S. Boyd

Lecture 10 Sinusoidal steady-state and frequency response

- sinusoidal steady-state
- frequency response
- Bode plots

Response to sinusoidal input

convolution system with impulse response h, transfer function H

sinusoidal input $u(t) = \cos(\omega t) = \left(e^{j\omega t} + e^{-j\omega t}\right)/2$

output is
$$y(t) = \int_0^t h(\tau) \cos(\omega(t-\tau)) \ d\tau$$

let's write this as

$$y(t) = \int_0^\infty h(\tau) \cos(\omega(t-\tau)) d\tau - \int_t^\infty h(\tau) \cos(\omega(t-\tau)) d\tau$$

- first term is called *sinusoidal steady-state* response
- ullet second term decays with t if system is stable; if it decays it is called the transient

if system is stable, sinusoidal steady-state response can be expressed as

$$y_{\text{sss}}(t) = \int_0^\infty h(\tau) \cos(\omega(t-\tau)) d\tau$$

$$= (1/2) \int_0^\infty h(\tau) \left(e^{j\omega(t-\tau)} + e^{-j\omega(t-\tau)} \right) d\tau$$

$$= (1/2) e^{j\omega t} \int_0^\infty h(\tau) e^{-j\omega \tau} d\tau + (1/2) e^{-j\omega t} \int_0^\infty h(\tau) e^{j\omega \tau} d\tau$$

$$= (1/2) e^{j\omega t} H(j\omega) + (1/2) e^{-j\omega t} H(-j\omega)$$

$$= (\Re H(j\omega)) \cos(\omega t) - (\Im H(j\omega)) \sin(\omega t)$$

$$= a \cos(\omega t + \phi)$$

where
$$a = |H(j\omega)|$$
, $\phi = \angle H(j\omega)$

conclusion

if the convolution system is stable, the response to a sinusoidal input is asymptotically sinusoidal, with the same frequency as the input, and with magnitude & phase determined by $H(j\omega)$

- $|H(j\omega)|$ gives amplification factor, i.e., $RMS(y_{ss})/RMS(u)$
- ullet $\angle H(j\omega)$ gives phase shift between u and $y_{
 m ss}$

special case: u(t) = 1 (i.e., $\omega = 0$); output converges to H(0) (DC gain)

frequency response

transfer function evaluated at $s = j\omega$, i.e.,

$$H(j\omega) = \int_0^\infty h(t)e^{-j\omega t}dt$$

is called *frequency response* of the system

since $H(-j\omega) = \overline{H(j\omega)}$, we usually only consider $\omega \geq 0$

Example

- transfer function H(s) = 1/(s+1)
- input $u(t) = \cos t$
- SSS output has magnitude $|H(j)|=1/\sqrt{2}$, phase $\angle H(j)=-45^\circ$

u(t) (dashed) & y(t) (solid)

more generally, if system is stable and the input is asymptotically sinusoidal, i.e.,

$$u(t) \to \Re\left(\mathbf{U}e^{j\omega t}\right)$$

as $t \to \infty$, then

$$y(t) \to y_{\rm ss}(t) = \Re\left(\mathbf{Y}_{\rm ss}e^{j\omega t}\right)$$

as $t \to \infty$, where

$$\mathbf{Y}_{\mathrm{ss}} = H(j\omega)\mathbf{U}$$

$$H(j\omega) = \frac{\mathbf{Y}_{\mathrm{ss}}}{\mathbf{U}}$$

for a stable system, $H(j\omega)$ gives ratio of phasors of asymptotic sinusoidal output & input

thus, for example (assuming a stable system),

- ullet $H(j\omega)$ large means asymptotic response of system to sinusoid with frequnecy ω is large
- ullet H(0)=2 means asymptotic response to a constant signal is twice the input value
- $H(j\omega)$ small for large ω means the asymptotic output for high frequency sinusoids is small

Measuring frequency response

for
$$\omega = \omega_1, \ldots, \omega_N$$
,

- ullet apply sinusoid at frequency ω , with phasor ${f U}$
- wait for output to converge to SSS
- measure \mathbf{Y}_{ss} (*i.e.*, magnitude and phase shift of y_{ss})

 ${\cal N}$ can be a few tens (for hand measurements) to several thousand

Frequency response plots

frequency response can be plotted in several ways, e.g.,

- $\Re H(j\omega)$ & $\Im H(j\omega)$ versus ω
- $H(j\omega) = \Re H(j\omega) + j\Im H(j\omega)$ as a curve in the complex plane (called Nyquist plot)
- $|H(j\omega)|$ & $\angle H(j\omega)$ versus ω (called *Bode plot*)

the most common format is a Bode plot

example: RC circuit

$$Y(s) = \frac{1}{1+s}U(s)$$

$$H(j\omega) = \frac{1}{1 + j\omega}$$

example: suspension system of page 8-6 with m=1, b=0.5, k=1,

$$H(s) = \frac{0.5s + 1}{s^2 + 0.5s + 1}, \qquad H(j\omega) = \frac{(-0.75\omega^2 + 1) - j0.5\omega^3}{\omega^4 - 1.75\omega^2 + 1}$$

Bode plots

frequency axis

- ullet logarithmic scale for ω
- horizontal distance represents a fixed frequency ratio or factor: ratio 2:1 is called an *octave*; ratio 10:1 is called a *decade*

magnitude $|H(j\omega)|$

- expressed in dB, i.e., $20 \log_{10} |H(j\omega)|$
- *vertical* distance represents dB, *i.e.*, a fixed ratio of magnitudes ratio 2:1 is +6dB, ratio 10:1 is +20dB
- slopes are given in units such as dB/octave or dB/decade

phase $\angle H(j\omega)$

- multiples of 360° don't matter
- phase plot is called *wrapped* when phases are between $\pm 180^\circ$ (or $0,360^\circ$); it is called *unwrapped* if multiple of 360° is chosen to make phase plot continuous

Bode plots of products

consider product of transfer functions H = FG:

frequency response magnitude and phase are

$$20\log_{10}|H(j\omega)| = 20\log_{10}|F(j\omega)| + 20\log_{10}|G(j\omega)|$$

$$\angle H(j\omega) = \angle F(j\omega) + \angle G(j\omega)$$

here we use the fact that for $a,b \in \mathbf{C}$, $\angle(ab) = \angle a + \angle b$

so, Bode plot of a product is the sum of the Bode plots of each term (extends to many terms)

example. F(s) = 1/(s+10), G(s) = 1+1/s

Bode plot of

$$H(s) = F(s)G(s) = \frac{1+1/s}{s+10} = \frac{s+1}{s(s+10)}$$

Bode plots from factored form

rational transfer function H in factored form:

$$H(s) = k \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

$$20\log_{10}|H(j\omega)| = 20\log_{10}|k| + \sum_{i=1}^{m} 20\log_{10}|j\omega - z_{i}|$$
$$-\sum_{i=1}^{n} 20\log_{10}|j\omega - p_{i}|$$

$$\angle H(j\omega) = \angle k + \sum_{i=1}^{m} \angle (j\omega - z_i) - \sum_{i=1}^{n} \angle (j\omega - p_i)$$

(of course $\angle k = 0^{\circ}$ if k > 0, and $\angle k = 180^{\circ}$ if k < 0)

Graphical interpretation: $|H(j\omega)|$

$$|H(j\omega)| = |k| \frac{\prod_{i=1}^{m} \operatorname{dist}(j\omega, z_i)}{\prod_{i=1}^{n} \operatorname{dist}(j\omega, p_i)}$$

since for $u, v \in \mathbf{C}$, $\operatorname{dist}(u, v) = |u - v|$

therefore, e.g.:

- $|H(j\omega)|$ gets big when $j\omega$ is near a pole
- ullet $|H(j\omega)|$ gets small when $j\omega$ is near a zero

Graphical interpretation: $\angle H(j\omega)$

therefore, $\angle H(j\omega)$ changes rapidly when a pole or zero is near $j\omega$

Example with lightly damped poles

poles at
$$s = -0.01 \pm j0.2$$
, $s = -0.01 \pm j0.7$, $s = -0.01 \pm j1.3$,

All-pass filter

called all-pass filter since gain magnitude is one for all frequencies

Analog lowpass filters

analog lowpass filters: approximate ideal lowpass frequency response

$$|H(j\omega)|=1 \text{ for } 0\leq \omega \leq 1, \quad |H(j\omega)|=0 \text{ for } \omega>1$$

by a rational transfer function (which can be synthesized using R, L, C) example nth-order Butterworth filter

$$H(s) = \frac{1}{(s - p_1)(s - p_2) \cdots (s - p_n)}$$

n stable poles, equally spaced on the unit circle

magnitude plot for n=2, n=5, n=10

Sketching approximate Bode plots

sum property allows us to find Bode plots of terms in TF, then add simple terms:

- constant
- factor of s^k (pole or zero at s=0)
- real pole, real zero
- complex pole or zero pair

from these we can construct Bode plot of any rational transfer function

Poles and zeros at s=0

the term s^k has simple Bode plot:

- phase is constant, $\angle = 90k^{\circ}$
- ullet magnitude has constant slope $20k\mathrm{dB/decade}$
- ullet magnitude plot intersects 0 dB axis at $\omega = 1$

examples:

- integrator (k=-1): $\angle=-90^{\circ}$, slope is -20 dB/decade
- differentiator (k = +1): $\angle = 90^{\circ}$, slope is +20 dB/decade

Real poles and zeros

$$H(s) = 1/(s-p)$$
 ($p < 0$ is stable pole; $p > 0$ is unstable pole)

magnitude:
$$|H(j\omega)| = 1/\sqrt{\omega^2 + p^2}$$

for
$$p < 0$$
, $\angle H(j\omega) = -\arctan(\omega/|p|)$

for
$$p > 0$$
, $\angle H(j\omega) = \pm 180^{\circ} + \arctan(\omega/p)$

Bode plot for H(s) = 1/(s+1) (stable pole):

Bode Diagrams

Bode plot for H(s) = 1/(s-1) (unstable pole):

magnitude same as stable pole; phase starts at -180° , increases

straight-line approximation (for p < 0):

- for $\omega < |p|$, $|H(j\omega)| \approx 1/|p|$
- ullet for $\omega>|p|$, $|H(j\omega)|$ decreases ('falls off') $20{
 m dB}$ per decade
- for $\omega < 0.1|p|$, $\angle H(j\omega) \approx 0$
- for $\omega > 10|p|$, $\angle H(j\omega) \approx -90^{\circ}$
- in between, phase is approximately linear (on log-log plot)

Bode plots for real zeros same as poles but upside down

example: H(s) = s + 1

example:

$$H(s) = \frac{10^4}{(1+s/10)(1+s/300)(1+s/3000)}$$

(typical op-amp transfer function)

DC gain 80dB; poles at -10, -300, -3000

Bode plot:

Bode Diagrams

example:

$$H(s) = \frac{(s-1)(s-3)}{(s+1)(s+3)} = \frac{s^2 - 4s + 3}{s^2 + 4s + 3}$$

 $|H(j\omega)| = 1$ (obvious from graphical interpretation)

(called *all-pass filter* or *phase filter* since gain magnitude is one for all frequencies)

Bode plot:

Bode Diagrams

High frequency slope

$$H(s) = \frac{b_0 + \dots + b_m s^m}{a_0 + \dots + a_n s^n}$$

$$b_m, a_n \neq 0$$

for ω large, $H(j\omega) \approx (b_m/a_n)(j\omega)^{m-n}$, i.e.,

$$20\log_{10}|H(j\omega)| \approx 20\log_{10}|b_m/a_n| - (n-m)20\log_{10}\omega$$

- ullet high frequency magnitude slope is approximately $-20(n-m)\mathrm{dB/decade}$
- high frequency phase is approximately $\angle (b_m/a_n) 90(n-m)^\circ$