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Lecture 3

The Laplace transform

• definition & examples

• properties & formulas

– linearity
– the inverse Laplace transform
– time scaling
– exponential scaling
– time delay
– derivative
– integral
– multiplication by t
– convolution
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Idea

the Laplace transform converts integral and differential equations into
algebraic equations

this is like phasors, but

• applies to general signals, not just sinusoids

• handles non-steady-state conditions

allows us to analyze

• LCCODEs

• complicated circuits with sources, Ls, Rs, and Cs

• complicated systems with integrators, differentiators, gains
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Complex numbers

complex number in Cartesian form: z = x+ jy

• x = <z, the real part of z
• y = =z, the imaginary part of z
• j =

√
−1 (engineering notation); i =

√
−1 is polite term in mixed

company

complex number in polar form: z = rejφ

• r is the modulus or magnitude of z

• φ is the angle or phase of z

• exp(jφ) = cosφ+ j sinφ

complex exponential of z = x+ jy:

ez = ex+jy = exejy = ex(cos y + j sin y)
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The Laplace transform

we’ll be interested in signals defined for t ≥ 0

the Laplace transform of a signal (function) f is the function F = L(f)
defined by

F (s) =

∫ ∞

0

f(t)e−st dt

for those s ∈ C for which the integral makes sense

• F is a complex-valued function of complex numbers

• s is called the (complex) frequency variable, with units sec−1; t is called
the time variable (in sec); st is unitless

• for now, we assume f contains no impulses at t = 0

common notation convention: lower case letter denotes signal; capital
letter denotes its Laplace transform, e.g., U denotes L(u), Vin denotes
L(vin), etc.
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Example

let’s find Laplace transform of f(t) = et:

F (s) =

∫ ∞

0

et e−st dt =

∫ ∞

0

e(1−s)t dt =
1

1− s
e(1−s)t

∣
∣
∣
∣

∞

0

=
1

s− 1

provided we can say e(1−s)t → 0 as t→∞, which is true for <s > 1:

∣
∣
∣e(1−s)t

∣
∣
∣ =

∣
∣
∣e−j(=s)t

∣
∣
∣

︸ ︷︷ ︸
=1

∣
∣
∣e(1−<s)t

∣
∣
∣ = e(1−<s)t

• the integral defining F makes sense for all s ∈ C with <s > 1 (the
‘region of convergence’ of F )

• but the resulting formula for F makes sense for all s ∈ C except s = 1

we’ll ignore these (sometimes important) details and just say that

L(et) =
1

s− 1
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More examples

constant: (or unit step) f(t) = 1 (for t ≥ 0)

F (s) =

∫ ∞

0

e−st dt = −1

s
e−st

∣
∣
∣
∣

∞

0

=
1

s

provided we can say e−st → 0 as t→∞, which is true for <s > 0 since

∣
∣e−st

∣
∣ =

∣
∣
∣e−j(=s)t

∣
∣
∣

︸ ︷︷ ︸
=1

∣
∣
∣e−(<s)t

∣
∣
∣ = e−(<s)t

• the integral defining F makes sense for all s with <s > 0

• but the resulting formula for F makes sense for all s except s = 0
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sinusoid: first express f(t) = cosωt as

f(t) = (1/2)ejωt + (1/2)e−jωt

now we can find F as

F (s) =

∫ ∞

0

e−st
(
(1/2)ejωt + (1/2)e−jωt

)
dt

= (1/2)

∫ ∞

0

e(−s+jω)t dt+ (1/2)

∫ ∞

0

e(−s−jω)t dt

= (1/2)
1

s− jω
+ (1/2)

1

s+ jω

=
s

s2 + ω2

(valid for <s > 0; final formula OK for s 6= ±jω)
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powers of t: f(t) = tn (n ≥ 1)

we’ll integrate by parts, i.e., use

∫ b

a

u(t)v′(t) dt = u(t)v(t)

∣
∣
∣
∣

b

a

−
∫ b

a

v(t)u′(t) dt

with u(t) = tn, v′(t) = e−st, a = 0, b =∞

F (s) =

∫ ∞

0

tne−st dt = tn
(
−e−st
s

)∣
∣
∣
∣

∞

0

+
n

s

∫ ∞

0

tn−1e−st dt

=
n

s
L(tn−1)

provided tne−st → 0 if t→∞, which is true for <s > 0

applying the formula recusively, we obtain

F (s) =
n!

sn+1

valid for <s > 0; final formula OK for all s 6= 0
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Impulses at t = 0

if f contains impulses at t = 0 we choose to include them in the integral
defining F :

F (s) =

∫ ∞

0−

f(t)e−st dt

(you can also choose to not include them, but this changes some formulas
we’ll see & use)

example: impulse function, f = δ

F (s) =

∫ ∞

0−

δ(t)e−st dt = e−st
∣
∣
t=0

= 1

similarly for f = δ(k) we have

F (s) =

∫ ∞

0−

δ(k)(t)e−st dt = (−1)k
dk

dtk
e−st

∣
∣
∣
∣
t=0

= ske−st
∣
∣
t=0

= sk
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Linearity

the Laplace transform is linear : if f and g are any signals, and a is any
scalar, we have

L(af) = aF, L(f + g) = F +G

i.e., homogeneity & superposition hold

example:

L
(
3δ(t)− 2et

)
= 3L(δ(t))− 2L(et)

= 3− 2

s− 1

=
3s− 5

s− 1
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One-to-one property

the Laplace transform is one-to-one: if L(f) = L(g) then f = g
(well, almost; see below)

• F determines f

• inverse Laplace transform L−1 is well defined

(not easy to show)

example (previous page):

L−1

(
3s− 5

s− 1

)

= 3δ(t)− 2et

in other words, the only function f such that

F (s) =
3s− 5

s− 1

is f(t) = 3δ(t)− 2et
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what ‘almost’ means: if f and g differ only at a finite number of points
(where there aren’t impulses) then F = G

examples:

• f defined as

f(t) =

{
1 t = 2
0 t 6= 2

has F = 0

• f defined as

f(t) =

{
1/2 t = 0
1 t > 0

has F = 1/s (same as unit step)
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Inverse Laplace transform

in principle we can recover f from F via

f(t) =
1

2πj

∫ σ+j∞

σ−j∞

F (s)est ds

where σ is large enough that F (s) is defined for <s ≥ σ

surprisingly, this formula isn’t really useful!
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Time scaling

define signal g by g(t) = f(at), where a > 0; then

G(s) = (1/a)F (s/a)

makes sense: times are scaled by a, frequencies by 1/a

let’s check:

G(s) =

∫ ∞

0

f(at)e−st dt = (1/a)

∫ ∞

0

f(τ)e−(s/a)τ dτ = (1/a)F (s/a)

where τ = at

example: L(et) = 1/(s− 1) so

L(eat) = (1/a)
1

(s/a)− 1
=

1

s− a
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Exponential scaling

let f be a signal and a a scalar, and define g(t) = eatf(t); then

G(s) = F (s− a)

let’s check:

G(s) =

∫ ∞

0

e−steatf(t) dt =

∫ ∞

0

e−(s−a)tf(t) dt = F (s− a)

example: L(cos t) = s/(s2 + 1), and hence

L(e−t cos t) =
s+ 1

(s+ 1)2 + 1
=

s+ 1

s2 + 2s+ 2

The Laplace transform 3–15



Time delay

let f be a signal and T > 0; define the signal g as

g(t) =

{
0 0 ≤ t < T
f(t− T ) t ≥ T

(g is f , delayed by T seconds & ‘zero-padded’ up to T )

PSfrag replacements

tt
t = T

f(t) g(t)
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then we have G(s) = e−sTF (s)

derivation:

G(s) =

∫ ∞

0

e−stg(t) dt =

∫ ∞

T

e−stf(t− T ) dt

=

∫ ∞

0

e−s(τ+T )f(τ) dτ

= e−sTF (s)
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example: let’s find the Laplace transform of a rectangular pulse signal

f(t) =

{
1 if a ≤ t ≤ b
0 otherwise

where 0 < a < b

we can write f as f = f1 − f2 where

f1(t) =

{
1 t ≥ a
0 t < a

f2(t) =

{
1 t ≥ b
0 t < b

i.e., f is a unit step delayed a seconds, minus a unit step delayed b seconds

hence

F (s) = L(f1)− L(f2)

=
e−as − e−bs

s

(can check by direct integration)
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Derivative

if signal f is continuous at t = 0, then

L(f ′) = sF (s)− f(0)

• time-domain differentiation becomes multiplication by frequency
variable s (as with phasors)

• plus a term that includes initial condition (i.e., −f(0))

higher-order derivatives: applying derivative formula twice yields

L(f ′′) = sL(f ′)− f ′(0)

= s(sF (s)− f(0))− f ′(0)

= s2F (s)− sf(0)− f ′(0)

similar formulas hold for L(f (k))
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examples

• f(t) = et, so f ′(t) = et and

L(f) = L(f ′) =
1

s− 1

using the formula, L(f ′) = s(
1

s− 1
)− 1, which is the same

• sinωt = − 1
ω

d
dt cosωt, so

L(sinωt) = −1

ω

(

s
s

s2 + ω2
− 1

)

=
ω

s2 + ω2

• f is unit ramp, so f ′ is unit step

L(f ′) = s

(
1

s2

)

− 0 = 1/s
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derivation of derivative formula: start from the defining integral

G(s) =

∫ ∞

0

f ′(t)e−stdt

integration by parts yields

G(s) = e−stf(t)
∣
∣
∞

0
−
∫ ∞

0

f(t)(−se−st) dt

= lim
t→∞

f(t)e−st − f(0) + sF (s)

for <s large enough the limit is zero, and we recover the formula

G(s) = sF (s)− f(0)
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derivative formula for discontinuous functions

if signal f is discontinuous at t = 0, then

L(f ′) = sF (s)− f(0−)

example: f is unit step, so f ′(t) = δ(t)

L(f ′) = s

(
1

s

)

− 0 = 1
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Example: RC circuit

PSfrag replacements

u y

1Ω

1F

• capacitor is uncharged at t = 0, i.e., y(0) = 0

• u(t) is a unit step

from last lecture,
y′(t) + y(t) = u(t)

take Laplace transform, term by term:

sY (s) + Y (s) = 1/s

(using y(0) = 0 and U(s) = 1/s)
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solve for Y (s) (just algebra!) to get

Y (s) =
1/s

s+ 1
=

1

s(s+ 1)

to find y, we first express Y as

Y (s) =
1

s
− 1

s+ 1

(check!)

therefore we have

y(t) = L−1(1/s)− L−1(1/(s+ 1)) = 1− e−t

Laplace transform turned a differential equation into an algebraic equation
(more on this later)
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Integral

let g be the running integral of a signal f , i.e.,

g(t) =

∫ t

0

f(τ) dτ

then

G(s) =
1

s
F (s)

i.e., time-domain integral becomes division by frequency variable s

example: f = δ, so F (s) = 1; g is the unit step function

G(s) = 1/s

example: f is unit step function, so F (s) = 1/s; g is the unit ramp
function (g(t) = t for t ≥ 0),

G(s) = 1/s2
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derivation of integral formula:

G(s) =

∫ ∞

t=0

(∫ t

τ=0

f(τ) dτ

)

e−st dt =

∫ ∞

t=0

∫ t

τ=0

f(τ)e−st dτ dt

here we integrate horizontally first over the triangle 0 ≤ τ ≤ t

PSfrag replacements

t

τ

let’s switch the order, i.e., integrate vertically first:

G(s) =

∫ ∞

τ=0

∫ ∞

t=τ

f(τ)e−st dt dτ =

∫ ∞

τ=0

f(τ)

(∫ ∞

t=τ

e−st dt

)

dτ

=

∫ ∞

τ=0

f(τ)(1/s)e−sτdτ

= F (s)/s
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Multiplication by t

let f be a signal and define

g(t) = tf(t)

then we have
G(s) = −F ′(s)

to verify formula, just differentiate both sides of

F (s) =

∫ ∞

0

e−stf(t) dt

with respect to s to get

F ′(s) =

∫ ∞

0

(−t)e−stf(t) dt
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examples

• f(t) = e−t, g(t) = te−t

L(te−t) = − d

ds

1

s+ 1
=

1

(s+ 1)2

• f(t) = te−t, g(t) = t2e−t

L(t2e−t) = − d

ds

1

(s+ 1)2
=

2

(s+ 1)3

• in general,

L(tke−t) =
(k − 1)!

(s+ 1)k+1
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Convolution

the convolution of signals f and g, denoted h = f ∗ g, is the signal

h(t) =

∫ t

0

f(τ)g(t− τ) dτ

• same as h(t) =

∫ t

0

f(t− τ)g(τ) dτ ; in other words,

f ∗ g = g ∗ f

• (very great) importance will soon become clear

in terms of Laplace transforms:

H(s) = F (s)G(s)

Laplace transform turns convolution into multiplication
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let’s show that L(f ∗ g) = F (s)G(s):

H(s) =

∫ ∞

t=0

e−st
(∫ t

τ=0

f(τ)g(t− τ) dτ

)

dt

=

∫ ∞

t=0

∫ t

τ=0

e−stf(τ)g(t− τ) dτ dt

where we integrate over the triangle 0 ≤ τ ≤ t

• change order of integration: H(s) =

∫ ∞

τ=0

∫ ∞

t=τ

e−stf(τ)g(t− τ) dt dτ

• change variable t to t = t− τ ; dt = dt; region of integration becomes
τ ≥ 0, t ≥ 0

H(s) =

∫ ∞

τ=0

∫ ∞

t=0

e−s(t+τ)f(τ)g(t) dt dτ

=

(∫ ∞

τ=0

e−sτf(τ) dτ

)(∫ ∞

t=0

e−stg(t) dt

)

= F (s)G(s)
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examples

• f = δ, F (s) = 1, gives
H(s) = G(s),

which is consistent with

∫ t

0

δ(τ)g(t− τ)dτ = g(t)

• f(t) = 1, F (s) = e−sT/s, gives

H(s) = G(s)/s

which is consistent with

h(t) =

∫ t

0

g(τ) dτ

• more interesting examples later in the course . . .
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Finding the Laplace transform

you should know the Laplace transforms of some basic signals, e.g.,

• unit step (F (s) = 1/s), impulse function (F (s) = 1)

• exponential: L(eat) = 1/(s− a)

• sinusoids L(cosωt) = s/(s2 + ω2), L(sinωt) = ω/(s2 + ω2)

these, combined with a table of Laplace transforms and the properties
given above (linearity, scaling, . . . ) will get you pretty far

and of course you can always integrate, using the defining formula

F (s) =

∫ ∞

0

f(t)e−st dt . . .
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Patterns

while the details differ, you can see some interesting symmetric patterns
between

• the time domain (i.e., signals), and

• the frequency domain (i.e., their Laplace transforms)

• differentiation in one domain corresponds to multiplication by the
variable in the other

• multiplication by an exponential in one domain corresponds to a shift
(or delay) in the other

we’ll see these patterns (and others) throughout the course
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