ggplab version 1.00
A Matlab Toolbox for Geometric Programming

Almir Mutapcic Kwangmoo Koh
almirm@stanford.edu denebl@stanford.edu
Seungjean Kim Stephen Boyd
sjkim@stanford.edu boyd@stanford.edu
May 22, 2006

ggplab is a Matlab-based toolbox for specifying and solving geometric programs (GPs)
and generalized geometric programs (GGPs). It is intended to complement the survey paper,
A Tutorial on Geometric Programming [BKVH], and the book Convexr Optimization [BV04].
ggplab consists of

e gpcvx, a primal-dual interior-point solver for GP (in convex form) and a wrapper,
gpposy, that accepts GPs given in posynomial form.

e A library of objects, such as monomials, posynomials, and generalized posynomials, to
support the specification of GPs and GGPs.

e A variety of examples taken from [BKVH, BV04, BKPH, BKM, JBD].

Some caveats:

e The convex optimization toolbox cvx [GBY06] now supports GP and GGP. We recom-
mend cvx for large or complex problems; we recommend ggplab, on the other hand,
for learning the basics of GP.

e The solver supports sparse problems, but is not optimized for very large scale problems.
e Object manipulation overhead can make ggplab slow on large problems.

e ggplab does not include support for dual variables. (The solver, however, does.)

ggplab was designed and implemented by Almir Mutapcic (object library), Kwangmoo
Koh (solver), Seungjean Kim (solver), Lieven Vandenberghe (original version of solver),
and Stephen Boyd (general trouble maker). Please send your feedback or report any bugs
to Almir Mutapcic (almirm@stanford.edu) for the object library, or to Kwangmoo Koh
(denebl@stanford.edu) for the solver.

The rest of this document describes the object library; the GP solver gpcvx, and the
posynomial form wrapper gpposy, are described in separate documents.

1

1 Installing ggplab

To use ggplab you need Matlab 6.1 or later. Unpack the ggplab distribution in some
convenient location, and add the ggplab directory to Matlab’s path, as in

>> addpath /home/username/ggplab

(assuming you’ve unpacked the distribution in /home/username/).

2 GP objects

ggplab includes a library of objects for GP variables, monomials, posynomials, generalized
posynomials, and GP constraints. In most cases where standard Matlab operators and
functions make sense, they have been overloaded to work with GP objects.

2.1 GP variables

The gpvar command declares scalar GP variables and arrays of GP variables. For example,
to create three scalar GP variables x, y, and z, and an array w of 25 GP variables, we use

>> gpvar x y z w(25);

The array constructor always creates a column vector of GP variables. Individual compo-
nents of an array of variables can be accessed using the standard parenthesis notation. For
example, w(20) is a scalar GP variable. These variables and arrays of variables are not
numbers; they are Matlab objects. Typing a variable name to the Matlab prompt gives its
name and dimension, if it is an array. The Matlab command gpvars lists all GP variables
defined in the workspace.

2.2 Monomials, posynomials, and generalized posynomials

GP variables can be used to construct monomials, posynomials, and generalized posynomials.
Monomials are created using multiplication, division, and powers (including sqrt), starting
from positive constants, GP variables, or other monomials. For example, we construct
monomials m1 and m2 as

>> ml = 2%x"3%y~4/z"5;
>> m2 = 1/2*%sqrt(ml)*w(1) "2*xw(2) "~ (-1)*w(20)"4.5;

Posynomials can be constructed from positive constants, GP variables, monomials, and
other posynomials, using addition and multiplication. Division is not allowed between posyn-
omials, but a posynomial can be divided by a monomial to produce another posynomial. For
example,

>> pl
>> p2

1 + x71.5%y" (-4)*z"2 + ml + 4*xx*y;
pl/m2;

creates two posynomials pl and p2.

You can form generalized posynomials from positive constants, GP variables, monomi-
als, posynomials, and other generalized posynomials using addition, multiplication, positive
powers, and maximum (using max function). You can also divide a generalized posynomial
by a monomial. For example,

>> gl = (4 + x°5.1 + ml1)"2.4;
>> g2 = max(1/x72, m1°3, pl);

The first line forms a generalized posynomial gl as a positive power of a posynomial. The
second line defines a generalized posynomial g2 as the maximum of two monomials (which
are also posynomials) and a posynomial.

A positive integer positive power of a posynomial is another posynomial (when expanded).
But ggplab treats all positive powers (integer or not) of posynomials as generalized posyn-
omials. For example, (x+y)~2 gives a generalized posynomial in ggplab, even though it
can also be written as a posynomial, i.e., x"2+2*x*y+y~2 (which is indeed recognized as a
posynomial in ggplab).

The commands monomial, posynomial, and gposynomial create an empty monomial,
posynomial, and generalized posynomial object, respectively. They can be used when ini-
tializing loops that recursively build one of these functions. For example, the following loop
creates the posynomial p = 37> | w¥.

>> p = posynomial; % create an empty posynomial
>> for k = 1:25

>> p=p+ w(k) “k;

>> end

2.3 Vectors and arrays

You can construct arrays of GP objects. For example, [m1, m2] forms a row vector of two
monomials, and [w(1) w(2); w(3) w(4)] forms a 2 x 2 matrix of GP variables. ggplab
supports Matlab’s array operators and functions when they make sense in the context of GP.
Standard (matrix) multiplication, and pointwise multiplication, of arrays are overloaded to
work with appropriately sized arrays of GP objects. For example, if w is a column vector of
GP variables, and A is an elementwise nonnegative matrix (with a column dimension equal to
the dimension of w), then s = A*w defines s as an array of posynomials. As another example,
if B is an array of generalized posynomials, and C is an array (with the same dimensions) of
monomials, then D=B./C defines an array of generalized posynomials.

Functions such as max, sum, prod, sqrt, and inv work with GP object arrays just as
you would expect them to work with double arrays. For example, consider the posynomial p
defined above using a for loop. We can form the same posynomial using elementwise powers,
and the sum function:

>> powers = [1:25]7;
>> p = sum(w. powers);

For matrices, the functions max and sum return row vectors containing the maximum and
the sum of the GP objects from each column; sqrt and inv act elementwise.

Typing the name of a defined monomial, posynomial, and generalized posynomial to
the Matlab prompt will give its name and expression, if it is a scalar, and its name and
dimension, if it is an array (or a matrix).

2.4 GP constraints

There are two types of constraints in ggplab:

o Generalized posynomial inequality constraints have the form f<=g, where f is a gener-
alized posynomial and g is a monomial. (ggplab does not use the >= operator, so you
have to express g>=f as f<=g.)

o Monomial equality constraints have the form gl==g2, where g1 and g2 are monomials.

Of course you can use positive constants or GP variables as momonials, and positive con-
stants, GP variables, monomials, or posynomials as generalized posynomials. For example,
x"2+sqrt (y) <=z is a valid inequality constraint, and x*y*z==1 is a valid equality constraint.

Inequality operators between GP objects (when valid) return GP constraint objects, which
can be assigned. For example,

>> cl = (x*xy) 4 <= z72;
>> ¢2 = pl <= 1;
>> c3 = ml == m2;

forms three valid GP constraints c1, ¢2, and c3.

You can form arrays of GP constraints, as in constr = [c1; c2; c3], which creates a
column vector of the three constraints defined above. You can add to an array of constraints,
or change a specific constraint in array, using standard Matlab array operations. For example,

>> constr = [constr; max(x, y) <= z];
adds a new constraint to our array, and
>> constr(3) = xxy == 2;

changes the third constraint in the array to x*xy ==

Equality and inequality operators can be used on arrays of GP objects, to create arrays of
GP inequalities. The arrays must have the same dimension, and the constraints are formed
componentwise. For example,

ones(25,1) <= w; ubound = w <= 2*ones(25,1);
[1bound; ubound];

>> 1bound
>> bounds

first creates two arrays of GP constraints, then combines them into one. The constraint
array bounds consists of the 50 constraints that limit each variable w(k) to lie between one
and two.

3 Solving GPs and GGPs

The gpsolve command calls the primal-dual interior-point solver gpcvx to solve GP and
GGP problems. Its usage is

>> [obj_value, solution, status] = gpsolve(obj, constr_array, type)
gpsolve takes as input arguments
e a GP function obj, the objective function of the problem,
e an array of GP constraints constr_array,

e a string that specifies the problem type, which is either *min’ (if the objective is to
be minimized) or ’max’ (if the objective is to be maximized). This is an optional
input; the default is *min’. If the problem type is max’, then the objective must be
a monomial.

gpsolve returns
e the optimal objective value obj_value (a number),
e a cell array of GP variable names and their optimal values, solution,

e the problem status flag, which can be >Solved’ (if the optimization is successful, and
an optimal point was found), ’Infeasible’ (if the problem was determined to be
infeasible), or ’Failed’ (if the optimization was not successful).

The inputs can also be empty arrays. If the objective is an empty array or a constant,
then gpsolve solves a feasibility problem. If the constraint array is empty, we have an
unconstrained GP problem.

If the problem status is >Solved’, then solution contains an optimal solution. If the
problem status is ’Infeasible’, then solution contains the phase I solution found. This
is not a solution of the original GGP that was specified; instead, it is the point found in
phase I of the optimization that came as close as possible to being feasible. When the status
is ’Failed’, the solution is an empty array.

The solution is returned as a n x 2 cell array, where n is the number of GP variables in
the problem. The first column consists of strings, which give the GP variable names; the
second column consists of the values found by the solver. This is convenient for just looking
at the optimal values of the variables; if you want to do some further processing, however,
you might want to use the eval or assign commands described below.

3.1 Evaluating GP functions

GP functions (variables, monomials, posynomials, and generalized posynomials) do not have
numerical values associated with them. However, we can evaluate a GP function for specific
(numerical) values of GP variables using the eval command as in

5

result = eval(gp_object, gpvar_values_cell_array)

The second input is a Matlab cell array with two columns that specifies values of GP variables.
The first column of the cell array contains the name of GP variable or array as a string, while
the second column contains numeric value of the variable or the array. (You can think of
this data structure as a hash table of GP variable names and their associated values.) An
example cell array is

>> gpvar_values = {’x’ 2; ’y’ 5.44; ’w’ ones(25,1)};

If the cell array does not specify values of all GP variables that appear in the GP ob-
ject, then a reduced version of the GP object is returned. For example, the command
eval(x + z , gpvar_values) returns the posynomial 2+z. If the cell array does specify
values for all the GP variables appearing in the GP object, then the object is evaluated, and
result becomes an ordinary number, or a numerical array.

The eval command is useful after you've solved a GGP, to get a hold of the optimal
values of some variables, or the values of some GP function. For example, the code

>> [obj_value, solution, status] = gpsolve(obj, constr_array, type);
>> ov = eval(obj,solution);

solves a GGP, then evaluates the obective at the optimal point found and assigns this number
ot ov. (This should give the same result as obj_value, if the problem status is feasible.)

The Matlab command assign takes a cell array of specified GP variables, along with
their values, as input and assigns each of the values to the variables. (In particular, it causes
each of the GP variables to become a double.) For example, the command

>> assign(gpvar_values);

transforms GP variables x, y, and w into doubles (in the case of w, into a column vector
of doubles). This command is useful to convert a solution of a GGP problem into numeric
variables that can be used for further computation or plotting.

3.2 An example

We consider a simple GP given in [BKVH]. The problem is to maximize the volume of a
box with height h, width w, and depth d, subject to some constraints. We have a limit on
the total wall area 2(hw + hd), and the floor area wd, as well as lower and upper bounds on
the aspect ratios h/w and w/d. This leads to the GP

maximize hwd
subject to 2(hw + hd) < Ayan, wd < Ag,, (1)
a<h/w<p, v<d/w<o.

Here h, w, and d are the optimization variables, and the problem parameters are Ay (the
limit on wall area), Ag, (the limit on floor area), and a, 3, 7, ¢ (the lower and upper limits
on the wall and floor aspect ratios).

The following Matlab script solves the box volume optimization problem (for some specific
values of the problem data):

% problem data
Awall = 10000; Afloor = 1000;
alpha = 0.5; beta = 2; gamma = 0.5; delta = 2;

% GP variables
gpvar h w d;

% objective function is the box volume
volume = h*w*d;

% set of constraints expressed as an array

constr = [2x(h*w + h*d) <= Awall; % wall area limit
wxd <= Afloor; % floor area limit
alpha <= h/w; h/w <= beta; % h/w aspect ratio limits

gamma <= d/w; d/w <= delta;]; % d/w aspect ratio limits

% solve the GP

[max_volume,solution,status] = gpsolve(volume, constr, ’max’)
% no semicolon after the gpsolve command, so

% max_volume, solution, and status will be printed

% convert the GP variables to doubles, the optimal values found
assign(solution);

Since we did not append a semicolon after the gpsolve command, we get the following
output:

>> max_volume = 7.7458e+04

solution =
’d’ [25.8187]
’h’ [77.4588]
w’ [38.7312]

status = Solved

The assign command converts d, h, and w into doubles, each containing the optimal
value found by the solver.

This code can be found in the examples_ggplab subdirectory of your ggplab distri-
bution, along with many others. Other examples include: maximizing volume of a box

with changing constraints [BKVH], floor planning [BKVH], Frobenious norm diagonal scal-
ing [BV04], cantilever beam design [BV04], minimizing Peron-Frobenious norm [BV04], digi-
tal circuit sizing [BKPH], optimization of inductor circuits [HMBL99], optimal doping profile
in BJTs [JBD], power control in communications systems [BKVH], computing the channel
capacity of a discrete memoryless channel [CB04], spot rate curve extraction (coupon strip-
ping) from financial data [KY04], and optimal design of a two pole lowpass filter [BKM].

3.3 Solver options

By default, ggplab uses gpcvx, the primal-dual interior point solver included with ggplab.
ggplab can also be use the commercial MOSEK GP solver mskgpopt [MOS05]. This is
specified using the global variable GP_SOLVER. The lines

>> global GP_SOLVER
>> GP_SOLVER = ’mosek’;

set the default solver to MOSEK. (Of course, you must have MOSEK installed, and a valid
license, for ggplab to work with MOSEK.) To switch back to the default GP solver gpcvx,
you need to clear the global variable GP_SOLVER,

>> clear global GP_SOLVER

or set it to an empty string using GP_SOLVER = ’’.

The internal solver is by default in the verbose mode and will report progress of the
minimization process by outputting the iteration number, primal objective value, gap value,
etc. This output is suppressed in the quiet mode, which is specified using the global variable
QUIET. The lines

>> global QUIET
>> QUIET = 1;

cause the internal solver to enter the quiet mode. To switch back to the verbose mode, you
need to clear the global variable QUIET,

>> clear global QUIET

or set it to an empty array or string.

References

[BKM]

[BKPH]

[BKVH]

[BVO04]

[CBO4]

[GBY06]

S. Boyd, S.-J. Kim, and S. Mohan. Geometric programming and its applications

to EDA problems. Design and Test in Europe (DATE) 2005 tutorial. Available at
www.stanford.edu/~boyd/date05.html.

S. Boyd, S.-J. Kim, D. Patil, and M. Horowitz. Digital circuit optimization via
geometric programming. To appear in Operations Research 2005. Available at
www.stanford.edu/~boyd/gp-digital ckt.html.

S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric
programming. To appear in Optimization and Engineering, 2005. Available at
www.stanford.edu/~boyd/gp_tutorial .html.

S. Boyd and L. Vandenberghe. Convexr Optimization. Cambridge University Press,
2004. Available at www.stanford.edu/~boyd/cvxbook.html.

M. Chiang and S. Boyd. Geometric programming duals of channel capacity and
rate distortion. IEEE Transactions on Information Theory, 50(2):245-258, Febru-
ary 2004.

M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software for disciplined convex pro-
gramming, version 1.0 beta. Available at www.stanford.edu/~boyd/cvx/, April
2006.

[HMBL99] M. Hershenson, S. Mohan, S. Boyd, and T. Lee. Optimization of inductor circuits

[JBD]

[KY04]

IMOS05]

via geometric programming. In Proceedings of the 36th ACM/IEEE Conference
on Design Automation, pages 994 — 998, New Orleans, June 1999. Available at
www.stanford.edu/~boyd/inductor_opt.html.

S. Joshi, S. Boyd, and R. Dutton. Optimal doping profiles via geometric pro-
gramming. To appear in IEEE Transactions on Electron Devices, December, 2005.
Available at www.stanford.edu/~boyd/opt_doping_profile.html.

K. O. Kortanek and H. Yunianto. Analyzing the Indonesian government bond mar-
ket with a new coupon stripping model and principal components, 2004. Technical
report, University of Pittsburgh, Dept. of Industrial Engineering.

MOSEK ApS. MOSEK (software package), 2005.

