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Lecture 8

Transfer functions and convolution

• convolution & transfer functions

• properties

• examples

• interpretation of convolution

• representation of linear time-invariant systems
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Convolution systems

convolution system with input u (u(t) = 0, t < 0) and output y:

y(t) =

∫ t

0

h(τ)u(t− τ) dτ =

∫ t

0

h(t− τ)u(τ) dτ

abbreviated: y = h ∗ u

in the frequency domain: Y (s) = H(s)U(s)

• H is called the transfer function (TF) of the system

• h is called the impulse response of the system

block diagram notation(s):

PSfrag replacements

u y u y
∗h H
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Properties

1. convolution systems are linear: for all signals u1, u2 and all α, β ∈ R,

h ∗ (αu1 + βu2) = α(h ∗ u1) + β(h ∗ u2)

2. convolution systems are causal: the output y(t) at time t depends only
on past inputs u(τ), 0 ≤ τ ≤ t

3. convolution systems are time-invariant: if we shift the input signal u
over T > 0, i.e., apply the input

ũ(t) =

{
0 t < T
u(t− T ) t ≥ 0

to the system, the output is

ỹ(t) =

{
0 t < T
y(t− T ) t ≥ 0

in other words: convolution systems commute with delay
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4. composition of convolution systems corresponds to

• multiplication of transfer functions

• convolution of impulse responses

PSfrag replacements

u

u

composition

y

yA B

BA

ramifications:

• can manipulate block diagrams with transfer functions as if they were
simple gains

• convolution systems commute with each other
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Example: feedback connection

PSfrag replacements
u G y

in time domain, we have complicated integral equation

y(t) =

∫ t

0

g(t− τ)(u(τ)− y(τ)) dτ

which is not easy to understand or solve . . .
in frequency domain, we have Y = G(U − Y ); solve for Y to get

Y (s) = H(s)U(s), H(s) =
G(s)

1 +G(s)

(as if G were a simple scaling system!)
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General examples

first order LCCODE: y′ + y = u, y(0) = 0

take Laplace transform to get

Y (s) =
1

s+ 1
U(s)

transfer function is 1/(s+ 1); impulse response is e−t

integrator: y(t) =

∫ t

0

u(τ) dτ

transfer function is 1/s; impulse response is 1

delay: with T ≥ 0,

y(t) =

{
0 t < T
u(t− T ) t ≥ T

impulse response is δ(t− T ); transfer function is e−sT
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Vehicle suspension system

(simple model of) vehicle suspension system:

PSfrag replacements

u

y

m

k b

• input u is road height (along vehicle path); output y is vehicle height

• vehicle dynamics: my′′ + by′ + ky = bu′ + ku

assuming y(0) = 0, y′(0) = 0, (and u(0−) = 0),

(ms2 + bs+ k)Y = (bs+ k)U

TF from road height to vehicle height is H(s) =
bs+ k

ms2 + bs+ k
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DC motor

PSfrag replacements
i θ

Jθ′′ + bθ′ = ki

(J is rotational inertia of shaft & load; b is mechanical resistance of shaft
& load; k is motor constant)

assuming θ(0) = θ′(0) = 0,

Js2Θ(s) + bsΘ(s) = kI(s), Θ(s) =
k

Js2 + bs
I(s)

i.e., transfer function H from i to θ is

H(s) =
k

Js2 + bs
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Circuit examples

consider a circuit with linear elements, zero initial conditions for inductors
and capacitors,

• one independent source with value u

• y is a voltage or current somewhere in the circuit

then we have Y (s) = H(s)U(s)

example: RC circuit
PSfrag replacements

u y

R

C

RCy′(t) + y(t) = u(t), Y (s) =
1

1 + sRC
U(s)

impulse response is L−1

(
1

1 + sRC

)
=

1

RC
e−t/RC
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to find H: write circuit equations in frequency domain:

• resistor: v(t) = Ri(t) becomes V (s) = RI(s)

• capacitor: i(t) = Cv′(t) becomes I(s) = sCV (s)

• inductor: v(t) = Li′(t) becomes V (s) = sLI(s)

in frequency domain, circuit equations become algebraic equations
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example:

PSfrag replacements

vin

vout

1Ω

1Ω

1Ω

1F

1F

v−

v+

let’s find TF from vin to vout (assuming zero initial voltages for capacitors)

• by voltage divider rule, V+ = Vin
1

1 + 1/s
= Vin

s

s+ 1

• current in lefthand resistor is (using V− = V+):

I =
Vin − V−
1Ω

=

(
1−

s

s+ 1

)
Vin =

1

s+ 1
Vin
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• I flows through 1F‖1Ω, yielding voltage

Vin
1

s+ 1

(1)(1/s)

1 + 1/s
= Vin

1

(s+ 1)2

• finally we have Vout = V− − Vin
1

(s+ 1)2
= Vin

s2 + s− 1

(s+ 1)2

so transfer function is

H(s) =
s2 + s− 1

(s+ 1)2
= 1−

1

s+ 1
−

1

(s+ 1)2

impulse response is

h(t) = L−1(H) = δ(t)− e−t − te−t

we have

vout(t) = vin(t)−

∫ t

0

(1 + τ)e−τvin(t− τ) dτ
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Interpretation of convolution

y(t) =

∫ t

0

h(τ)u(t− τ) dτ

• y(t) is current output; u(t− τ) is what the input was τ seconds ago

• h(τ) shows how much current output depends on what input was τ
seconds ago

for example,

• h(21) big means current output depends quite a bit on what input was,
21sec ago

• if h(τ) is small for τ > 3, then y(t) depends mostly on what the input
has been over the last 3 seconds

• h(τ)→ 0 as τ →∞ means y(t) depends less and less on remote past
input
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Graphical interpretation

y(t) =

∫ t

0

h(t− τ)u(τ) dτ

to find y(t):

• flip impulse response h(τ) backwards in time (yields h(−τ))

• drag to the right over t (yields h(t− τ))

• multiply pointwise by u (yields u(τ)h(t− τ))

• integrate over τ to get y(t)
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PSfrag replacements

h(τ) u(τ)u(τ) h(−τ)

h(t1 − τ) h(t2 − τ)

h(t3 − τ)

τ

τ

τ

τ

τ

τ

y = u ∗ h

t1 t2

t3
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Example

communication channel, e.g., twisted pair cable
PSfrag replacements

u y
∗h

impulse response:

0 2 4 6 8 10
0

0.5

1

1.5

PSfrag replacements

t

h

a delay ≈ 1, plus smoothing
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simple signalling at 0.5 bit/sec; Boolean signal 0, 1, 0, 1, 1, . . .
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0
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1
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t

t

u
y

output is delayed, smoothed version of input

1’s & 0’s easily distinguished in y
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simple signalling at 4 bit/sec; same Boolean signal
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t

t

u
y

smoothing makes 1’s & 0’s very hard to distinguish in y
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Linear time-invariant systems

consider a system A which is

• linear

• time-invariant (commutes with delays)

• causal (y(t) depends only on u(τ) for 0 ≤ τ ≤ t)

called a linear time-invariant (LTI) causal system

we have seen that any convolution system is LTI and causal; the converse
is also true: any LTI causal system can be represented by a convolution
system

convolution/transfer function representation gives universal description for
LTI causal systems

(precise statement & proof is not simple . . . )
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