S. Boyd

Lecture 3
The Laplace transform

e definition & examples

e properties & formulas

— linearity

— the inverse Laplace transform
— time scaling

— exponential scaling

— time delay

— derivative

— integral

— multiplication by ¢

— convolution
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Idea

the Laplace transform converts integral and differential equations into
algebraic equations

this is like phasors, but
e applies to general signals, not just sinusoids

e handles non-steady-state conditions

allows us to analyze
e LCCODEs
e complicated circuits with sources, Ls, Rs, and Cs

e complicated systems with integrators, differentiators, gains
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Complex numbers

complex number in Cartesian form: z = x + jy

o © = RNz, the real part of z
o y = Sz, the imaginary part of z

e j = +/—1 (engineering notation); i = y/—1 is polite term in mixed
company

complex number in polar form: z = rel®

e 1 is the modulus or magnitude of z

e ¢ is the angle or phase of z

e exp(j¢) =cos¢+ jsing
complex exponential of z = o + jy:

e? = " = ¢%el¥ = e¥(cosy + jsiny)
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The Laplace transform

we'll be interested in signals defined for ¢ > 0

the Laplace transform of a signal (function) f is the function F' = L(f)
defined by

F(s) = /OOO f(t)e st dt

for those s € C for which the integral makes sense

e F'is a complex-valued function of complex numbers

e s is called the (complex) frequency variable, with units sec™?; ¢ is called
the time variable (in sec); st is unitless

e for now, we assume f contains no impulses at t = 0

common notation convention: lower case letter denotes signal; capital
letter denotes its Laplace transform, e.g., U denotes L£(u), Vi, denotes
L(viy), etc.
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Example

let’s find Laplace transform of f(¢) = e:

(©.@) o0 1
0 0 1

— S

OO_ 1
0 s —1

(1—s)t

provided we can say e — 0 as t — 00, which is true for s > 1:

_ e—j(%s)t 6<1_§RS)t :e(l—%s)t

|6(1—s)t

\ /

Ve

=1

e the integral defining F' makes sense for all s € C with Rs > 1 (the
‘region of convergence’ of F)

e but the resulting formula for F' makes sense for all s € C except s =1

we'll ignore these (sometimes important) details and just say that
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More examples

constant: (or unit step) f(¢) =1 (for t > 0)

Oo_l

0 S

>° 1
F(s) = / e St dt = ——e
0

S

S

provided we can say e %t — 0 as t — oo, which is true for s > 0 since

e—j(gs)t 6—(5)%8)t _ 6_<§R8>t

e =

\ 7

-~

=1

e the integral defining F' makes sense for all s with Jts > 0

e but the resulting formula for F' makes sense for all s except s = 0
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sinusoid: first express f(t) = coswt as

f(t) = (1/2)€jwt 4 (1/2)6—jwt

now we can find F' as
F(s) = /OOO e "t ((1/2)e?“t + (1/2)e ") dt

= (1/2) /0 st gy +(1/2) /O T elesdwt gy

= (1/2)

S
s2 4+ w2

1/2
s—jw+( / )s—|—jw

(valid for s > 0; final formula OK for s # +jw)
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powers of t: f(t) =t" (n>1)

we'll integrate by parts, i.e., use

2o

S

provided t"e~ %" — 0 if t — oo, which is true for s > 0

applying the formula recusively, we obtain

valid for s > 0; final formula OK for all s # 0

The Laplace transform
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n!
Sn+1
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Impulses at t = 0

if f contains impulses at ¢t = 0 we choose to include them in the integral
defining F"

F(s) = Oio ft)e st dt

(you can also choose to not include them, but this changes some formulas
we'll see & use)

example: impulse function, f =9

F(s) = /_ S(t)e "t dt = e %" o =1

similarly for f = §(%) we have

00 dk
F(s) = / R (t)e st dt = (—1)k—ke_3t = sFes g = s*
— dt t=0 a
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Linearity

the Laplace transform is linear: if f and g are any signals, and a is any
scalar, we have

L(af) = aF, L(f+g9)=F+G

i.e., homogeneity & superposition hold

example:

£(36(t) —2¢") = BL(S(t)) — 2L (")

B 2
N 3_3—1
. 3s—=05
- os—1
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One-to-one property

the Laplace transform is one-to-one: if L(f) = L(g) then f =g

(well, almost; see below)

e F determines f

e inverse Laplace transform £~ is well defined

(not easy to show)

example (previous page):

L1 (33 _15) = 36(t) — 2¢*
8 —_—

in other words, the only function f such that

38 — 9
F —
(5) = ——

is f(t) = 36(t) — 2¢!
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what ‘almost’ means: if f and g differ only at a finite number of points

(where there aren’t impulses) then F' =G

examples:

o f defined as

has F' =0

o f defined as
=1 125

has ' = 1/s (same as unit step)

The Laplace transform
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Inverse Laplace transform

in principle we can recover f from F' via

Ft) = / T et ds

27 s

where ¢ is large enough that F'(s) is defined for Rs > o

surprisingly, this formula isn't really useful!

The Laplace transform
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Time scaling

define signal g by g(t) = f(at), where a > 0; then

G(s) = (1/a)F(s/a)
makes sense: times are scaled by a, frequencies by 1/a

let's check:
G(s) = /Ooof(at)e_St dt = (1/a) /Ooof(T)e_(S/a’)T dr = (1/a)F(s/a)

where 7 = at

example: L(e') =1/(s—1) so

L(e") = (1/a)
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Exponential scaling

let f be a signal and a a scalar, and define g(¢) = e* f(t); then

G(s)=F(s—a)

let’s check:

oo

G(s) = /OOO e Ste f(t) dt = / e~ V() dt = F(s — a)

0

example: L(cost) = s/(s*+ 1), and hence

s+ 1 B s+ 1
(s+1)2+1 s24+25+2

L(e "cost) =
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Time delay

let f be a signal and T' > 0; define the signal g as

0 0<t<T
mw:{f@—T)tzT

(g is f, delayed by T seconds & ‘zero-padded’ up to T)

f(t) g(t)

\/\jf\\ . : \T/\\/\f\ .
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then we have G(s) = e 1 F(s)

derivation:

G(s) = /OOO e Stg(t) dt = /OO et f(t—T) dt

T

= / 6_3(7+T)f(7) dr
0
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example: let’s find the Laplace transform of a rectangular pulse signal

f(t):{ 1 ifa<t<b

0 otherwise

where 0 < a < b

we can write f as f = f1 — fo where

wn={} 120 mo={} 12!

i.e., f is a unit step delayed a seconds, minus a unit step delayed b seconds
hence

F(s) = L(f1)—L(f2)

—as __ ,—bs

€ €

(can check by direct integration)
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Derivative

if signal f is continuous at ¢ = 0, then
L(f') = sF(s) — f(0)

e time-domain differentiation becomes multiplication by frequency
variable s (as with phasors)

e plus a term that includes initial condition (i.e., —f(0))

higher-order derivatives: applying derivative formula twice yields

L(f") = sL(f) = f(0)
= ( () £(0)) — ()

similar formulas hold for £(f*)
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examples

o f(t) =¢' so f'(t) = e* and

1
L(f) = L(f) =
()= L) = —
. / 1 _
using the formula, L(f") = s( 1) — 1, which is the same
S R
e sinwt = —% %coswt, SO
: 1 S w
L(sinwt) = - (882 e 1) =

e f is unit ramp, so [’ is unit step
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derivation of derivative formula: start from the defining integral

G(s) = /000 f'(t)e *dt

integration by parts yields

G(s) = e *'f(t)]y — [ f)(—se™™) dt

for s large enough the limit is zero, and we recover the formula

G(s) = sF(s) — f(0)
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derivative formula for discontinuous functions

if signal f is discontinuous at ¢t = 0, then

L(f") = sF(s) — f(0-)
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Example: RC circuit
19

e capacitor is uncharged at t = 0, i.e., y(0) =0

e u(t) is a unit step

from last lecture,
y'(t) + y(t) = u(t)

take Laplace transform, term by term:
sY(s)+Y(s)=1/s
(using y¥(0) =0 and U(s) = 1/s)

The Laplace transform
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solve for Y (s) (just algebral) to get

o 1/s 1
s+ 1 s(s+1)

Y (s)

to find y, we first express Y as

(check!)

therefore we have

y(t) =L (1/s) = L7 (1/(s+ 1)) =1—e€"

Laplace transform turned a differential equation into an algebraic equation
(more on this later)
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Integral

let g be the running integral of a signal f, 7.e.,

o) = [ $r) dr

then

1.e., time-domain integral becomes division by frequency variable s

example: f =0, so F/(s) = 1; g is the unit step function
G(s)=1/s

example: f is unit step function, so F'(s) = 1/s; g is the unit ramp
function (g(t) =t for t > 0),

G(s) =1/s*
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derivation of integral formula:

G(s) = /:; ( / t:O £(7) dT) et dt = /:; ;0 f(r)e=st dr dt

here we integrate horizontally first over the triangle 0 < 7 <t
t

T

let's switch the order, i.e., integrate vertically first:

G(s) = / : t: f(r)e~stdtdr = / :OO £(7) ( /t:e—st dt) dr
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Multiplication by ¢

let f be a signal and define

then we have

to verify formula, just differentiate both sides of

F(s) = /000 e St f(t) dt

with respect to s to get
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examples

o f(t)=e7", g(t) =te!

d 1 2
2 —ty _ _
Lt7e™) = ds (s+1)2 (s+1)3
e in general,
bty (k—1)!
L(t"e™) (s + 1)F+1

The Laplace transform
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Convolution

the convolution of signals f and g, denoted h = f * g, is the signal

/f

e same as h(t / f(t —71)g(7) dr; in other words,
frg=gxf

e (very great) importance will soon become clear

in terms of Laplace transforms:

Laplace transform turns convolution into multiplication

The Laplace transform
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let's show that L(f xg) =

H{(s) :/ (/ F(P)g(t—7) d )dt
— /to/To_St g(t —7) dr dt

where we integrate over the triangle 0 < 7 <t
e change order of integration: H(s / / e U f(T)g(t — 1) dt dr
7=0 Jt=71

e change variable t to t =t — 7; dt = dt; region of integration becomes
7>0,t>0

o) = [ [ e g dtdr

— (/TO:O e 7 f(1) d7> </E: = g(7) dZ)
= F(s5)G(s)
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examples

o f=0, F(s)=1, gives

e f(t)=1, F(s) =e 51 /s, gives

which is consistent with

e more interesting examples later in the course . . .
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Finding the Laplace transform

you should know the Laplace transforms of some basic signals, e.g.,

e unit step (F'(s) = 1/s), impulse function (F(s) = 1)
e exponential: L(e*) =1/(s — a)

e sinusoids L(coswt) = s5/(s* +w?), L(sinwt) = w/(s* + w?)

these, combined with a table of Laplace transforms and the properties
given above (linearity, scaling, . .. ) will get you pretty far

and of course you can always integrate, using the defining formula

F(s) = /OOO f(t)e st dt

The Laplace transform 3-32



Patterns

while the details differ, you can see some interesting symmetric patterns
between

e the time domain (i.e., signals), and

e the frequency domain (i.e., their Laplace transforms)

e differentiation in one domain corresponds to multiplication by the
variable in the other

e multiplication by an exponential in one domain corresponds to a shift
(or delay) in the other

we'll see these patterns (and others) throughout the course
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