
S. Boyd EE102

Lecture 7

Circuit analysis via Laplace transform

• analysis of general LRC circuits

• impedance and admittance descriptions

• natural and forced response

• circuit analysis with impedances

• natural frequencies and stability
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Circuit analysis example

PSfrag replacements i

u y

L

R

initial current: i(0)

KCL, KVL, and branch relations yield: −u+ Li′ + y = 0, y = Ri

take Laplace transforms to get

−U + L(sI − i(0)) + Y = 0, Y = RI

solve for Y to get

Y =
U + Li(0)

1 + sL/R
=

1

1 + sL/R
U +

L

1 + sL/R
i(0)
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in the time domain:

y(t) =
1

T

∫ t

0

e−τ/Tu(t− τ) dτ +Ri(0)e−t/T

where T = L/R

two terms in y (or Y ):

• first term corresponds to solution with zero initial condition

• first term is convolution of source with a function

• second term corresponds to solution with zero source

we’ll see these are general properties . . .
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Analysis of general LRC circuits

consider a circuit with n nodes and b branches, containing

• independent sources

• linear elements (resistors, op-amps, dep. sources, . . . )

• inductors & capacitors
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such a circuit is described by three sets of equations:

• KCL: Ai(t) = 0 (n− 1 equations)

• KVL: v(t) = ATe(t) (b equations)

• branch relations (b equations)

where

• A ∈ R(n−1)×b is the reduced node incidence matrix

• i ∈ Rb is the vector of branch currents

• v ∈ Rb is the vector of branch voltages

• e ∈ Rn−1 is the vector of node potentials
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Branch relations

• independent voltage source: vk(t) = uk(t)

• resistor: vk = Rik

• capacitor: ik = Cv′k

• inductor: vk = Li′k

• VCVS: vk = avj

• and so on (current source, VCCS, op-amp, . . . )

thus:

circuit equations are a set of 2b+ n− 1 (linear) algebraic and/or
differential equations in 2b+ n− 1 variables
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Laplace transform of circuit equations

most of the equations are the same, e.g.,

• KCL, KVL become AI = 0, V = ATE

• independent sources, e.g., vk = uk becomes Vk = Uk

• linear static branch relations, e.g., vk = Rik becomes Vk = RIk

the differential equations become algebraic equations:

• capacitor: Ik = sCVk − Cvk(0)

• inductor: Vk = sLIk − Lik(0)

thus, in frequency domain,

circuit equations are a set of 2b+ n− 1 (linear) algebraic equations
in 2b+ n− 1 variables
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thus, LRC circuits can be solved exactly like static circuits, except

• all variables are Laplace transforms, not real numbers

• capacitors and inductors have branch relations Ik = sCVk − Cvk(0),
Vk = sLIk − Lik(0)

interpretation: an inductor is like a “resistance” sL, in series with an
independent voltage source −Lik(0)
a capacitor is like a “resistance” 1/(sC), in parallel with an independent
current source −Cvk(0)

• these “resistances” are called impedances

• these sources are impulses in the time domain which set up the initial
conditions
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Impedance and admittance

circuit element or device with voltage v, current i

PSfrag replacements

i

v

the relation V (s) = Z(s)I(s) is called an impedance description of the
device

• Z is called the (s-domain) impedance of the device

• in the time domain, v and i are related by convolution: v = z ∗ i

similarly, I(s) = Y (s)V (s) is called an admittance description

(Y = 1/Z)
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Examples

• a resistor has an impedance R

• an inductor with zero initial current has an impedance Z(s) = sL
(admittance 1/(sL))

• a capacitor with zero initial voltage has an impedance Z(s) = 1/(sC)
(admittance sC)

cf. impedance in SSS analysis with phasors:

• resistor: V = RI

• inductor: V = (jωL)I

• capacitor: V = (1/jωC)I

s-domain and phasor impedance agree for s = jω, but are not the same

Circuit analysis via Laplace transform 7–10



we can express the branch relations as

M(s)I(s) +N(s)V (s) = U(s) +W

where

• U is the independent sources

• W includes the terms associated with initial conditions

• M and N give the impedance or admittance of the branches

for example, if branch 13 is an inductor,

(sL)I13(s) + (−1)V13(s) = Li13(0)

(this gives the 13th row of M , N , U , and W )
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we can write circuit equations as one big matrix equation:





A 0 0
0 I −AT

M(s) N(s) 0









I(s)
V (s)
E(s)



 =





0
0

U(s) +W




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hence,





I(s)
V (s)
E(s)



 =





A 0 0
0 I −AT

M(s) N(s) 0





−1



0
0

U(s) +W





in the time domain,





i(t)

v(t)

e(t)



 = L
−1











A 0 0

0 I −AT

M(s) N(s) 0





−1 



0

0

U(s) +W











• this gives a explicit solution of the circuit

• these equations are identical to those for a linear static circuit
(except instead of real numbers we have Laplace transforms, i.e.,
complex-valued functions of s)

• hence, much of what you know extends to this case
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Natural and forced response

let’s express solution as





i(t)

v(t)

e(t)



 = L
−1











A 0 0

0 I −AT

M(s) N(s) 0





−1 



0

0

U(s)











+ L
−1











A 0 0

0 I −AT

M(s) N(s) 0





−1 



0

0

W











thus circuit response is equal to:

• the natural response, i.e., solution with independent sources off, plus

• the forced response, i.e., solution with zero initial conditions
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• the forced response is linear in U(s), i.e., the independent source signals

• the natural response is linear in W , i.e., the inductor & capacitor initial
conditions
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Back to the example

PSfrag replacements i

u y

L

R

initial current: i(0)

natural response: set source to zero, get LR circuit with solution

ynat(t) = Ri(0)e−t/T , T = L/R

forced response: assume zero initial current, replace inductor with
impedance Z = sL:
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PSfrag replacements

U Yfrc

Z = sL

R

by voltage divider rule (for impedances), Yfrc = U
R

R+ sL
(as if they were

simple resistors!)

so yfrc = L−1(R/(R+ sL)) ∗ u, i.e.,

yfrc(t) =
1

T

∫ t

0

e−τ/Tu(t− τ) dτ

all together, the voltage is y(t) = ynat(t) + yfrc(t) (same as before)
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Circuit analysis with impedances

for a circuit with

• linear static elements (resistors, op-amps, dependent sources, . . . )

• independent sources

• elements described by impedances (inductors & capacitors with zero
initial conditions, . . . )

we can manipulate

• Laplace transforms of voltages, currents

• impedances

as if they were (real, constant) voltages, currents, and resistances,
respectively
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reason: they both satisfy the same equations

examples:

• series, parallel combinations

• voltage & current divider rules

• Thevenin, Norton equivalents

• nodal analysis
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example:
PSfrag replacements

Iin

Vin

3Ω

4H

2F

1Ω

let’s find input impedance, i.e., Zin = Vin/Iin

by series/parallel combination rules,

Zin = 1/(2s) + (1‖4s) + 3 =
1

2s
+

4s

1 + 4s
+ 3

we have

Vin(s) =

(

1

2s
+

4s

1 + 4s
+ 3

)

Iin(s)

provided the capacitor & inductor have zero initial conditions
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example: nodal analysisPSfrag replacements

Iin

E1 E2

3Ω

1Ω 4Ω 5H

2F

nodal equations are GE = Isrc where

• Isrc is total of current sources flowing into nodes

• Gii is sum of admittances tied to node i

• Gij is minus the sum of all admittances between nodes i and j
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for this example we have:

[

1 + 2s+ 1
3 −(2s+ 1

3)

−(2s+ 1
3)

1
3 + 2s+

1
4 +

1
5s

] [

E1(s)

E2(s)

]

=

[

Iin(s)

0

]

(which we could solve . . . )
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example: Thevenin equivalent

PSfrag replacements

1− e−t

2H

1Ω

A

B

voltage source is 1
s −

1
s+1 =

1
s(s+1) in s-domain

Thevenin voltage is open-circuit voltage, i.e.,

Vth =
1

s(s+ 1)

1

1 + 2s

Thevenin impedance is impedance looking into terminals with source off,
i.e.,

Zth = 1‖2s =
2s

1 + 2s
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Thevenin equivalent circuit is:

PSfrag replacements

Vth(s) =
1

s(s+ 1)(1 + 2s)

Zth(s) =
2s

1 + 2s

A

B
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Natural frequencies and stability

we say a circuit is stable if its natural response decays (i.e., converges to
zero as t → ∞) for all initial conditions

in this case the circuit “forgets” its initial conditions as t increases; the
natural response contributes less and less to the solution as t increases, i.e.,

y(t)→ yfrc(t) as t → ∞

circuit is stable when poles of the natural response, called natural

frequencies, have negative real part

these are given by the zeros of

det





A 0 0
0 I −AT

M(s) N(s) 0




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