, b, ¢, and d are related by the differential equations
a+a=>b, bV +b=c, d+c=d,

where a(0) = b(0) = ¢(0) = 0. Express A(s), the Laplace transform of a, in terms of D(s),
the Laplace transform of d.

21. The Laplace transform of a signal ¢ is given by
3—be®

Qls) = s+1

Find q (i.e., describe it explicitly).
22. A signal z satisfies 2"’ + 2" + 2/ + 2 =0, and 2(0) = 2/(0) =0, 2”(0) = 1. Find 2.

23. In the system shown below, k is a gain.

H@H/ S -

(a) For what values of k is this system stable?
(b) For what values of k is this system stable and critically damped?

(¢) For what values of k& do (nonzero) solutions y change sign infinitely often? (We do not
require stability here.)

24. Unity feedback around amplifier. The system shown below consists of an amplifier of gain a,
connected in what is sometimes called a unity feedback configuration. (We’ll study feedback
in more detail later in the course.)

u

o ———




(a) Solve for y(t) in terms of u(t). Your answer should come out in the form y(t) = bu(t)
for some scalar b, which is called the closed-loop gain of the feedback configuration. You
can assume that a # 1.

(b) What is the closed-loop gain b, when a = 0.97 When a is positive and near but smaller
than one, the system is sometimes described as regenerative. (Can you explain why this
name is used?) This configuration is sometimes used to get more gain from a device or
amplifier than you would otherwise have.

(c) The feedback configuration is often used when a is large and negative, say, a ~ —10%.
In this case the system is referred to as a following amplifier. (Can you guess why?)
What is b is this case? How much does b vary as a varies over the 100-fold range from
a = —10% to a = —10°? The answer shows one of the reasons this configuration is used.

25. Conwolution and Laplace transforms. Let u denote a unit rectangular pulse signal that starts
at t = 0 and lasts until ¢t = 1.

(a) Find the signal v = u * u by evaluating the convolution integral directly. Sketch u and
v =wuxu. Hint: v is sometimes called a triangular pulse signal.

(b) Find U and V, the Laplace transforms of u and v, respectively, by directly evaluating the
Laplace transform defining integrals using the expressions for u and v found in part a.
Hint: the indefinite integral of te=*t is — (t/s + 1/s%) e~

(c¢) Find V from U using the convolution formula for Laplace transforms and verify you get
the same result.

26. Thermal runaway. A conductor with resistance R carries a fixed positive current ¢, and hence
dissipates a power P = i?R. This causes the conductor to heat up (hopefully not too much)
above the ambient temperature.

Let T'(t) denote the temperature of the conductor above the ambient temperature at time ¢.

T satisfies the equation
al' = —bT + P

where a > 0 is the thermal capacity of the conductor (in J/°C), b > 0 is the thermal
conductivity (in W/°C), and P is the power (in W) dissipated in the conductor.

The resistance R of the conductor changes with temperature according to
R = Ro(l + CT)

where the constant ¢ (which has units 1/°C) is called the resistance temperature coefficient
(or just ‘tempco’) of the conductor, and Ry > 0 is the resistance of the conductor at ambient
temperature. Depending on the material of the conductor, the tempco ¢ can be positive or
negative; for example, for metal wires the tempco is positive. (The formula above is valid
only over a range where 1 + ¢ > 0.)

(a) Consider a metal wire, for which ¢ > 0. If the current ¢ is smaller than a critical value
ierit, the temperature T' converges to a steady-state value as t — oo. If the current ¢
is larger than this critical value of current, then the temperature T' converges to oo as
t — oo. (In practice, the temperature increases until the conductor is destroyed, e.g.,
melted.) This phenomenon is called thermal runaway.

Find the critical value i, above which thermal runaway occurs. Express the answer
in terms of the other constants in the problem (a,b, Ry, ¢).



(b) Suppose the wire is initially at ambient temperature, i.e., T'(0) = 0, and the constants
have the values

a=1J/°C, b=05W/°C, i=10A, Ry=1Q, c=0.01/°C
Find T'(¢) for t > 0

27. A voltage v(t) is applied to a DC motor. A simple electrical model of the motor is an
inductance L in series with a resistance R, so the motor current i(t) satisfies

Ldi/dt + Ri = v.

The motor shaft angle is denoted 6(t), and the shaft angular velocity w(t) (so we have w =
df/dt). The motor current puts a torque on the shaft equal to ki(t), where k is the motor
constant. The shaft rotational inertia is J and the damping coefficient is b. Newton’s equation
is then:

Jdw/dt = ki — bw.
Assuming that i(0) = 0, (0) = 0, and w(0) = 0, express © (the Laplace transform of ) in
terms of V' (the Laplace transform of v).

The numbers L, R, k, J, b are all positive constants.

28. What does the following circuit do? Assume v1(0) = 0 and v2(0) = 1.
Hint: Show that d?vy(t)/dt? + w?vi(t) = 0, where w = 1/(10kS2 - 0.01uF).

10k + U (t) — + UQ(t) —
/\/\/\/V | | | |
| |
O1uF O1pF
10k$2 10kQ
W~ | ok
+ >
+

29. An RCRC circuit. Consider the circuit shown below. For ¢ < 0, vjy(t) = 1V and the circuit
was in static conditions. For ¢ > 0, vi, () = 0V.

10 1Q

—HWW—— W

vin(t) C_’) IF —— 0.5F == wvou(t)




(a) Find vy at t = 0, immediately after v;, has switched to OV.

d
(b) Find Yout ot t = 0, immediately after v;, has switched to OV.

dt
(c¢) Find voyt at t = 1.

30. The waveform shown below is the current in a series RLC circuit. The value of the resistor

is 10012.

1
0.8}
0.6}
0.4}
0.2}
=
=
= .02}
0.4
-0.6
-08H
1 2

(a) Estimate L and C.

14 16

(b) About how long will it be before 99% of the initial stored energy in the circuit has

dissipated?

31. Adding inductance to improve decay rate of a cable. A long cable, driven by a voltage source
at one end and with a high impedance load at the other, is modeled as a resistance Rcapie,
inductance Lcaple, and capacitance Ceaple, as shown below.

Rcable Lcable

e

AMN—v57

C’Cable N

Vout



32.

As a measure of how fast the cable can react to the driving voltage, we use the decay rate of
the system, when the voltage source vy, switches to 0V and stays at 0V. Recall that the decay
rate is defined as D = — max{RA1, RA\2}, where A\; and A9 are the roots of the characteristic
polynomial of the system (with v, = 0). Thus, the system has positive decay rate, and a
larger decay rate means that v,y converges to zero faster.

An engineer suggests that adding an extra inductance Leytrs in series with the driving voltage,
as shown below, might increase the decay rate of the cable.

Lextra Rcable L cable

ST —ANN—v——

Vin <t> C'cauble —— Vout

A second engineer responds: “Adding inductance is crazy! It’s precisely the inductance that
slows the cable, by fighting changes in current. Adding inductance will make the cable system
slower, i.e., decrease the decay rate.”

For the rest of this problem you can use the specific values

Reaple = 200082, Leaple = 100pH, Ceable = 0.01uF.

Finally, the problem: find the value of Lextra that yields the maximum possible decay rate
for the cable. (Of course you must have Lextra > 0.)

If your choice is Lextra = 0, you are agreeing with the second engineer quoted above.
Explain the reasoning behind your choice of Lextra. We want a specific number for Leytra, not

a formula involving other problem parameters.

The RLRC circuit. In the series RLC circuit, current flow causes power to be dissipated in
the resistor as heat. In the parallel RLC circuit, voltage causes power to be dissipated. In
the RLRC circuit shown below, power is dissipated by both mechanisms.

Rs iL

(a) Find an LCCODE of the form
avl + vl + cv. = 0

that describes this circuit.

10



(b) Find an expression for the rate of change of the total stored energy, i.e.,

d <LiL(t)2 N C’vc(t)2> |

dt 2 2

in terms of i,(¢) and vc(t). Give one sentence interpreting your result.

33. Transition from overdamped to critically damped to underdamped. Consider three series RLC
circuits with the same inductance and capacitance, L = 1H, C = 1F, and the same initial
conditions: 1V across the capacitor and zero current in the circuit. The resistors in the three
circuits differ slightly: in the first circuit we have R = 1.99(Q; in the second circuit we have
R = 2Q), and in the third circuit we have R = 2.01¢).

R

1H IE (1)

You know from lecture 4 that the formulas for the solution v(t) (the voltage across the
capacitor) of these three circuits are quite different: In the first case, v(t) is an exponentially
decaying sinusoid; in the second, it is the sum of an exponential and a term involving ¢ times
an exponential; in the last case, v(t) is a sum of two decaying exponentials.

One student says:

The voltage response is quite different in these three cases: in the first case the
voltage crosses the value zero infinitely often; in the second and third cases, just once
or maybe twice. So the solutions of these three circuits are indeed very different,
even though the three resistor values are so close. The reason is that the value
R = 2Q) is a “critical value” for this circuit, as seen in the formulas for lecture 4.
It’s not surprising that the solution of a circuit changes drastically as the resistance
varies near a “critical value”.

A second student then responds:

Something is fishy here. I don’t see how such a miniscule change in the resistor
value can have such a great effect on the voltage across the capacitor. It just
doesn’t make physical sense to me. In fact, now that I think about it, exact critical
damping can never be achieved in practice since it requires knowing the inductance,
capacitance, and resistance with infinite precision, which is impossible.

(a) Who is right? Briefly discuss.

(b) Check your claims by plotting the three voltage waveforms using Matlab. (You might
need to go back and change your answer to (a)!)

34. In the circuit shown below, vy (0) = 0 and vi,(t) = 1 — e~ 2 for t > 0.

11
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Uin(t) 1IF ___— out (t)

Find the output voltage, vout(t), for ¢ > 0.

35. The vertical dynamics of a vehicle suspension system, when the vehicle is driving on level
ground, are given by
(my +my)d” (t) + bd'(t) + kd(t) = 0.

Here

e ¢ is time (in seconds)

e d(t) is the vertical displacement of the vehicle, with respect to its neutral position (in
meters)

e m, = 103kg is the vehicle mass
e my; >0 (also given in kg) is the mass of the vehicle load (passengers, cargo, etc.)
e b=2.2-10"N/m/s is the suspension damping

e k= 10°N/m is the suspension stiffness

The initial conditions are d(0) = 0.1m, d'(0) = Om/s.

What is the smallest load mass m; for which d is oscillatory? (By oscillatory, we mean that
d(t) passes through zero infinitely many times.)

36. Stopping a DC motor.

+ shaft

} AN

A DC motor is characterized by v = kw + Ri + Li’ where

motor

e v is the voltage at its electrical terminals
e ¢ is the current flowing into its electrical terminals
e w is the rotational velocity of its shaft (in rad/sec)

e R is the resistance of the motor winding

L is the inductance of the motor winding

12



37.

38.

e k is a constant called the motor constant

The resulting torque on the shaft is given by 7 = k1.

A common mechanical model for the shaft and its load is a mechanical resistance b and a
rotational inertia J. Newton’s law, which states that Jw’ is equal to the total applied torque
on the shaft, is then Jw' = —bw + 7.

To simplify your calculations, we’ll assume the constants are
R=1 L=1, k=1, J=1, b=1
(with, of course, the appropriate physical units).

For t < 0, the motor is used for some purpose (which doesn’t concern us), so we have some
(nonzero) initial current i(0) and initial rotational velocity w(0).

Our job is to stop the motor for ¢t > 0, i.e., cause w(t) to converge to zero as t — oo. This
is done by connecting its terminals to a resistance Reyt > 0 (the subscript ‘ext’ stands for
‘external’), which results in v = — Rexyi.

What value of Reyy results in the motor velocity w converging to zero fastest?

One engineer argues that the best thing to do is to set Rext = 0, i.e., just short circuit the
motor. His argument is very simple: “applying a voltage to the motor is what makes it go,
so to make it stop, set the voltage to zero by shorting the motor.”

Do you agree? (IL.e., is the best value Rexy = 07)
For each of the following rational functions, find the poles and zeros (giving multiplicities of

each), the real factored form, the partial fraction expansion, and inverse Laplace transform.
(In some cases, the expression may already be in one of these forms.)

1 1 1

(a) S+1+s+2+s+3
52

) 5

(© (5—2)(554—_31)(5—4)

Response of an RC circuit to a voltage ramp. In the simple RC' circuit shown below, the
source voltage is given by
'Uin(t):{ ? i;g
(which is called a 1V /sec voltage ramp). The capacitor is uncharged at ¢ = 0.
Find vt (t) for ¢ > 0.
10

WW—

Vin (1) IF ——  wout(t)
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39. In the circuit below, v, (t) = 1 —e~2 for ¢t > 0, and the capacitor is uncharged at ¢ = 0. Find
Vout (t) for ¢ > 0.

Vin 10 Vout

40. In the circuit below, the current i is a unit ramp at t = 0, i.e., i(t) = ¢ for t > 0. The inductor
current and capacitor voltage are both zero at ¢ = 0.

Find v(t) for t > 0.

i <> 0.5F 2H v

41. Four functions fi1, fo, f3, and f4, are shown below. Their Laplace transforms are Fy, F5, F3,
and Fy, respectively. You can assume Fi, ..., Fy are rational functions, with no more than
three poles (counting multiplicities).

Please note carefully the vertical scales — they are not the same!

14
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Estimate the poles of Fi,...,Fy, using the smallest number needed to give a reasonable

match. If you can get a reasonable match with one pole, then give just one pole; if two poles
suffice then give just two. Give three poles only if three poles are required to match the given

fi-

o We want specific numbers, not just qualitative answers such as ‘one positive real, one
complex pair’ or o + jw (without specifying o or w). Make clear indications on the plots
how you got the numbers.

e Give complex poles separately, as in ‘1 4+ 7, 1 — j'; we will not automatically supply
conjugates of complex numbers.

e Give multiple poles by repeating them in your answers, e.g., ‘—3, —1, —1’ (meaning, one
pole at s = —3, and another pole of multiplicity two at s = —1).

42. In the circuit below, the capacitors are uncharged at t = 0, the voltages vy, and vy are
referenced to ground, and the op-amp is ideal.

1F 10

Ui (t) ._| i A >

— Vout (t)
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Find the DC gain, poles, and zeros of the transfer function from v;, to voyu. If the poles
and/or zeros ar repeated, be sure to give the multiplicity.

43. In the circuit below, the capacitors are uncharged at ¢t = 0, the voltages vy, and vy are
referenced to ground, and the op-amp is ideal.

C1
onlt) o—f =\ .
"

— Vout (t)

(a) Find the poles and zeros of the transfer function from wvj, to voyu. If the poles and/or
zeros are repeated, be sure to give the multiplicity.

(b) Now let Ry = 1€. Find numerical values for R;, C1, and Cs, so that the impulse response
from i, t0 Voyt is 22 — e3¢t (There might be several solutions; we just want one.)

44. Pharmacokinetics. When a drug is administered to a patient, its concentration first rapidly
increases, and then decays over a much longer period. The period of rapid increase is called
the uptake phase, and the period of slower decay is called the absorption or decay phase.

The figures below shows a typical plot of concentration xz(t) versus time, with ¢ measured in
hours after the drug is administered. (The concentration might be measured in milligrams/cm3,
but it doesn’t matter to us.) The first plot shows the concentration x(¢) over a time range
0 <t <20, which shows the decay phase well. The second plot shows the same concentration
x(t) over the shorter range 0 < ¢ < 1, which shows the uptake phase well.

16



45.

0.8
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A common (approximate) model is that the concentration z satisfies a second order au-
tonomous LCCODE:
2" +bx’ + cx = 0.

Estimate the coefficients b and ¢ that (approximately) describe the z(t) shown in the two
plots above.

You must explain how arrive at your estimates.

Modeling population dynamics. The plot below shows the population (in millions) of some
species over a period of 20 months. (The population is so large that we consider it to be a

real number, ignoring the fact that it must be an integer.) As you can see, it is characterized
by periodic oscillations above and below a steady growth.

17



46.

161 B
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A very simple way to model population dynamics is to give an autonomous linear constant
coefficient differential equation that it (approximately) satisfies, of the form

aoy + ary + -+ an 1y +yM =0,
where y(t) is the population (in millions) at time ¢ (in months). Note that we have set the

nth order coefficient to be 1, so the order of this equation is n.

Find ag,...,a,—1 that model the plot shown above. Use the smallest degree (i.e., n) that
you can.

You must explain how you arrive at your coefficients (in the blank space on the facing page).
Put your final differential equation in the box at the bottom of the facing page, in a form
such as —2y + 3.6y + ¢ — 3.1y3) 4+ ¢4 = 0 (which is not the answer, by the way).

An engineer is looking for a function v that satisfies

d*v .
i 0, v(0) = 2, tliglo v(t) = 0.

What can you say about such a v? If you believe no such v exists, give your answer as
“impossible”. If you can give v expicitly, do so. If you can give a qualitative description of
what such a v would look like, do so. Give the most specific answer you can.

47. Consider the circuit shown below.
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48.

49.
50.

51.

1H
— T

2 +4cost <i> 1F — — 10 § Vout

(a) Suppose that the circuit is in periodic steady-state. Find voy ().

(b) Suppose that the inductor current and capacitor voltage at ¢ = 0 are both zero. Find
Vout (). Does voys(t) converge to the periodic steady-state solution you found in part
(a), as t — 00? What are the poles of the Laplace transform of voy?

How critical is critical damping? We consider the second order LCCODE ay” + by’ + cy = 0,
with a,b,c > 0. We assume that a and c are fixed, and consider the effect of the parameter b
on the asymptotic decay rate of the system, defined as D = — max{RA;, RA\2}, where \; are
roots of the characteristic polynomial. (Thus, D is positive; large D corresponds to a fast
decay rate.) You know that the choice of b given by b = byt = 2v/ac gives the maximum
value of D, which is Dt = \/%.

Find the range of b for which the decay rate is at least 90% of the maximum possible decay
rate, Deit. If you can express your answer as a percentage above and below be.it, do so.

Suppose that f satisfies d>f/dt> = f, f(0) = 1, df /dt(0) = d?f/dt*>(0) = 0. Find f(t).

Positive real zeros and sign changes in f. Suppose that F'(z) = 0 for some real, positive z.
You may assume that z is such that the defining integral for the Laplace transform converges.
Show that f must change sign, ¢.e., assume both negative and positive values at various times.
Another way to say this is, f cannot be nonnegative for all ¢ > 0 or nonpositive for all ¢ > 0.

Defibrillators. (This problem is from EE101, and is here because the next problem continues
it.) A defibrillator is used to deliver a strong shock across the chest of a person in cardiac
arrest or fibrillation. The shock contracts all the heart muscle, whereupon the normal beating
can (hopefully) start again. The first defibrillators used the simple circuit shown below.

= 10k(2
Ry, 0 s D

Vs C_f) C = 20uF T § Repest = 5009

With the switch in the standby mode, indicated as ‘S’, the 20uF capacitor is charged up by
a power supply represented by a Thevenin voltage vs and Thevenin resistance Ry, = 10kS).
When the switch is thrown to ‘D’ (for ‘defibrillate’), the capacitor discharges across the
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patient’s chest, which we represent (pretty roughly) as a resistance of 500€2. (The connections
are made by two ‘paddles’ pushed against the sides of the chest.)

On most defibrillators you can select the ‘dose,’ i.e., total energy of the shock, which is usually
between 100J and 400J.

(a) Find vs so that the dose is 100J. You can assume the capacitor is fully charged when
the switch is thrown to ‘D’. We’ll use this value of vs in parts 1b, 1c, and 1d.

(b) How long after the switch is thrown to ‘D’ does it take for the defibrillator to deliver
90% of its total dose, i.e., 90J?

(c) What is the maximum power ppax dissipated in the patient’s chest during defibrillation?

(d) Our model of the chest as a resistance of 50012 is pretty crude. In fact the resistance
varies considerably, depending on, e.g., skin thickness. Suppose that the chest resistance
is 100012 instead of 500€2. What is the total energy FE dissipated in the patient during
defibrillation?

52. An improved defibrillator. One problem with the defibrillator described in problem 1 is that
the maximum power pmax (Which you found in part 1c) is large enough to sometimes cause
tissue damage. An electrical engineer suggested the modified defibrillator circuit shown below.
The inductor is meant to ‘smooth out’ the current through the chest during defibrillation,
and yield a lower value of pyax for a given dose.

Rth =1 OkQ

Vs C = 20uF —— Rehest = 50092

(a) Find the value of L that yields critical damping. We’ll use this value of L in parts 2b
and 2c.

(b) Find vs so that the dose is 100J. You can assume the capacitor is fully charged when
the switch is thrown to ‘D’.

(¢) Suppose vs is equal to the value found in part 2b. What is the maximum power pmax
dissipated in the patient’s chest during defibrillation?

53. Consider the circuit shown below. You can assume the capacitor voltage and the inductor
current are zero at t = 0.
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54.

1H
—_ 0.25F

Vout (t)
Vin (t)

I

Two plots are shown below. The top plot shows the unit step response from v;, to vout,
i.e., Uout(t) with vi, () = 1. Note that it exhibits some ringing, i.e., oscillation, and settles
(converges) in about 5sec or so.

The bottom plot shows the desired output voltage, which is vges(t) = 1 — 73!, Note that it
exhibits no oscillation and settles quite a bit faster than the step response, i.e., in about 1lsec.

Unit step response

Vout (t)

|
0 1 2 3 4 5 6 10
t

Desired output response

Udes (t)

10

Finally, the problem: can you find an appropriate viy(t) such that we have vyt = vges?
If there is no such vy, give your answer as “impossible”. Otherwise, give vy, that yields

Vout = Udes-

In the circuit shown below, vou(0) = 0 and vy, (t) = 1 — e~ 2! for ¢ > 0. Find the Laplace
transform Vi, (s) of vin(t). Find the output voltage, vout(t), for ¢ > 0. (Not just its Laplace
transform.)
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55.

56.

1Q

Uin(t) 1IF ___— out (t)

Reducing the rise-time of a signal. In a certain digital system a voltage signal should ideally
switch from OV to 5V infinitely fast, i.e., with zero rise-time. But due to the finite bandwidth
of the electronics that generates the signal, it has the form

vin(t) =5 (1 — e_t/T) fort >0

where T' = 1usec. Thus, the signal has a rise-time around a few usec.

An engineer claims that the circuit shown below can be used to reduce the rise-time of the
signal, provided the component values R and C are chosen correctly. Specifically, the engineer
claims that by choosing R and C correctly, we can have

Vout(t) = a (1 - e_mt/T) fort >0

where a is some nonzero constant. Thus, the rise-time of vy, is a factor of 10 smaller than
the rise-time of vy, i.e., a few hundred nsec.

C

| |

N
A .

Vin (t) R 1k Vout (t)

Here is the problem: determine whether the engineer’s claim is true or false. If the claim is
true, find specific, numerical values of R and C that validate the claim. If the claim is false,
briefly explain why the engineer’s idea will not work.

(You can assume the circuit starts in the relaxed state, i.e., no charge on the capacitor. And

no, you cannot use negative R or C'.)

The top plot below shows the step response of a system described by a transfer function.
Below that is a plot of an input w(t) that we apply to this system. Sketch the response

(output) y(t).
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57. Find the unit step response, from input current to shaft angle, of the DC motor described
in lecture 8. What is the asymptotic angular velocity, i.e., what does the angular velocity
approach as t increases? Can you give a physical interpretation of your result?

58. In the circuit shown below you may assume the op-amp is ideal, and the voltage across each
of the capacitors is zero at t = 0.

1F
| |
B
1Q
-
1F 2Q)
| | >
e )
+
Uin(t) Uout(t)

1 1

(a) Find the transfer function H from vy, to veut. Try to express H in simple form.
(b) Find the poles, zeros and DC gain of H.
(c) Suppose that viy(t) =1 for ¢t > 0. Find vy (t).
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59.

In the circuit below, viy(t) = 2sin(5¢t) for t > 0, Ry = Ry = 1, C = 1F, and the capacitor
is initially uncharged at ¢t = 0. Find vout(t) for ¢ > 0.

Ry

Vin Ry C T Uout

60. A cascade system with repeaters. This problem concerns the block diagram shown below.

61.

The system consists of four cascaded subsystems: two identical channels, denoted C', and two
identical repeaters, denoted R. The input signal u first propagates through a channel, then
a repeater, then another channel, and finally a repeater.

Each channel C' is described by a differential equation relating its input and output. If a is
the input signal and b is the output signal of C, i.e., b = Ca, we have

b +b=a.

You can assume that the initial condition of each of the channels is zero, i.e., v(0) = y(0) = 0.

The repeaters are described as follows. If a is the input signal to a repeater R and b is the
output signal (i.e., b = Ra), we have

1 ifa)>05
b(t) = { 0 ifa(t) <05

for all ¢ > 0. In other words, the repeater puts out 1 when the input signal is at least the
threshold value 0.5, and puts out 0 when the input signal is less than the threshold.

Finally, the problem. The input signal u is a unit step at ¢t = 0, i.e., u(t) = 1 for ¢ > 0. Find
the output signal z.

Pole location miz and match. The plots shown at the end of this problem show five different
signals (i.e., functions of time), labeled a, b, ¢, d, and e.

We are interested in the poles of the Laplace transform of each signal. For each signal, identify
the poles from the eight choices given below, which are labeled I, ..., VIIIL. For example,
give your answer for b as II, if you believe that B(s) has two poles, at s = —2 + 0.3 and
s=-2—0.3j.

Here are the choices for poles (which include multiplicities):
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L —02+j, —02—j
II: —2+0.3j, -2 — 0.3

IIT: —4, —0.01
IV: 0, 0.2+ j, —0.2 — j
V: 0.4, —12

VI: —0.05+ j, —0.05 — 7, 0.015 + 5, 0.015 — 5
VII: —0.05, 0.015+ j, 0.015 —j
VIII: 0,0, —1
Each of these choices of poles corresponds to at most one of the given signals, though, of

course, some of the above choices correspond to none of the signals. Please note that the
scales of the plots matter!
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62. Oscillation frequencies of a coupled mass-spring system.

This problem concerns the mechanical system shown below. A mass m; is connected via a
spring with stiffness k1 to a rigid wall (shown as the dark bar at left) and also, via a spring
with stiffness kg, to a second mass mg. The displacements of the masses (with respect to the
equilibrium positions) are denoted d;(t) and da(t), respectively.
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di(t) da(t)

—_———— —_————

]{31 k2

This two mass system is governed by Newton’s equations of motion, which are

mid] = —kidy + kao(da —di),  mody = —ky(dy — dy).

For simplicity, we’ll use the specific numbers
mip = mg = 1kg, ]{21 = 1{22 = 1N/II1,

(and, of course, we measure t in seconds and the displacements in meters).

The general form of dy (and, for that matter, dy) is given by
do(t) = A cos(wit + ¢1) + Az cos(wat + ¢2),

where the constants Ay, Az, ¢1, ¢2 are determined by the initial conditions. Find the two
frequencies wy and wsy. You can give your answer in an analytical form, or in numerical form
(to three significant figures).

63. The system shown below is described by a transfer function G. The poles of GG are at s = —1
and s = —4; G has only one zero, at s = —2. The DC gain of G is 1.

u(t) a(s) y(t)

(a) Find the impulse response g(t) of this system.
(b) Suppose that u(t) = e~ for ¢t > 0. Find y(t).

64. The signals f and g are plotted below. Plot f * g.
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Find (positive) R and C' such that:

e The (magnitude of the) DC gain is +12dB.

e The magnitude of the transfer function at the frequency 1kHz is 3dB less than the
magnitude of the DC gain.

You can assume the op-amp is ideal. Give numerical values for R and C. An acurracy of 10%
will suffice.

66. A feedback system with two disturbances. The system below shows a feedback system, with
input u, output y, and two disturbance signals, d; and da (that are also input signals). The
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two systems A and B are scalar gains, with gains a and f3, respectively. (In this context a
is called the forward gain and 3 is called the feedback gain.) Note that on the left we have a
difference junction; on the right and bottom we have summing junctions.

dy

(a) Express y in terms of u, dy, and d2. You can assume that af # —1.

(b) Now consider the (typical) values a = 105, 3 = 10~2. Which of the two disturbances has
a greater effect on the output y, assuming the disturbances have the same size? Your
answer must be one of:

e d; (i.e., di has a greater effect on y than ds)
e dy (i.e., dy has a greater effect on y than d;)
e the same (i.e., di and dp have the same effect on y)

e can’t determine (i.e., we can’t determine which disturbance has the greater effect
on y, from the data given)

67. A motor controller. In the feedback system shown below, the plant is a DC motor. Its input
is the applied motor voltage vyotor, and its output is the motor shaft angle 6. The controller
is a simple proportional controller with a gain of 2, i.e., C(s) = 2. The plant transfer function

is
1

Pmotor(s) = m

Ocma + e Umotor 0

C(s) P(s)

(a) Find the (closed-loop) transfer function 7" from the commanded shaft angle g to the
motor shaft angle 6.

(b) Suppose that 0.pq is a unit step. Find the motor shaft angle 6(t), and the motor voltage

Umotor (t) .
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68.

69.

A simple two-way crossover circuit. A typical high-fidelity speaker has separate drivers for
low and high frequencies. (The driver is the physical device that vibrates to create the sound
you hear. The old terms for the low and high frequency drivers are woofer and tweeter,
respectively.)

The circuit shown below, called a speaker crossover network, is used to divide the audio signal
coming from the amplifier into a low frequency part for the low frequency driver (LFD) and a
high frequency part for the high frequency driver (HFD). Since the audio spectrum is divided
into two parts, this is called a two-way system (three-way are also common).

The amplifier is modeled as a voltage source (which is a very good model), and the low and
high frequency drivers are modeled as 82 resistances (which is not a good model of real
drivers, but we will use it for this problem).

Uamp(t) Ct Zspeaker - 3

The crossover network is designed so that the transfer function from the amplifier to each
driver has magnitude —3dB at a frequency w, called the crossover frequency of the speaker.

(a) Choose C' and L so that the crossover frequency is 2kHz. Do this carefully as you will
need your answers in part b.

(b) Using the values for L and C found in 8a and 8b, find Zgpeaker($), the impedance of the
two-way speaker seen by the amplifier (as indicated in the schematic).

Stability analysis of a PI controller. Suppose that PI control,

k.
C(S) = kp + f)
is used with the plant
1
Pls)= ———-
() s2 425+ 2’
in the standard feedback control configuration:
ro Y
C P
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Find the conditions on k, and k; for which the closed-loop transfer function 7" from r to y is
stable. You can assume that k, > 0 and k; > 0.

Express your conditions in the simplest form possible.

70. Local versus global feedback: dynamic analysis. We consider two amplifiers, each with a
transfer function H(s) = 100/(1 + s). We are going to use these amplifiers, together with
feedback, to design a system with DC gain 40dB. (Roughly speaking, then, we have 40dB of
‘extra’ gain.)

Global feedback. In this arrangement we connect the two amplifiers in cascade, and then use
feedback around the cascade connection, as shown below.

u H(s) _ H(s) yglobr

&

Local feedback. In this arrangement we use feedback around each amplifier, and then put the
two closed-loop systems in cascade, as shown below. (To simplify things, we’ll assume the
two feedack gains are the same.)

U Yloc

H(s) H(s)

In both arrangements, the feedback consists of a positive gain (independent of s).

a) Find the value of fy1,p that makes the closed-loop DC gain from u to ygob, in the global
g g
feedback arrangement, equal to 40dB.

(b) Find the value of fj,. that makes the closed-loop DC gain from u to ¥, in the local
feedback arrangement, equal to 40dB.

We'll define the settling time of a system as the time it takes for the unit step response
to settle to within about 10% of its final (asymptotic) value. If the system is unstable,
we’ll say the settling time is co.

(c) Using the value for fgop found in part 3a, find the settling time Ty of the global
feedback system.

(d) Using the value for fi,. found in part 3b, find the settling time Tj,. of the local feedback
system.
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(e) Give a one sentence intuitive explanation of the results of 3¢ and 3d.

(f) You can estimate the settling times, provided you explain how you obtain the estimate.
An accuracy of £30% is fine.

71. Step response of cascaded systems. A system described by a transfer function has the step
response shown below.

Now suppose that two such systems (i.e., each with the step response shown above) are
connected in cascade. At the bottom of this page sketch the step response of the resulting
cascade connection. Make sure that all critical parts of your plot are clearly labeled. Be sure
to make clear which portions of your plot are curved or straight.

72. The unit step response s(t) of a system described by a transfer function H, which has three
poles, is shown in the two plots below. The two plots have different ranges; the second plot
allows you to see details for small t.

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.15+ B
= o1f |

0.05f b

0 1 1 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
t

(a) Estimate the poles. An accuracy of £20% is acceptable.
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(b) At high frequencies |H (jw)| becomes small. From the data given, can you determine
the rate at which it decreases for large frequency (e.g., 12 db/octave)? Either give the
rate (in dB/octave) or state “cannot determine” if the data given is not sufficient to
determine the high-frequency rolloff rate.

73. Analysis of a vehicle suspension. A vehicle moves at a constant speed over a road surface.
The suspension is modeled as a spring and a shock absorber between the vehicle and the
wheel, which is assumed to remain in contact with the road. The height of the vehicle (above
or below some reference level), at time ¢, is denoted h(t). The height of the road surface at
the wheel (above or below some reference level), at time ¢, is denoted r(t). This is illustrated
below.

vehicle

\:J shock absorber

<--—=

spring

road surface

<--=>
=

wheel -

Newton’s equation for the (vertical) motion of the vehicle is

d’h d
g = —k(h(t) = r(0)) — b2 (h(t) = 7(1)
where m is the vehicle mass, k is the spring stiffness, and b is the mechanical resistance of

the shock absorber. In this problem you can use the values

Note: you do not need to know (remember?) any mechanics, how a suspension or shock
absorber works, etc. All you need is the equation given above.

(a) Running over a sinusoidal road surface. Suppose the road surface is sinusoidal: r(t) =
cos2t. You can assume the vehicle height h is also sinusoidal. Find the RMS value of
the vehicle height h. (This RMS value can serve as a measure of how smooth the ride
is.)

(b) Find the transfer function G(s) from the road height r to the vehicle height h.

(¢) Running over a curb. Suppose that the road height r(¢) is 0 for ¢t < 0 and 1 for ¢ > 0. In
other words, the vehicle is running over smooth, level ground until it hits a unit height
curb at ¢ = 0. You can assume that for t < 0, h(t) = 0 (and hence, dh/dt = 0). Find
the vehicle height h(t) for ¢ > 0 (i.e., after it hits the curb).
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74. Transfer function from rainfall to river height. The height of a certain river depends on the
past rainfall in the region. Specifically, let u(t) denote the rainfall rate, in inches-per-hour, in
a region at time ¢, and let y(¢) denote the river height, in feet, above a reference (dry period)
level, at time t. The time ¢ is measured in hours; we’ll only consider ¢ > 0.

Analysis of past data shows that the relation between rainfall and river height can be accu-
rately described by a transfer function:

10

Y(s) = HU), H(s) = mym0, 11

(You don’t need to know any hydrology to do this problem, but you might be interested in the
physical basis of this two-pole transfer function. The fast pole is due to runoff from surface
water and small tributaries, which contribute a relatively small amount of water relatively
quickly. The slow pole is due to flow from larger tributaries and deeper ground water, which
contribute more water into the river, over a much longer time scale.)

A brief but intense downpour. (Parts a and b.) Suppose that after a long dry spell (i.e., no
rain) it rains intensely at 12 inches-per-hour, for 5 minutes. This causes the river height to
rise for a while, and then later recede.

(a) How long does it take, after the beginning of the brief downpour, for the river to reach
its maximum height? We’ll denote this delay as tyax (in hours).

(b) What is the maximum height of the river? We’ll denote this maximum height as ymax
(in feet).
Note: you can make a reasonable approximation provided you say what you are doing.

A continual rain. (Parts ¢ and d.) Suppose that after a long dry spell it starts raining
continuously at a rate of 1 inch-per-hour (and doesn’t stop). This causes the river height
to rise.

(¢c) What is the ultimate height of the river, i.e., yur = limy—o0 y(¢)?

(d) A flood occurs when the river height y(t) reaches 8 feet. How long will it take, after the
onset of the steady rain, to reach flood condition? We’ll denote this time as tgooq. If the
river never reaches 8 feet, give your answer as ‘never’.

Note: you can make a reasonable approximation provided you say what you are doing.

75. Wire with repeater amplifier. A voltage source drives a long cable, which has significant
capacitance and series resistance (but negligible inductance). A repeater amplifier (shown as
a triangle) is inserted halfway down the cable. The output voltage of the repeater amplifier
(on its right) is exactly equal to its input voltage (on its left), and no current flows into its
input terminal. A simple electrical model of this is shown below.

(Note that we have chosen simple, but unrealistic, numerical values for the wire series resis-
tance and capacitance, so you don’t have to worry about picofarads or nanoseconds here.)

You can assume both capacitors are uncharged at t = 0.
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10 | 1Q

Vin 1F —— 1F —— %Yout

(a) Find the transfer function H from vi, to vout.

(b) Suppose the voltage source viy is a unit step. Find vgy.

76. Sketch the Bode plot of the transfer function

$2—0.1s+4

H(s)= 2 -5+
()= Zrots 11

Use a magnitude range of —40dB to +40dB, and a phase range of —360° to +360°.

77. The Bode plot of a transfer function H is shown below. Estimate the DC gain and the poles
and zeros of H.

Use the smallest number of poles and zeros that give a reasonable fit to the plot. Be sure to
clearly indicate the multiplicity of any pole or zero that is repeated. If there are no zeros (or
poles) then give your answer below as ‘none’.
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78. An amplifier with a transfer function H has a DC gain H(0) = 103, poles at s = —100 rad/sec
and s = —10° rad/sec, and a zero at s = +10* rad/sec. (Note the signs of the poles and
zeros!)

Sketch the Bode plot of H.
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79. This problem concerns the circuit shown below. You can assume that the op-amp is ideal.

0.01uF
| |
|

20kS2

[ p
2k 2k
W —_—
S +
Vin (%) —— 0.01pF

(a) Find the transfer function H from vi, t0 Vout.
(b) Plot the poles and zeros in the complex plane. Verify that this circuit is stable.

(c) Sketch the Bode plot of H. Would you describe this system as low-pass, band-pass,
high-pass, or none of these?

(d) Assume the capacitors are initially uncharged. Suppose that for ¢ > 0, v, is a sinusoid
with amplitude 1V, frequency 3kHz, and phase 0°. You know that wvoy, will approach
the sinusoidal steady-state response as t — oco. But how long will it take? Find a time
T such that for t > T the actual and steady-state responses are within about 1% of the
amplitude of the steady-state response. Your number 71" does not have to be the smallest
possible such T, just within a factor of two or three.

(e) Can you find appropriate initial capacitor voltages such that the system is in sinusoidal
steady-state immediately, i.e., from ¢ =0 on?

80. A voltage source drives a capacitive load through a wire that has significant inductance, as
shown in the circuit below.

10pH
“Jo0
+
Vin 100pF ——  out

(a) Find the transfer function H from vy, to vout. (You can assume, of course, that the
initial conditions are zero.)

(b) Find the smallest frequency w for which |H (jw)| deviates 0.5dB or more from its DC
value. (This can be intepreted as the frequency below which the inductance and capac-
itance can be ignored.)
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81. An op-amp filter circuit. This problem concerns the filter circuit shown below. The voltages
Vin and veyt are with respect to ground, and the op-amp is ideal. The transfer function from
Vin t0 Vout Will be denoted H.

Vin(t) AWV

— Uout (t)

(a) Find the DC gain, poles, and zeros of H. (Express them in terms of the component
values Ry, Ro, R3, Cq, and C5.) If there are no zeros (or poles), give your answer as
‘none’. Express your answers in a simple form, and check them carefully, since you may
want to use them in parts b and c.

(b) Suppose that Ry = Ry = R = 1Q and Cy = Cy = 1F. Find the unit step response s(t)
of the filter. (Assume zero initial voltage across C; and Cs.)

(¢) For an audio application a filter is required with the magnitude Bode plot shown below:
|H

+20dB

10kHz
10Hz  100Hz  1kHz 100kHz

0dB | f (in Hz)

—20dB

—40dB

For this application, the phase of H does not matter.

The resistor Rs is fixed to be 10k2. Find (numerical, explicit values for) Ry, Re, C1, and
(5 so that the magnitude Bode plot of H matches (at least approximately) the required
form shown above. (Needless to say, you cannot use negative values for R;, Ry, C1, and

Cs.)

82. Sallen-Key filter. The circuit below, called a Sallen-Key filter section, is widely used. You
can assume the op-amp is ideal, and both capacitors have zero initial voltage. Note that there
are two free design parameters: the capacitance C' (which of course must be positive) and the
(gain) a, which is required to satisfy a > 1.
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(a)
(b)
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10kS2 10kS2
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WA ———

— (a — 1)10kS

Find the transfer function from v, to vout-
Pick C and a to yield poles at (—10* & j10%)rad/sec.

Suppose we hook up two of the filters you designed in part (b) in cascade, i.e., connect
Vout Of one to vy, of the other. Find the transfer function from the remaining input to
the remaining output.

83. A delay system. Consider a system with input v and output y described by y(t) = 0 for
0<t<1landuy(t) =u(t—1) for t > 1. Thus the output is the same as the input but delayed
one second. Find the transfer function H of this system. What is its DC gain? Sketch the
Bode plot of H. Can you sketch its poles and zeros in the complex plane?

84. A system with undershoot. In this problem we consider a system described by the transfer
function

1-—s

He) = G gaT2e)

with input » and output y.

(a)
(b)
()

(d)

Sketch the Bode plot of H. Be careful with the phase plot. Does the magnitude plot
look like the magnitude plot of a simpler transfer function? Can you explain this?

Sketch the step response. Make sure the final value and the slope at ¢ = 0+ are correct.
The interesting effect you see for small ¢ is called undershoot.

Suppose that at t = 200 the input switched from the value 3 to —1, i.e., u(t) = 3 until
t = 200; after that u(t) = —1. Sketch y(¢) for ¢ near 200, say, several seconds before to
several seconds after. Systems with undershoot are sometimes descibed this way: “when
you change the input rapidly from one constant value to another, the output first moves
in the wrong direction”. Does this make sense?

Can you find u such that y(t) = 1 — e */2? Any comments about the u you found? Can
you trace the interesting feature of u to some particular property of H, e.g., its DC gain,
pole locations, etc.?

85. The impulse response of a system described by a transfer function H is measured experimen-
tally, and plotted below:
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Measured impulse response
120 T T T T T T T T

220 I I I I I I I I I
[¢] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t (msec)

(a) Estimate H(0), i.e., the DC gain of this system.

(b) Estimate H (jw) for w = 27 - 500Hz, w = 27 - 5kHz, w = 27 - 10kHz, and w = 27 - IMHz.
Explain your approximations. An answer of the form “small” is OK provided you give
some rough maximum as in “H (jw) is small, probably less than 10~* or so”.

(c) Sketch the step response of this system.

(d) The (10%-90%) rise time of a system is defined as the time elapsed between the first
time the step response reaches 10% of its final value and the last time the step response
equals 90% of its final value. Estimate the (10%-90%) rise time of this system.

86. Pole-zero identification from Bode plot. The following Bode plots show the magnitude and
phase of the frequency response of a rational transfer function H.

40— ———————————————

Magnitude (dB)
N
o o

|
N
o

-60

_80 M| M| ool

w (rad/sec)

300 R R T T T T

200

100

Phase (deg)

-100

—2000 P e : —
10 10 10 10 10 10 10 10
w (rad/sec)

The following Bode plots show the same frequency response (on a linear frequency scale),
zoomed in around w = 103.
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The following Bode plots show the same frequency response (on a linear frequency scale),

zoomed in around w = 10°.
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Estimate the poles, zeros, and DC gain of the transfer function H. Give the DC gain as a
number, not in dB.

e You can make reasonable assumptions about the behavior of the frequency response
outside the range plotted.
e Use the smallest number of poles and zeros required to explain the plots.
e Be sure to give the multiplicities of any repeated poles or zeros.
e Be careful about the signs of the poles, zeros, and DC gain.
87. Deconvolution. A signal w passes through a channel (which is a convolution system) to

produce the signal z, i.e., 2 = h * w. The impulse response of the channel is h(t) = te~* for
t > 0. This means that z is a kind of ‘smeared’ or ‘averaged’ version of w.

You can assume that w and z are smooth, i.e., they have derivatives of all orders. You can
also assume that 2/(0) = z(0) = 0.

Here’s the question: is it possible to reconstruct the signal w knowing only the signal 27

This process of undoing the effect of convolution is called deconvolution. As you can imagine,
deconvolution (when it is possible) has many applications.

Your answer should be one of the following:

o Yes, it’s possible to recover w from z. In this case, give an explicit formula that expresses
w in terms of z. Give the simplest formula you can.
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No, it’s not possible to recover w from z. In this case, you must explain why. For
example, you could give two different signals w and w that produce the same z, i.e., for
which h xw = h x w. In this case, give the simplest possible w and w that make your
point.

88. Using Matlab.

(a)
(b)
()

(d)

Use Matlab to plot the Bode plot of the transfer function of problems 1 and 2, to verify
your sketches.

Consider the transfer function H(s) = (s +1)/(s®> + s +1). Find the poles and zeros,
and plot the impulse response, step response, and Bode plot using Matlab.

Now consider the transfer function

s+3
s+3.1

G(s) = H(s)

Intuition suggests that G is not much different from H since we have added a pole and a
zero that almost cancel each other out. Before doing the next part, guess how the Bode
plots of G and H will differ. Give a geometric explanation. Give the partial fraction
expansion of H, and compare it to the partial fraction expansion of G.

Now use Matlab to plot the impulse response, step response, and Bode plot of G using
Matlab. Compare with your prediction.

89. The circuit below is a simple one-pole lowpass filter.

Q

R
AWV
AWV =
> Vout ()

Vin (t)

Find (positive) R and C' such that:

e The (magnitude of the) DC gain is +12dB.
e The magnitude of the transfer function at the frequency 1kHz is 3dB less than the

magnitude of the DC gain.

You can assume the op-amp is ideal. Give numerical values for R and C'. An acurracy of 10%
will suffice.

90. Effects of wire inductance and capacitive load. A voltage source drives a capacitive load
through a wire that has significant inductance, as shown in the circuit below.
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91.

10uH

+
Vin <f> 100pF —— vout

Find the transfer function H from v, to vout. (You can assume, of course, that the initial
conditions are zero.)

Find the smallest frequency wmin for which |H (jwmin)| deviates 0.5dB or more from the DC
value. (This can be intepreted as the frequency below which the inductance and capacitance
can be ignored.)

Vehicle suspension: analysis of ‘bottoming out’. Once again we consider a vehicle suspension,
modeled as a spring and a shock absorber between the vehicle and the wheel, which is assumed
to remain in contact with the road. The height of the vehicle (above or below some reference
level) at time ¢, is denoted y(t). The height of the road surface at the wheel (above or below
the reference level), at time ¢, is denoted r(t). This is illustrated below.

vehicle LY

spring LJ shock absorber

road surface

: "
wheel
Newton’s equation for the (vertical) motion of the vehicle is
d%y d
m T = ky(t) —r(t) ~ b (y() 1)

where m is the vehicle mass (in kg), & is the spring stiffness (in N/m), and b is the mechanical
resistance of the shock absorber (in N/m/s). For this problem we have the (nonrealistic, but
simple) values

m=1, k=1, b=2.

In this problem we focus on the displacement of the vehicle relative to the road, i.e., the signal
d =y — r. The value d(t) tells you how much the car suspension is compressed (if d(t) < 0)
or extended (if d(¢) > 0) compared to its neutral position.

Any real suspension is limited in displacement. If d(t) becomes too large, the suspension hits
some hard rubber stops designed to prevent extreme damage. When this occurs, the ride is
terrible, and also, the LCCODE model is invalid. When you hit the limits of your suspension
system, it’s often called ‘bottoming out’.

In this problem, we’ll use the simple limit |d(¢)| < 0.1m to describe the limits of the suspension
system. We’ll use the descriptive slang expression ‘bottoming out’ to mean that ‘|d(¢)| < 0.1m
does not hold’.
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(a) Find the transfer function H from r to d.

(b) Find the poles, zeros, and DC gain of H. If poles or zeros are repeated, be sure to give
multiplicities.

(c) The vehicle runs over a curb of (positive) height C' (in m) at time ¢t = 0, i.e., the signal
r is C times a unit step signal. What is the maximum curb height Cp,.x the suspension
can handle without bottoming out?

(d) Suppose the vehicle is in sinusoidal steady state while being driven at speed S (in m/s)
over a sinusoidal test track, with one period/m and a variation +0.2m. (Thus, r is a
sinusoidal signal with frequency 275 rad/s and amplitude 0.2m.) What is the maximum
speed Spmax the vehicle can handle without bottoming out?

92. Notch filter design. Find a transfer function H that has the Bode magnitude plot shown
below. Note that the vertical axis is given in dB and the horizontal axis, which is linear, is
given in Hz.

Express your answer as the ratio of two unfactored polynomials. Justify your choice of poles
and/or zeros. An accuracy of £10% for the coeflicients is acceptable.

Once the design is complete, use Matlab to create a full (magnitude and phase) Bode plot
for the filter.

15

[H(jw)| (dB)

0 1 1 1 1 1 1 1
800 850 900 950 1000 1050 1100 1150 1200
frequency (Hz)

93. In the block diagram below, A and F' are static gains.
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94.

95.

The open-loop gain A varies over the range 60 + 3dB. The closed-loop gain G varies over the
range 40 + AdB.

Find the closed-loop gain variation A (in dB). An accuracy of 10% will suffice.

Feedback amplifier design. In this problem, you’ll use the standard feedback amplifier config-
uration, described by the equations

y = Ae, e=u— Fy.

The raw amplifier, denoted A, is linear and time invariant, with transfer function given by

Adc
Als) = 1+ sT’

and the feedback F'is a simple gain (i.e., a constant). The constant Ag. (which is positive)
is the DC gain of the raw amplifier, and 7' (which is also positive) is the 63% rise time of
the raw amplifier. The DC gain of the amplifier varies over a range (say, with temperature,
manufacturing variations, etc.). For simplicity, we’ll assume that the rise time T' does not
vary, and that the feedback F' is implemented using high precision components, and so does
not vary.

You can choose among four different raw amplifiers, with characteristics:

o Raw amplifier 1: DC gain is 40 £+ 3dB; rise time is 0.5usec.

o Raw amplifier 2: DC gain is 65 4+ 5dB; rise time is 2usec.

o Raw amplifier 3: DC gain is 80 4+ 10dB; rise time is 15usec.
Choose one of the raw amplifiers and an appropriate feedback gain F' according to the fol-
lowing design rules:

e The (nominal) closed-loop DC gain is 30dB.

e The variation in closed-loop DC gain is no more than +5%.

e The closed-loop 63% rise time is as small as possible.

For calculating the closed-loop rise time you can use the nominal gain of the raw amplifier
(i.e., 50dB for raw amplifier 1, etc.), and ignore the gain variation.

Sensitivity of closed-loop gain to feedback gain. In the lecture we saw that a (small) change
0A in the open-loop gain induces a change dG in the closed-loop gain, where

1
1+ AF

(6G/G) = S (5A/4), S

1+ AF

Now suppose that the feedback gain undergoes a (small) change 0F'. Find Sr such that
(6G/G) = Sp(6F/F).

Sp is called the sensitivity of G w.r.t. the parameter F'. (Note that S = 1/(1 + AF) is the
sensitivity of G w.r.t. A.)
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96.

Note that Sr can also be expressed as

o _0GF
PTOF G
We can interpret Sp as giving (approximate) dB change in G per (small) dB change in F'.

How are S and S related? Is it possible to design a feedback system in which the closed-loop
gain G is fairly insensitive to changes in both open-loop gain A and feedback gain F'?

What happens to Sr when the loop gain AF is large? What practical implications does this

have?

In the circuit shown below, the gain A is 45 £ 5dB (and is positive). The resistors have a
tolerance of +1%, i.e., they can vary up to 1% from the values shown.

9kQ2

WV

How much can the closed-loop gain (from wviy, to veyt) vary, taking into account both the
variation in op-amp gain and the resistor variation? Which causes more variation in closed-
loop gain, the variation in op-amp gain or the resistor values?

97. G is the gain from v, t0 voyt in the circuit shown below.

+ +
v Av Vout
Vin <+> B B
T L
1k R B
W, AW

(a) Assume that the gain A is 60dB (and is positive). Find R so that G is 20dB.

(b) Now suppose that A can vary +2dB, i.e., from 58dB to 62dB, and R can vary £7'% from
the value found in part 1, where T is the so-called tolerance. There is a requirement that

despite these variations, the closed-loop gain G must not vary more than +1dB (from
20dB).
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98.

99.

You can specify 20% tolerance (T = 20), 5%, 1%, or 0.1%. What is the largest tolerance
you can specify and still meet the requirement? Circle one below.

(Lower tolerance resistors cost more, so we are asking: what is the cheapest resistor that
can meet our requirement?)

Local or global feedback? You have two amplifiers, with gains a; ~ 10 and as ~ 10, each
of which varies with temperature, component aging, etc. You need to design a feedback
amplifier circuit with overall gain g ~ 30. You are going to use feedback to trade your ‘excess
gain’ (about 10dB) for lower sensitivity of the overall gain with respect to the amplifier gains.
You can neglect loading effects, i.e., you can assume the input resistance of the amplifiers is
infinite and and the output resistance is zero.

There are two basic approaches: local and global feedback. You can cascade the two amplifiers
and wrap feedback around the cascade connection. This approach is called global feedback
since there is one feedback loop around both amplifiers. Another approach is called local
feedback. Here you wrap some feedback around each of the amplifiers, and form a cascade
system of the two (closed-loop) amplifier circuits.

The question: which arrangement yields lower sensitivity to the amplifier gains?

First, find an appropriate global feedback gain and appropriate local feedback gains. For the
local feedback case you can apply the same feedback around each amplifier.

Compute the sensitivity of G with respect to A; and As for the local and global feedback
designs. That is, find the quantities g—g%, fori=1,2.
Remarks:
e When we study dynamic feedback, we’ll see that the global feedback arrangement can
be much worse than local. But here, we are only interested in static properties.
e In most real applications, some combination of local and global feedback is used.
e [t is not hard to generalize this problem: the same conclusion holds for many amplifiers,
even with different gains.
Computer-analysis of linearization effect of feedback. In this problem you will study a static
nonlinear feedback amplifier. It will also serve as an introduction to (or review of) Matlab.

The amplifier in the circuit shown below can be modeled as
Vout = tanh(v/(2Vr)),

where Vp &~ 26mV at room temperature.

10k$2 30k€2

47



100.

101.

Remark: This characteristic is very common. It comes from a junction transistor differential
input pair, which you will learn about in EE113. For an FET-input op-amp, i.e., and op-amp
with first stage made from FETSs, the characteristic is different but similar in shape.

You can neglect loading effects, i.e., you can assume the input resistance is infinite and output
resistance is zero.

e Use Matlab to plot the open-loop voltage transfer characteristic (i.e., from v to voyt)
over some appropriate range. Be sure to label your axes with units. Over what input
voltage range would you say the (open-loop) amplifier acts (approximately) linearly?
Over what output voltage range?

e Use Matlab to plot the closed-loop voltage transfer characteristic (i.e., from vi, t0 Voyt)-
To find the closed-loop characteristic, you can use the tracing method described in the
lecture notes. Be sure to label your axes with units. Over what input voltage range
would you say the (closed-loop) amplifier acts (approximately) linearly? Over what
output voltage range?

e Use Newton’s method to (try to) solve for vy, given v, = 0.2V. Try several different
starting points vg, e.g., 0, £0.05, +£0.1. To show the convergence (or divergence) of
Newton’s method, plot the error |vou r — tanh(vg/(2Vr))| versus iteration number k.
It’s more instructive to plot the error on a log scale. this can be done using the Matlab
command semilogy (). Briefly describe what you observe.

For this problem you must submit not only the plots requested, but also a listing of the asso-
ciated Matlab code. So please make an attempt at good programming style (i.e., mnemonic
variable names, comments, etc.).

Reduction of offsets via feedback. The forward path in a feedback system is characterized by
y = Ae+ «, where « is a constant called (for obvious reasons) the output offset. The feedback
path is linear with gain F'. Find the output offset « for the closed-loop system. (That is,
find a such that y = Gu + a..) What is the ratio of the closed-loop output offset to the
open-loop output offset?

Offsets can also be expressed in terms of the input. We can write y = Ae + « in the form
y = A(e + ), where § = «/A is called the input-referred offset of the open-loop system.
Similarly we can express the closed-loop offset in the form y = G(u + (1), where [ is the
input-referred offset of the closed-loop system. Find the input-referred offset for the closed-
loop system, and compare it to the input-referred offset of the open-loop system.

Liquid level control. In an industrial process, a tank is used to collect a fluid, as shown in
the figure below. The tank is fed through a supply pipe attached to a pump; fluid is removed
from an outflow pipe. A liquid level sensor is used to measure the level of the liquid in the
tank. The outflow is not measured. It is usually near a fixed known value @)y, but can vary
a bit above and below that value. The supply flow rate can be varied around the value Qg
by varying the pump motor current around its normal operating value. The goal is to keep
the tank nearly half filled, despite variations in outflow (around its normal value Q). We'll
assume the tank starts out half filled.
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Note that when the outflow is equal to the known value g, and the pump current is equal
to its normal operating value, the supply flow is also equal to )y, so the net fluid flow into
the tank is zero. This means the tank level remains constant, 4.e., half full.

If the actual outflow is larger than Qg, the tank level will start to drop; hopefully our feedback
control system will counteract this by increasing the supply flow rate.

We will be concerned with deviations of the various quantities from their “ideal” or “nor-
mal” values, so let’s define some variables that represent the deviations. ¢, will denote the
(deviation) in supply flow rate, i.e., the actual (total) supply flow rate, minus Qy. Thus,
¢in < 0 means that the actual supply flow rate is less than QJg. Similarly, gout will denote the
deviation of the outflow rate from )g. The deviation of the liquid level from its ideal height
(i.e., half full) will be denoted [, so [ > 0 means the liquid level is too high and I < 0 means
the liquid level is too low. The sensor signal will be denoted vgepns; we'll assume the sensor
electronics provides the proper offset so that vsens = 0 when [ = 0. The deviation of the pump
motor current from its normal operating value will be denoted ipump.

(We'll henceforth deal only with these deviations from normal values, but we won’t keep saying
“deviation from”. For example, we’ll call ¢, the supply flow rate. It’s too cumbersome to
always say “the deviation in supply flow rate”.)

The liquid level height [ is proportional to the integral of the net flow into the tank, i.e.,

1) = @ [ (@) ~ gou (7))

where « is the reciprocal of the area of the tank (horizontal cross section). We’ll assume
a = 1. We can also express this via transfer functions as

L(5) = - (@un(s) — Qouc(s)).

The electronics in the liquid level sensor includes a smoothing filter with a time constant of
1, so the relation between the actual liquid level [ and the liquid level sensor output voltage
Usens can be described by the transfer function 1/(1 + s) (which has unity DC gain).

Similarly the supply flow rate does immediately change to a new value when the pump motor
current is changed; instead the relation between pump motor current and supply flow rate is
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given by the transfer function 1/(1 + 2s) (i.e., the supply flow rate is a smoothed version of
the current, with a time constant of 2).

We will use basic proportional control, given by ¢pump = —kVsens, where k£ > 0 is the propor-
tional feedback gain. Note that this controller “does the right thing” — if the liquid level is
low, it increases the motor current, which increases the supply flow rate, which increases the
liquid level ...

Putting all of this together we get the following block diagram:

(a)

pump Gout tank

1 1

1+2s Gin S

2Apump l

controller sensor

Usens 1

—k

1+s

Find the transfer function G from oy to [ (which depends on the gain k). What is the
DC gain of G for k£ > 07 What is the DC gain for £ = 0, i.e., open loop? What does
your answer mean?

Find the poles of the transfer function G for k = 0 (i.e., open loop), k = 0.01, k = 0.2,
k=1, and k = 2.

Plot the step response of G for k = 0 (i.e., open loop), k = 0.01, £ = 0.2, k = 1, and
k = 2. Give a brief intuitive explanation, in words, why the plots look the way they do.
Briefly comment on what they mean.

Suppose that someone dumps some liquid directly into the tank at ¢ = 0. This can be
modeled as an outflow of the form gou = —39(t), where [ is the quantity of liquid and §
is Dirac’s delta function. (Why?) Thus, the impulse response of the transfer function G
tells us the response of the system after a unit volume of liquid is removed (very quickly)
at t = 0. Plot the impulse response for k = 0 (i.e., open loop), k = 0.01, k = 0.2, k = 1,
and k = 2. Give some brief comments on what you see.

102. Consider the control system from the previous problem.

(a)
(b)

What proportional gains k yield a stable transfer function (from gou to )7

You decide to use a proportional controller with gain k£ = 0.2. The company that makes
the sensor introduces a longer averaging time in the level sensor, so its transfer function
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becomes 1/(1 + Tgenss), where Tyens > 1. You might guess that this longer averaging
could induce instability. How large can Tyepns be, before the closed-loop transfer function
from gout to I becomes unstable?

(When you complain to the sensor manufacturer, they explain that the longer averaging
time is a feature, not a bug. They say the longer averaging time yields a ‘smoother’
display, which doesn’t ‘jump around’ as much as before.)

(c) Now suppose we decide to use integral control, replacing the control law tpump = —KUsens
with .
oump () = —kyUsens () — ki /0 Veons(7) dr-

(As a result of problem 1, you have switched level sensor manufacturers, so Tyeps is back
to 1.)

With k, = 0.2, find the range of k; over which the closed-loop transfer function from
Qout to [ is stable.

(d) Plot the step response from gqy to [ for the proportional control with k, = 0.2, and
integral control with k, = 0.2 and k; taking on various values. Briefly discuss what
happens if k; is too small or too large. Choose a reasonable value, and briefly defend
your choice.

103. A modified PI controller. A block diagram of the standard PI control system is shown below
(along with an input disturbance d;, we’ll refer to later in the problem).

din

Some industrial PI controllers use the modified PI controller shown below:

din
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One company that makes this modified PI controller claims that it “has the same disturbance
rejection abilities as the standard PI controller, but, for step changes in r, has a smoother

input u”.

(a) Find the closed-loop transfer function, Hgq, from d to y, with the standard PI controller.
Also find the closed-loop transfer function, Hyoq, from d to y, with the modified PI

controller.

(b) Now consider the following specific case:

P(s) = —

s+ 1’

k; = 6.

Suppose that d = 0 and a unit step is applied to r. Find the input usq that occurs in
the closed-loop system with the standard PI controller. Also find the input umy.q that
occurs in the closed-loop system with the modified PI controller.

(c) Make a very brief comment about the company’s claim.

k; 1
104. Suppose that PI control, C(s) = k, + —, is used with the plant P(s) = ————, in the
s

105.

standard feedback control configuration:

C

s24+s+1’

Find the conditions on £, and k; for which the closed-loop transfer function 7" from r to y is

stable. You can assume that k, > 0 and k; > 0.

Express your conditions in the simplest form possible. (We will take points off for correct

answers left in messy form.)

Static analysis of feedback around amplifier with dead-zone. In this problem we consider only

static conditions, i.e., all signals are scalars.

The block diagram below shows a feedback amplifier with input u, output y, and unity
feedback. The amplifier is modeled as a (linear) gain of 10, followed by a nonlinear function

¢4, which is called a deadzone.

10—

(bdz(')

The gain of 10 represents the (linear) ‘gain stage’ of the amplifier; the dead-zone represents a
(nonlinear) push-pull output stage. (This is just for background — you don’t need to know

about amplifiers to solve this problem!)
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106.

The deadzone characteristic is given by

Z—a zZ>a,
Y=0¢aq,(2) =1 z+a z<-—a,
0 |z| < a,

where a@ > 0 is a parameter. In this problem you can take a = 1 for simplicity. (In real
amplifiers a typical value is about 0.5V.) This characteristic is plotted below.

Pdz(2)

Sketch the static closed-loop characteristic relating u to y. Make sure you clearly label the
axis scales, critical points on the characteristic, relevant slopes, etc.

Feedback amplifier stability via minimum closed-loop gain. Consider an amplifier (op-amp)
with T.F. A(s), in the standard feedback configuration (shown below), with feedback gain f
which is constant and positive. As usual, G will denote the closed-loop transfer function from
u to y.

A(s)

One common method for specifying what values of f > 0 make the closed-loop system stable
is to give a minimum value G, for the closed-loop DC gain G(0). In other words, the
closed-loop system is stable if and only if G(0) > Guin. (Recall that we consider f constant
and positive only).

100
(s+1)(s2+s+1)

Consider a specific op-amp with A(s) = . Find Gpy, for this op-amp.
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A thermal system. A thermal model of the system shown below consists of outer shell, at
temperature Tghen, which surrounds an inner core, at temperature Teore. (Each of these
temperatures is measured with respect to the ambient temperature.)

shell

Jin — core

An external heat flow ¢, (in W) flows into the shell, and in addition there in a heat flow
kshellTshenn from the shell into the surroundings, where kgnen is the thermal conductance be-
tween the shell and the surroundings.

The heat flow from the shell into the core is denoted gcore, Which is given by

Qcore = kcoro(Tshell - Tcoro)’

where kcore 18 the thermal conductance between the shell and the core.

The temperature of the shell satisfies

dTshen i
CshellT = @in — FshelZshell — Geore

where cghen is the heat capacity of the shell, and the right hand side is the net heat flow into
the shell.

The temperature of the core satisfies

dTeore _

Ccore da Gcore;

where ceore is the heat capacity of the core.

For the remainder of this problem you can use the specific numerical values
Ccore = Cshell = 1,  kcore = Kshen = 1.

la. Find the transfer function H from @i, to Teore. (Of course you can assume here that the
initial temperatures are both zero.)

1b. Suppose that the system starts with Tghen(0) = Teore(0) = 0, gin(t) = 2000 for 0 < ¢t <
0.001, and gin(t) = 0 for ¢ > 0.001.

Find the maximum value of Teoe(t) for ¢ > 0.

You can make an approximation, but you must explain what you’re doing.

Stability range for feedback amplifier. An amplifier with transfer function A has a DC gain
of 80dB, and three real, negative poles and no zeros. The dominant pole is at s = —100,

and the two other poles are at s = —10* and s = —10°, respectively. (This is a very typical
amplifier transfer function.)
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2a. Find the wnity-gain bandwidth of the amplifier, defined as the frequency for which the
magnitude of the frequency response is equal to one. A good estimate is acceptable.

2b. The amplifier is connected in a standard feedback arrangement with feedback gain f > 0,
as shown below. Find the maximum value of f for which the closed-loop transfer function is
stable.

A(s)

2c¢. Suppose the feedback gain f is chosen to be equal to the maximum value found in part b.
At what frequency does the feedback amplifier oscillate? A good estimate is acceptable. You
must explain your answer.

Driven guard. The figure below shows a common setup for an instrumentation system. The
voltage source and resistance at left are the sensor; the resistance at right is the amplifier input
resistance. (We assume the amplifier output resistance is very low.) The voltage-controlled
voltage amplifier has gain a, which is positive.

The capacitance represents the capacitance from the wire connecting the sensor to the am-
plifier to a shield or guard conductor around it. In a conventional arrangement, this shield
or guard conductor would just be grounded (and therefore, the bottom lead of the capacitor
would be grounded).

In this arrangement, the amplifier output drives the guard, and so it is called a driven guard
system.

For this problem you can use the values
Rsensor — 100@, Ramp = 9009, C = 5nF

(which are quite typical).

For now, we’ll leave the gain a unspecified.

Ryensor fout
ou
AWV —
v Vout
Usensor C _—_— Ramp t av
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3a. Find the transfer function H from vgengsor t0 vout. Please do this carefully as you may
need to use it in the other parts of this problem.

3b. For what values of a is the transfer function H stable?

3c. Assume now a = 0.9. We define the response time of the system as the time it takes
the step response from vsensor t0 Uout t0 settle to within 90% of its ultimate value. Find the
response time.

3d. Still using the value a = 0.9, suppose the sensor voltage jumps from 0V to 0.1V. What
is the maximum magnitude of the amplifier output current ioy? (This value might be used,
for example, to specify the output current capabilities of the amplifier.)

PD control. In lecture we studied proportional plus integral (PI) control. In this problem we
study proportional plus derivative (PD) control. PD control is also used in practice (but not as
often as PI control), often when a separate sensor is available that senses the derivative of the
output, for example, a tachometer for a motor. A PD control system is usually implemented
using the block diagram shown below. The numbers k), and kq are design parameters (which
are usually, but not always, positive).

—— P(s)

We'll study PD control applied to a DC motor, with transfer function

1

P(s) = e

4a. For what values of (kp, kq) is the closed-loop transfer function 7" (from r to y) stable?

4b. For what values of (k,, kq) are the poles of the transfer function 7" critically damped (and
stable)? If no values of (kp, kq) yield critical damping, give your answer as ‘none’. If only one
choice works, give the specific values. If there are many choices, describe them all.

4c. Using the values k, = kq = 1, find the step response from 7 to u.

Transfer function synthesis from specifications. In this problem you will design a rational
transfer function H from the followoing specifications:

e All the poles & zeros of H are real (to keep things simple).
e H has zero gain at DC and infinite frequency, i.e., H(0) =0, and H(s) — 0 as s — o0.
e H is stable.
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e For w between 10! and 103, |H (jw)| is 30 & 3dB.
e For w < 107}, |[H(jw)| is smaller than —6dB.
e For w > 10°, |H(jw)]| is smaller than —6dB.

Use as few poles & zeros as possible to meet these specifications.

Design of multi-stage feedback amplifier. In this problem you will design a multi-stage am-
plifier consisting of a number of cascaded stages, each of which is an amplifier of gain a with
a feedback gain of f, as shown below.

0 —(0—

The amplifier gain a varies with temperature (say), over the range 40 + 3dB (but you can
assume that the gains in each of the stages are the same). The feedback gain f can be
assumed certain; it does not vary with temperature.

You are to design the multistage amplifier subject to the specifications and objectives de-
scribed below. Your final design will consist of the number of stages you use, along with the
feedback gain f used for each stage.

e Use as few stages as you can to meet all the specifications.

e The overall system gain (i.e., from u to y) must be 60dB within +1dB, despite the
variation in the amplifier gain.

If you cannot meet the specifications using any number of stages, give your answer as ‘infea-
sible’. You must justify your design.

Elmore delay of a convolution system. Consider a convolution system with impulse response
h and transfer function H. When h(t) > 0 for all ¢, a useful measure of the delay induced by
the system is the Elmore delay, defined as

5T th(t) dt
0 = o d

(provided the denominator isn’t zero).

(a) Express the Elmore delay E directly in terms of the transfer function H. Try to express
your answer in as simple a form as possible. (Your answer cannot contain the impulse
response h.)

(b) Find the Elmore delay of the following systems:

e a T-second delay
e a first-order lowpass system with time constant 7', i.e., transfer function 1/(1+ sT')
e a T-second averager, i.e., y(t) = (1/7T) fOT u(t —7)dr
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(¢) Elmore delay of a cascade connection. Suppose h and g are impulse responses for which
the Elmore delay makes sense (i.e., h(t) > 0 and g(¢) > 0 for all ¢, and the denominator
in the definition of Elmore delay doesn’t vanish). Let f = gx*h, i.e., the impulse response
of the cascade of the two systems. Are the following statements always true (i.e., true
for any g and h satisfying the conditions above)?

o E(f)> E(g)+ E(h), i.e., the Elmore delay of a cascade of two systems is always at
least as big as the sum of the Elmore delays of the systems.

e E(f) < E(g9) + E(h), i.e., the Elmore delay of a cascade of two systems is always
less than or equal to the sum of the Elmore delays of the systems.

If neither is always true give your answer as ‘neither’. You must justify your answer.
We do not want conditions such as ‘E(f) > E(g) + E(h) is true provided ... .
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