S. Boyd EE102

Lecture 13
Dynamic analysis of feedback

e Closed-loop, sensitivity, and loop transfer functions

e Stability of feedback systems
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WE NOW aSsume.:

e signals u, e, y are dynamic, i.e., change with time

Some assumptions

e open-loop and feedback systems are convolution operators, with impulse

responses a and f, respectively

u

(&

Dynamic analysis of feedback

1

*Qa

13-2



feedback equations are now:

y(t) = /0 a(T)e(t — 7) dr, e(t) = u(t) — f(r)y(t —7) dr

e these are complicated (integral equations)

e it's not so obvious what to do — current input u(t) affects future
output y(t), t >t
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Feedback system: frequency domain

take Laplace transform of all signals:

GG is called the closed-loop transfer function

.. . exactly the same formula as in static case, but now A, F', G are
transfer functions
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we define

e loop transfer function L = AF
e sensitivity transfer function S =1/(1 4+ AF)

same formulas as static casel

for example, for small 0 A, we have

0G 0A
G~

(but these are transfer functions here)
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what's new: L, S, G

e depend on frequency s
e are complex-valued

e can be stable or unstable

thus:

e “large” and “small” mean complex magnitude
e L (or G or S) can be large for some frequencies, small for others

e step response of G shows time response of the closed-loop system
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Example

feedback system with

10°

1+ /100

A(s)

e open-loop gain is large at DC (10°)
e open-loop bandwidth is around 100 rad/sec

e open-loop settling time is around 20msec
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closed-loop transfer function is

10°
G(s) = +s/100 99.9
105 .105
1+ 0.0l 1+s/(1.001 10°)
e (7 is stable

e closed-loop DC gain is very nearly 1/F
e closed-loop bandwidth around 10° rad/sec

e closed-loop settling time is around 20usec

. closed-loop system has lower gain, higher bandwidth, 7.e., is faster
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103 103

loop transfer function is L(s) = so |L(jw)| =
§102
=
ilo1
10" 107 10° » 10* 10° 10°

e loop gain larger than one for w < 10° or so
= get benefits of feedback for w < 10°

e loop gain less than one for w > 10° or so
= don't get benefits of feedback for w > 10°
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1 100
sensitivity transfer function is S(s) = 10()Irj/ 7100
S

10_4 . N . N . N . NN . N
10 10° 10° 10* 10° 10°

o |S(jw)| < 1 for w < 10% (say)

e |S|~1 forw > 10° or so
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Thus, e.g., for small changes in A(0), A(510°)

0)

SA( §A(510°)
A(0)

A(710°)

‘_‘ ~ 1070

6G(510°)
- G(510%)

a4 ‘
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Example (with change of sign)

10°
id t ith A(s) = — , FF'=10.01
now consider system wi (s) T+ 5/100
(note minus sign!)
closed-loop transfer function is
100.1

G(s)

~ 1 — 5/(0.999-10)

looks like G found above, but is unstable

e in static analysis, large loop gain = sign of feedback doesn’'t much
matter

e dynamic analysis reveals the big difference a change of sign can make
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Heater example: dynamic analysis

proportional controller of lecture 12,

****** ?TF\ rkDTQm
Tdes i ¢ (X(S) T
~Plant —
ko

with dynamic model of plate:

1

%) = T 015)(1 1 025)(1 - 0.39)
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step response of a(s)

1 1 1 1
0.5 1 15 2 25

(quite realistic; takes about 1 sec to heat up)
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Let's assume

o T,y = 70°F

e Tyes = 150°F (actually doesn’t matter)

e D is a unit step, t.e., for t > 0 a disturbance power of 1W is applied

e for t < 0 system is in static steady-state
(With 1T = Tdes)

= have an LTI system from D to temperature error ¢;

transfer function is
a(s)
1+ ka(s)
step response gives temperature error resulting from unit step disturbance
power
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k=1

k=3

k=10
% 05 1 15 2 25
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e closed-loop system can exhibit oscillatory response

e for k < 10 (approximately) this transfer function is stable; for k& > 10
(approximately) it is unstable

e when stable, step response settles to DC gain, 1/(1 + k)

e stability requirement limits how large proportional gain (hence loop
gain) can be

these are general phenomena
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Design: choice of £

involves tradeoff of static sensitivity, 1/(1 + k), versus dynamic response

e k <1 (or so) = closed-loop system not much better than open-loop

e k> 5 (or so) = undesirable oscillatory response

e k& > 10 (or so) = very undesirable instability

... here, maybe k = 2 or 3 is about right
Let’'s do some analysis . . .

transfer function from D to e is

a(s) 1

1+ ka(s) (14+0.1s)(140.25)(1+0.3s) + k
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its poles are the roots of the polynomial
(1+0.1s)(1 +0.25)(1 4+ 0.3s) + k,

which of course depend on k&

k  poles

0 —-10.0, -5.00, —3.33
1 —12.5, —2.9444.26j
3 —14.6, —1.86=*6.49j
10 —18.3, =£10.0y

12 —-19.1, +0.36 = 10.7y
15 —20.0, +0.83x=11.95y
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poles are often plotted on complex plane:

20

T
~ k=0
Ck=[3
< k=/1b
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Real part

called root locus plot of

(1+0.1s)(1 +0.25)(1 +0.3s) + k
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Checking stability

when is H(s) = b(s)/a(s) stable?

1.e., when do all roots of the polynomial a have negative real parts
(such polynomials are called Hurwitz)

if a is already factored, as in

a(s) = a(s —p1)(s —=p2) - (5 = pa),

we just check R(p;) <O0fori=1,...,n

what if we are given the coefficients of a:

a(s) = ag+ a1s + ags® + - + a,s”
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if the a;'s are specific numbers, we can easily factor a numerically (using a
computer), then check

but what if the coefficients involve parameters, as in

a(s) =(1+0.1s)(1 +0.25)(1 + 0.3s) + k

can we get the roots p; in terms of the coefficients a;? ... an old problem

e there are analytical formulas for the roots of a polynomial, for degrees
1, 2, 3, and 4 (they are complicated for third and fourth degree)

e there are no analytical formulas for the roots of a polynomial of degree
> 5 (a famous result of Galois)
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still, it turns out that we can express the Hurwitz condition as a set of
algebraic inequalities involving the coefficients, using Routh’s method

(1870 or so)

e very useful 50 years ago, even for polynomials with specific numeric
coefficients

e only important nowadays for polynomials with parameters
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we assume that a,, = 1 (if not, divide a(s) by a,; doesn't affect roots) so
we have a(s) =ag+ais+ -+ a,_18" 1 + 5"

Fact: a is Hurwitz = a9 >0,...,a,_1 >0

to see this, write a in real factored form:

a(s) = ap+ais+ -+ ap_18" "+ 5"
q r
— H(s — pi) - H(52 — 208 + J,? + w?)
i=1 i=1

p; are the real roots, o; &= jw; are the complex roots of a

Hurwitz means p; < 0 and o; < 0, so each term is a polynomial with
positive coefficents

a is a product of polynomials with all positive coefficients, hence has all
positive coefficients

the converse is not true: e.g., a(s) = s> + s> + s + 2 has roots —1.35,
+0.177 £ 1.27, so it's not Hurwitz
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Hurwitz conditions
(obtained from Routh’s method or formulas for roots)

e Degree 1: ag + s is Hurwitz < ag > 0
o Degree 2: ag + a1s + 5% is Hurwitz

& ag >0, a1 >0

o Degree 3: ag + a1s + azs® + s is Hurwitz
& ag >0, ap >0, as >0,
aoa1 > Ag
o Degree 4: ag + a15 + azs® + ass® + s* is Hurwitz

& ag>0, a1 >0, ag >0, az > 0,
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asas > aq,

2 2
ai1a2a3 — G300 > a3

for degree > 5, conditions get much more complex

e you can find them via Routh's method, if you need to (you probably
won't)

e they consist of inequalities involving sums & products of the coefficients
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Application: for what values of proportional gain & is our example, the
plate heating system, stable?

|.e., for what values of k is

a(s) = (1+0.1s)(14+0.25)(14+0.3s) + k
= 0.006(167(k + 1) + 100s + 18.3s* + s%)

Hurwitz?

Hurwitz conditions are:
167(k+1) >0, 100 > 0, 18.3 > 0,

100 - 18.3 > 167(k + 1),
which simplify to: —1 < k < 10

(we suspected this from our numerical studies)
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Summary

for LTI feedback systems,

e formulas same as static case, but now A, F', L, S are transfer functions

e hence are complex, depend on frequency s, and can be stable or
unstable

e stability requirement often limits the amount of feedback that can be
used
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