
gpcvx

A Matlab Solver for Geometric Programs

in Convex Form

Kwangmoo Koh
deneb1@stanford.edu

Seungjean Kim
sjkim@stanford.edu

Almir Mutapcic
almirm@stanford.edu

Stephen Boyd
boyd@stanford.edu

May 22, 2006

gpcvx solves a geometric program (GP) using a phase I/phase II method. The phase I and
the phase II solutions are found using gppd2, a primal-dual interior point method described
in the book Convex Optimization [BV04].

1 The problem

The log-sum-exp function on Rk is defined as

lse(x) = log(ex1 + · · · + exk), (1)

where x = (x1, . . . , xk). The entropy function on Rk
+ is defined as

entr(y) = −
k

∑

i=1

yi log yi, (2)

where y = (y1, . . . , yk). For both functions, the number of terms k is determined from
context.

gpcvx solves an optimization problem of the form

minimize lse(A(0)x + b(0))
subject to lse(A(i)x + b(i)) ≤ 0, i = 1, . . . ,m,

Gx + h = 0,
l � x � u,

(3)

with variable x ∈ Rn and parameters A(i) ∈ RKi×n, b(i) ∈ RKi for i = 0, . . . ,m, G ∈ Rp×n,
h ∈ Rp, and l, u ∈ Rn. Here � means componentwise inequality between vectors. We refer

1

to the problem (3) as a geometric program in convex form. For more information about
geometric programming, see [BV04, BKVH].

To make it easier to derive the dual problem, we form a problem equivalent to (3). We
introduce new variables y(i) ∈ RKi , as well as new equality constraints y(i) = A(i)x + b(i)

for i = 0, . . . ,m. Then we can write the problem (3) as

minimize lse(y(0))
subject to lse(y(i)) ≤ 0, i = 1, . . . ,m

A(i)x + b(i) = y(i), i = 0, . . . ,m
Gx + h = 0
l � x � u,

(4)

The dual problem of (4) is

maximize
∑m

i=0 b(i)T ν(i) + hT µ + λT
l l − λT

u u + entr(ν(0)) +
∑m

i=1 λ(i)entr(ν(i)/λ(i))
subject to λ(i) ≥ 0, i = 1, . . . ,m,

ν(i) � 0, i = 0, . . . ,m,
1T ν(0) = 1,
1T ν(i) = λ(i), i = 1, . . . ,m,
∑m

i=0 A(i)T ν(i) + GT µ + λu − λl = 0.

(5)

with variables µ ∈ Rp, λl, λu ∈ Rn
+, λ(i) ∈ R+ for i = 1, . . . ,m, and ν(i) ∈ RKi

+ for i =
0, . . . ,m.

2 Calling sequences

The complete calling sequence of gpcvx is

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h,l,u,quiet);

Input arguments represent the problem data of (4). Output arguments are the optimal point
(if feasible), the solution status, and the dual variables.

2.1 Input arguments

• A: matrix with n columns and
∑m

i=0 Ki rows that stacks A(0), . . . , A(m) in (4), i.e.,

A =









A(0)

...
A(m)









.

A can be in sparse format.

2

• b: vector of length
∑m

i=0 Ki that stacks b(0), . . . , b(m) in (4), i.e.,

b =









b(0)

...
b(m)









.

• szs: vector of length m + 1 that specifies the number of exponential terms in each
objective and inequality constraints, i.e., (K0, . . . , Km).

• G: matrix with n columns and p rows that specifies G in (4). G can be in sparse format.

• h: p-vector that specifies h in (4).

• l: n-vector that specifies lower bounds on x. If not given, it will be set to the default
lower bounds (−250, . . . ,−250).

• u: n-vector that specifies upper bounds on x. If not given, it will be set to the default
upper bounds (250, . . . , 250).

• quiet: boolean. Suppresses print messages during execution if true. The default
value is false.

2.2 Output arguments

• x: n-vector. x is the optimal point of the problem if the problem is feasible, and x is
the last primal iterate of phase I if the problem is infeasible.

• status: string; possible values are ’Solved’, ’Infeasible’ and ’Failed’.

• lambda: vector of length m + 2n; the dual variables associated with inequality con-
straints if the problem is feasible. The first m elements, lambda(1:m), are the dual vari-
ables of the m inequality constraints, the next n elements, lambda(m+1:m+n), are those
of the lower bound constraints (l � x), and the last n elements, lambda(m+n:m+2*n),
are those of the upper bound constraints (x � u). If the problem is infeasible, lambda
is a dual variable vector of phase I, which is a certificate of infeasibility (see [BKVH,
§5.8.1,§11.4.3]).

• nu: vector of length
∑m

i=0 Ki; the dual variables associated with equality constraints
(A(i)x + b(i) = y(i)) if the problem is feasible. If infeasible, nu is a dual variable vector
of phase I, which is a certificate of infeasibility (see [BKVH, §5.8.1,§11.4.3]).

• mu: vector of length p; the dual variables associated with equality constraints (Gx+h =
0) if the problem is feasible. If the problem is infeasible, mu is a dual variable vector
of phase I, which is a certificate of infeasibility (see [BKVH, §5.8.1,§11.4.3]). mu is an
empty matrix when there is no equality constraint.

3

2.3 Other calling sequences

Other calling sequences supported by gpcvx are:

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h,l,u);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,[],[],l,u);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h,[],[],quiet);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,[],[],l,u,quiet);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,[],[],[],[],quiet);

2.4 Caveats

• The equality constraint matrix, G, must be full rank.

• If your problem is large and sparse, be sure that A and G are in sparse format.

• Equality constraints should be explicitly specified as Gx+h = 0. You cannot represent
an equality constraint as a pair of opposing inequality constraints.

3 Example

Consider the problem

minimize z−1
1 z

−1/2
2 z−1

3 + 2.3z1z3 + 4z1z2z3

subject to (1/3)z−2
1 z−2

2 + (4/3)z
1/2
2 z−1

3 ≤ 1,
0.1z1 + 0.2z2 + 0.3z3 ≤ 1,
(1/2)z1z2 = 1,

(6)

with variables z1, z2 and z3. This is a GP in posynomial form. (If you want to solve a GP
in posynomial form directly, use gpposy.) This problem can be converted into the convex
form (3) by a change of variables (xi = log zi) and a transformation of the objective and
constraint functions [BV04, BKVH]. Then, the problem (6) can be converted into

minimize lse(A(0)x + b(0))
subject to lse(A(1)x + b(1)) ≤ 0,

lse(A(2)x + b(2)) ≤ 0,
Gx + h = 0,
l � x � u,

(7)

with varible x = (x1, x2, x3). The problem data are

A(0) =







−1 −0.5 −1
1 0 1
1 1 1





 , A(1) =

[

−2 −2 0
0 0.5 −1

]

, A(2) =







1 0 0
0 1 0
0 0 1





 ,

4

b(0) =







log(1)
log(2.3)
log(4)





 , b(1) =

[

log(1/3)
log(4/3)

]

, b(2) =







log(0.1)
log(0.2)
log(0.3)





 ,

G =
[

1 1 0
]

, h = log(0.5).

The Matlab code for solving this problem is as follows:

% Matlab script that solves the above problem

>> A0 = [-1 -0.5 -1 ;...

1 0 1 ;...

1 1 1];

>> A1 = [-2 -2 0 ;...

0 0.5 -1];

>> A2 = [1 0 0 ;...

0 1 0 ;...

0 0 1];

>> A = [A0; A1; A2];

>> b0 = log([1; 2.3; 4]);

>> b1 = log([1/3; 4/3]);

>> b2 = log([0.1; 0.2; 0.3]);

>> b = [b0; b1; b2];

>> G = [1 1 0];

>> h = log(0.5);

>> szs = [size(A0,1); size(A1,1); size(A2,1)]; %i.e., [3; 2; 3]

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h);

After executing the code, you can see the result by typing x in Matlab.

>> x

ans =

1.2465

-0.5534

0.0980

4 Performance

gpcvx is not optimized for performance, but shows reasonable speed. The following table
shows the execution times of gpcvx on some typical problems. These times given are for a

5

2.8GHz Pentium 4, 512Mb RAM, Linux operating system.

Problem n m w p nnz Execution time
test1 100 100 5 50 5000 2sec
test2 1000 1000 5 0 50000 36sec
test3 1000 10000 5 0 500000 171sec
test4 100 1000 50 50 500000 53sec
test5 1000 1000 50 0 500000 138sec

Here, n is the number of variables, m is the number of inequality constraints, w is the number
of terms (summands) per inequality constraint, and p is the number of equality constraints.
The matrices A and G are sparse; nnz is the number of nonzero elements in the A matrix.
The code that runs these experiments, as well as the test problems, can be found in the
examples gpsolver directory.

References

[BKVH] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric
programming. To appear in Optimization and Engineering, 2005. Available at
www.stanford.edu/∼boyd/gp tutorial.html.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004. Available at www.stanford.edu/∼boyd/cvxbook.html.

6

