S. Boyd EE102

Lecture 7
Circuit analysis via Laplace transform

e analysis of general LRC circuits

e impedance and admittance descriptions
e natural and forced response

e circuit analysis with impedances

e natural frequencies and stability
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Circuit analysis example
i L

initial current: ¢(0)
KCL, KVL, and branch relations yield: —u+ Li’ +y =0, y = Ri

take Laplace transforms to get

—U+L(sI —i(0))+Y =0, Y =RI

solve for Y to get

U + Li(0) | L
1+sL/R 14 sL/R 1+sL/R

(0)
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in the time domain:

1 [t
y(t) = T/ e " Tu(t — 1) dr + Ri(0)e /7T
0

where T'=L/R

two terms in y (or Y):

e first term corresponds to solution with zero initial condition
e first term is convolution of source with a function

e second term corresponds to solution with zero source

we'll see these are general properties . . .
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Analysis of general LRC circuits

consider a circuit with n nodes and b branches, containing

e independent sources
e linear elements (resistors, op-amps, dep. sources, . . . )

e inductors & capacitors

Circuit analysis via Laplace transform



such a circuit is described by three sets of equations:

e KCL: Ai(t) =0 (n — 1 equations)
o KVL: v(t) = Ate(t) (b equations)
e branch relations (b equations)
where

o A c R™ UXbis the reduced node incidence matrix
e i € R? is the vector of branch currents
e v € R is the vector of branch voltages

e ¢ € R" ! is the vector of node potentials
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Branch relations

e independent voltage source: vi(t) = ug(t)
e resistor: v = Ry

e capacitor: iy = Cvy,

e inductor: vy = Li},

o VCVS: v = av;

e and so on (current source, VCCS, op-amp, . . .)

thus:

circuit equations are a set of 2b + n — 1 (linear) algebraic and/or
differential equations in 2b + n — 1 variables
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Laplace transform of circuit equations

most of the equations are the same, e.qg.,

e KCL, KVL become AI =0, V = ATE
e independent sources, e.g., v = ui becomes Vi = Uy

e linear static branch relations, e.g., vi, = Ri; becomes Vi, = RI;
the differential equations become algebraic equations:

e capacitor: [, = sC'Vj, — Cvi(0)
e inductor: Vi = sLI; — Lig(0)

thus, in frequency domain,

circuit equations are a set of 2b +n — 1 (linear) algebraic equations
in 2b + n — 1 variables
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thus, LRC circuits can be solved exactly like static circuits, except

e all variables are Laplace transforms, not real numbers

e capacitors and inductors have branch relations I}, = sCVy — Cvg(0),
Vi = sLIx — Lig(0)

interpretation: an inductor is like a “resistance” sL, in series with an

independent voltage source —Li(0)
a capacitor is like a “resistance” 1/(sC'), in parallel with an independent

current source —C'vi(0)

e these “resistances’ are called impedances

e these sources are impulses in the time domain which set up the initial
conditions

Circuit analysis via Laplace transform



Impedance and admittance

circuit element or device with voltage v, current
i * ;
v

the relation V(s) = Z(s)I(s) is called an impedance description of the
device

e / is called the (s-domain) impedance of the device

e in the time domain, v and ¢ are related by convolution: v = z * 1

similarly, I(s) = Y (s)V(s) is called an admittance description
Y =1/2)
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Examples

e a resistor has an impedance R

e an inductor with zero initial current has an impedance Z(s) = sL
(admittance 1/(sL))

e a capacitor with zero initial voltage has an impedance Z(s) = 1/(sC)
(admittance sC)

cf. impedance in SSS analysis with phasors:

e resistor: V = RI
e inductor: V = (jwlL)I
e capacitor: V = (1/jwC)I

s-domain and phasor impedance agree for s = jw, but are not the same
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we can express the branch relations as

M(s)I(s)+ N(s)V(s)=U(s)+ W
where
e U is the independent sources

e IV includes the terms associated with initial conditions

e M and N give the impedance or admittance of the branches

for example, if branch 13 is an inductor,
(SL)Ilg(S) -+ (—1)V13(8) = LZlg(O)

(this gives the 13th row of M, N, U, and W)
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we can write circuit equations as one big matrix equation:

A0 0 I(s) 0
0 I —AT || V(s | = 0
 M(s) N(s) 0 | [ E(s)  U(s) +W
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hence,

T Is)] [ A 0 o 1°'T o
Vis) | = 0 I AT 0
- E(s) | | M(s) N(s) 0 | [U@s)+W

in the time domain,

—1

i(t) A 0 0 0
{ v(t) | =£77 0 I AT 0
e(t) M(s) N(s) 0 U(s) + W

e this gives a explicit solution of the circuit

e these equations are identical to those for a linear static circuit
(except instead of real numbers we have Laplace transforms, i.e.,
complex-valued functions of s)

e hence, much of what you know extends to this case
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Natural and forced response

let's express solution as

i(t) A 0 0 0
v(t) = £ 0 I —AT 0
e(t) | M(s) N(s) 0 U(s)
A 0 o 17T o
+ £ 0 I —AT 0
| M(s) N(s) 0 %%

thus circuit response is equal to:

e the natural response, i.c., solution with independent sources off, plus

e the forced response, i.c., solution with zero initial conditions
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e the forced response is linear in U(s), i.e., the independent source signals

e the natural response is linear in W, i.e., the inductor & capacitor initial
conditions
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Back to the example

i L

initial current: 7(0)

natural response: set source to zero, get LR circuit with solution

Ynat(t) = Ri(0)e T, T =L/R

forced response: assume zero initial current, replace inductor with
impedance Z = sL:
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+
U R }/frc
by voltage divider rule (for impedances), Y. = U d (as if they were
y g P r L frc — R+ s y
simple resistors!)
s0 Ygre = L7HR/(R+ sL)) x u, i.e.,
1t
Yrno(t) = = / e~/ Tu(t — 1) dr
1" Jo

all together, the voltage is y(t) = Ynat(t) + yrc(t) (same as before)
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Circuit analysis with impedances

for a circuit with

e linear static elements (resistors, op-amps, dependent sources, . . . )
e independent sources

e clements described by impedances (inductors & capacitors with zero
initial conditions, . . . )

we can manipulate

e Laplace transforms of voltages, currents

e impedances

as if they were (real, constant) voltages, currents, and resistances,
respectively
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reason: they both satisfy the same equations

examples:

e series, parallel combinations
e voltage & current divider rules
e Thevenin, Norton equivalents

e nodal analysis
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example:

Vin 10 4H

let's find input impedance, i.e., Zi, = Vin/ILin

by series/parallel combination rules,

Zin=1/(2s5) + (1]|4s) + 3 = — + + 3

we have
1 4s

Vin(s) = (2—8+ 1+48+3) Iin(s)

provided the capacitor & inductor have zero initial conditions
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example: nodal analysis

Iin C) 12 4Q SH

nodal equations are GE = I, .. where

o /. is total of current sources flowing into nodes
e (5;; Is sum of admittances tied to node ¢

e (5;; is minus the sum of all admittances between nodes 7 and j
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for this example we have:

st B S | vl B

(which we could solve . . . )
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example: Thevenin equivalent

2H

1 1 1

s S—I——l p— m n s—domaln

voltage source is

Thevenin voltage is open-circuit voltage, i.e.,

1 1

Thevenin impedance is impedance looking into terminals with source off,
1.€.,
25

o = 1|25 =
th =125 = 77—
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Thevenin equivalent circuit is:

Vinls) = i A 1 29)

Circuit analysis via Laplace transform

7-24



Natural frequencies and stability

we say a circuit is stable if its natural response decays (i.e., converges to
zero as t — o0) for all initial conditions

in this case the circuit “forgets” its initial conditions as ¢ increases; the
natural response contributes less and less to the solution as ¢ increases, i.e.,

y(t) = yse(t) as t — oo

circuit is stable when poles of the natural response, called natural
frequencies, have negative real part

these are given by the zeros of

det 0 I —AT

Circuit analysis via Laplace transform 7-25



