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Lecture 1
Signals

e notation and meaning

e common signals

e size of a signal

e qualitative properties of signals

e impulsive signals
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Signals

a signal is a function of time, e.g.,

e f is the force on some mass
® Uout IS the output voltage of some circuit

e p is the acoustic pressure at some point

notation:

o f, Uout, por f(-), vout(+), p(-) refer to the whole signal or function

o f(t), Vout(1.2), p(t + 2) refer to the value of the signals at times ¢, 1.2,
and t + 2, respectively

for times we usually use symbols like £, 7, ¢4, . ..
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Example

p(t) (Pa)

| |
1 0 1

t (msec)
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Domain of a signal

domain of a signal: t's for which it is defined

some common domains:

e all ¢, 7.e., R

e nonnegative t: t > 0
(here ¢t = 0 just means some starting time of interest)

e tin some interval: a <t <b
e ¢ at uniformly sampled points: t = kh +tg, k= 0,£1,%+2, ...

e discrete-time signals are defined for integer ¢, 7.e., t =0, £1, 42, ...
(here ¢ means sample time or epoch, not real time in seconds)

we'll usually study signals defined on all reals, or for nonnegative reals
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Dimension & units of a signal

dimension or type of a signal u, e.g.,

e real-valued or scalar signal: u(t) is a real number (scalar)
e vector signal: u(t) is a vector of some dimension

e binary signal: u(t) is either 0 or 1
we'll usually encounter scalar signals

example: a vector-valued signal

might give the voltage at three places on an antenna
physical units of a signal, e.g., V, mA, m/sec

sometimes the physical units are 1 (i.e., unitless) or unspecified
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Common signals with names

e a constant (or static or DC) signal: u(t) = a, where a is some constant

e the unit step signal (sometimes denoted 1(t) or U(t)),
u(t) =0fort <0, wu(t)=1fort>0
e the unit ramp signal,
u(t) =0fort <0, wu(t)=tfort>0
e a rectangular pulse signal,
u(t) =1fora <t <b, wu(t)=0 otherwise

e a sinusoidal signal:
u(t) = acos(wt + ¢)

a, b, w, ¢ are called signal parameters
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Real signals
most real signals, e.g.,
e AM radio signal
e FM radio signal
e cable TV signal
e audio signal
e NTSC video signal
e 10BT ethernet signal

e telephone signal

aren't given by mathematical formulas, but they do have defining
characteristics
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Measuring the size of a signal

size of a signal u is measured in many ways

for example, if u(t) is defined for t > 0:

integral square (or total energy): / u(t)? dt
0
squareroot of total energy

integral-absolute value: / lu(t)| dt
0

peak or maximum absolute value of a signal: max;>q |u(t)|

T — o0

1/2
1 (T
root-mean-square (RMS) value: ( lim —/ u(t)? dt)
0

T'— o0

1 (T
average-absolute (AA) value: lim —/ lu(t)| dt
0

for some signals these measures can be infinite, or undefined
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example: for a sinusoid u(t) = acos(wt + ¢) for t > 0
e the peak is |a]

e the RMS value is |a|/v/2 ~ 0.707|a

e the AA value is |a|2/m ~ 0.636|a]

e the integral square and integral absolute values are oo

the deviation between two signals u and v can be found as the size of the
difference, e.g., RMS(u — v)
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Qualitative properties of signals

e u decays if u(t) - 0ast— oo

e wu converges if u(t) — a as t — oo (a is some constant)
e u is bounded if its peak is finite

e u is unbounded or blows up if its peak is infinite

e u is periodic if for some T" > 0, u(t + 1) = u(t) holds for all ¢

in practice we are interested in more specific quantitative questions, e.g.,

e how fast does u decay or converge?

e how large is the peak of u?
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Impulsive signals

(Dirac’s) delta function or impulse § is an idealization of a signal that

e is very large neart =0
e is very small away from ¢t = 0

e has integral 1

for example:

e the exact shape of the function doesn’'t matter

e ¢ is small (which depends on context)

Signals 1-11



on plots ¢ is shown as a solid arrow:

S =3t)

f(t) =t+1+46(¢)
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Formal properties

formally we define 0 by the property that

b
/ F(8)8(t) dt = £(0)

provided a < 0, b > 0, and f is continuous at £t = 0

idea: J acts over a time interval very small, over which f(t) =~ f(0)
e §(t)=0fort#0

e §(0) isn't really defined

b
./5(t)dt:1ifa<0andb>0

b
./5(t)dt:0ifa>()orb<0
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b
/ d(t) dt = 0 is ambiguous if a =0 or b =0

our convention: to avoid confusion we use limits such as a— or b+ to
denote whether we include the impulse or not

for example,

1 1 0— 0+
/(5(t)dt:0, /5(t)dt:1, / 5(t) dt = 0, / 5(t) dt =1
0+ - —1 -1
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Scaled impulses

ad(t — T) is sometimes called an impulse at time T, with magnitude «

we have
/ ad(t—=T)f(t) dt = af(T)

provided a < T' < b and f is continuous at T’

on plots: write magnitude next to the arrow, e.gq., for 20,

A2
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Sifting property
the signal u(t) = d(t — T') is an impulse function with impulse at t =T

fora <T'< b, and f continuous at t = 1T', we have

b
/ F(0)5(t —T) dt = f(T)

example:
/_32 F(E)(2 4 5(t+1) — 35(t — 1) + 26(¢ + 3)) dt
. /_ 32 1t di + /_ 32 FO5(+1) dt —3 /_ 32 FO5(E—1) dt
+ 2/_32f(t)5(t+ 3)) dt

. /_ (0 de+ f(=1) = 3501
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Physical interpretation

impulse functions are used to model physical signals

e that act over short time intervals

e whose effect depends on integral of signal

example: hammer blow, or bat hitting ball, at t = 2

e force f acts on mass m between t = 1.999sec and t = 2.001 sec

2.001
. / f(t) dt = I (mechanical impulse, N - sec)
1.999

e blow induces change in velocity of
2.001

v(2.001) — v(1.999) = % . f(rydr=1/m

for (most) applications we can model force as an impulse, at ¢t = 2, with
magnitude [
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example: rapid charging of capacitor

\t =0
. N vy (1)
1v_<i> o(t) —_ 1F

assuming v(0) = 0, what is v(t), i(t) for t > 07

e i(t) is very large, for a very short time
e a unit charge is transferred to the capacitor ‘almost instantaneously’

e v(t) increases to v(t) = 1 ‘almost instantaneously’

to calculate 7, v, we need a more detailed model
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for example, include small resistance

as R — 0, ¢ approaches an impulse, v approaches a unit step
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as another example, assume the current delivered by the source is limited:

if v(t) < 1, the source acts as a current source i(t) = Iax

N y i (1)
Inax (1) 0(®) ——
i(t) = dzlsf) — Ipee, 0(0) =0
RO e
1/ Imax 1/ Imax

as Iax — 00, © approaches an impulse, v approaches a unit step
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in conclusion,
e large current 7 acts over very short time between ¢t = 0 and €

e total charge transfer is / i(t) dt =1
0

e resulting change in v(t) is v(e) —v(0) =1

e can approximate 7 as impulse at ¢ = 0 with magnitude 1

modeling current as impulse

e obscures details of current signal
e obscures details of voltage change during the rapid charging
e preserves total change in charge, voltage

e is reasonable model for time scales > ¢
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Integrals of impulsive functions

integral of a function with impulses has jump at each impulse, equal to the
magnitude of impulse

example: u(t) =1+ 6(t — 1) — 20(t — 2); define f(t) = /Otu(T) dr

ft)=tfor0<t <1, f(t)=t+lforl<t<2, f(t)=t—1fort>2

(f(1) and f(2) are undefined)
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Derivatives of discontinuous functions

conversely, derivative of function with discontinuities has impulse at each
jump in function

e derivative of unit step function (see page 1-6) is §(t)

e signal f of previous page

f(t)
A
3 i
N /
L - T ;
| | -t
1 2

/) =14+6t—1)—20(t —2)
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Derivatives of impulse functions

integration by parts suggests we define

/ §'()£(t) dt = 5(t) £ (1

provided a < 0, b > 0, and f’ continuous at t =0

e 0 is called doublet
e ', ", etc. are called higher-order impulses

e similar rules for higher-order impulses:

b
| 89050 dt = (-1
if (k) continuous at t =0
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interpretation of doublet §’: take two impulses with magnitude +1/¢, a
distance € apart, and let ¢ — 0

/

1/e

\J

1/€

fora <0, b>0,

[0 (P8 -H2) = L0

€

converges to —f'(0) if e — 0
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Caveat

there is in fact no such function (Dirac’s § is what is called a distribution)

e we manipulate impulsive functions as if they were real functions, which
they aren't

e it is safe to use impulsive functions in expressions like

b b
/ FOS(L—T) dt. / FOS(L—T) dt

provided f (resp, f’) is continuous att =T, and a #T, b # T

e some innocent looking expressions don't make any sense at all (e.g.,

6(t)? or 6(t%))
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