gpcvx
A Matlab Solver for Geometric Programs

in Convex Form

Kwangmoo Koh Seungjean Kim
denebl@stanford.edu sjkim@stanford.edu
Almir Mutapcic Stephen Boyd
almirm@stanford.edu boyd@stanford.edu
May 22, 2006

gpcvx solves a geometric program (GP) using a phase I /phase II method. The phase I and
the phase II solutions are found using gppd2, a primal-dual interior point method described
in the book Convex Optimization [BV04].

1 The problem

The log-sum-exp function on RF is defined as

Ise(x) = log(e™ + - - - + €*F), (1)
where x = (z1,...,xx). The entropy function on R’_j is defined as
k
entr(y) = — > _y;logy, (2)
i=1
where y = (y1,...,yx). For both functions, the number of terms k is determined from

context.
gpcvx solves an optimization problem of the form

minimize lse(A®z 4 b))

subject to Ise(AWx +bD) <0, i=1,...,m, (3)
Gz + h =0,
[<z =< u,

with variable € R™ and parameters A® ¢ RE>" p@) ¢ RE for i = 0,...,m, G € RP*",
h € RP, and [,u € R". Here < means componentwise inequality between vectors. We refer

1

to the problem (3) as a geometric program in convezr form. For more information about
geometric programming, see [BV04, BKVH].

To make it easier to derive the dual problem, we form a problem equivalent to (3). We
introduce new variables y) € R¥i as well as new equality constraints y@ = A®z + p®
for =0,...,m. Then we can write the problem (3) as

minimize Ise(y®)
subject to lse(y™) <0, i=1,...

Az 460 =4O 4 =0,...,m (4)

The dual problem of (4) is

maximize >, b O 4 RTp 4+ APl — My + entr(v©) + 7 A@entr(v®) /\@)
subject to A® >0, i=1,...,m,
@ =0 i=0
vW=0, i=0,...,m,
1Tl/(0) — 1’ (5)

1700 = \O 4 =1,... m,
S ADT VO L GTy 4 A, — A = 0.

with variables 1 € R, A, A, € R?, A@ € R, for i = 1,...,m, and v € RY for i =
0,...,m.
2 Calling sequences
The complete calling sequence of gpcvx is
>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h,1,u,quiet);

Input arguments represent the problem data of (4). Output arguments are the optimal point
(if feasible), the solution status, and the dual variables.

2.1 Input arguments

e A: matrix with n columns and } 7", K; rows that stacks AQ CAM in (4), dee.,
A0
A - :
Alm)

A can be in sparse format.

2.2

b: vector of length 37 K; that stacks b, ... 6™ in (4), i.e.,

p(0)
b - :
p(m)
szs: vector of length m + 1 that specifies the number of exponential terms in each
objective and inequality constraints, i.e., (Ko,..., Kp,).

G: matrix with n columns and p rows that specifies G in (4). G can be in sparse format.
h: p-vector that specifies h in (4).

1: n-vector that specifies lower bounds on z. If not given, it will be set to the default
lower bounds (—250, ..., —250).

u: n-vector that specifies upper bounds on z. If not given, it will be set to the default
upper bounds (250, ... ,250).

quiet: boolean. Suppresses print messages during execution if true. The default
value is false.

Output arguments

x: m-vector. x is the optimal point of the problem if the problem is feasible, and x is
the last primal iterate of phase I if the problem is infeasible.

status: string; possible values are >Solved’, ’Infeasible’ and ’Failed’.

lambda: vector of length m + 2n; the dual variables associated with inequality con-
straints if the problem is feasible. The first m elements, lambda(1:m), are the dual vari-
ables of the m inequality constraints, the next n elements, lambda (m+1 :m+n), are those
of the lower bound constraints (I < x), and the last n elements, lambda (m+n:m+2*n),
are those of the upper bound constraints (z < u). If the problem is infeasible, lambda
is a dual variable vector of phase I, which is a certificate of infeasibility (see [BKVH,
§5.8.1,§11.4.3]).

nu: vector of length > K;; the dual variables associated with equality constraints
(ADz +b® = @) if the problem is feasible. If infeasible, nu is a dual variable vector
of phase I, which is a certificate of infeasibility (see [BKVH, §5.8.1,§11.4.3]).

mu: vector of length p; the dual variables associated with equality constraints (Gz+h =
0) if the problem is feasible. If the problem is infeasible, mu is a dual variable vector
of phase I, which is a certificate of infeasibility (see [BKVH, §5.8.1,§11.4.3]). mu is an
empty matrix when there is no equality constraint.

2.3 Other calling sequences
Other calling sequences supported by gpcvx are:

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h,1,u);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,[],[],1,u);

>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h,[],[],quiet);
>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,[],[],1,u,quiet);
>> [x,status,lambda,nu,mu] = gpcvx(A,b,szs,[],[],[],[],quiet);

2.4 Caveats
e The equality constraint matrix, G, must be full rank.
e [f your problem is large and sparse, be sure that A and G are in sparse format.

e Equality constraints should be explicitly specified as Gx+h = 0. You cannot represent
an equality constraint as a pair of opposing inequality constraints.

3 Example
Consider the problem

minimize zflz;1/22§1 4+ 232123 + 4212923

subject to (1/3)z72252 + (4/3) 2?25 < 1, (6)
0.121 + 0222 + 0323 S]_,
(1/2)2’122 = 1,

with variables z1, zo and z3. This is a GP in posynomial form. (If you want to solve a GP
in posynomial form directly, use gpposy.) This problem can be converted into the convex
form (3) by a change of variables (z; = logz;) and a transformation of the objective and
constraint functions [BV04, BKVH]. Then, the problem (6) can be converted into

minimize lse(A©xz 4 b))

subject to Ise(AWx + M) <0,
lse(A®x + b)) <0, (7)
Gx+h =0,
[2 x =< u,

with varible z = (x1, x9, 23). The problem data are

-1 —0.5 —1 5 _o 100
A9 =11 0o 1 |, A“)_l_ —2 0] A =101 0|,
1 1 1 0 05 1 00 1

log(1) log(0.1)
b® = | log(2.3) |, bV = [bg(l/ 3)] b = | log(0.2) |,
o (4 log(4/3) log(0.3)

G=[110], h=log0.5).

The Matlab code for solving this problem is as follows:

% Matlab script that solves the above problem

>>

>>

>>

>>

>>
>>
>>
>>

>>

>>

>>

>>

AO = [-1-0.5
1 0
1 1 1;
Al =[-2 -2

A2 = [1 0

PRI

-1
1
1
0 ;...
0 0.5 -11;
0
0
1
2

0 1 D
0 0 1;
A = [AO; A1; A2];
b0 = log([1; 2.3; 4 1);
bl = log([1/3; 4/3 1);
b2 = log([0.1; 0.2; 0.3 1);
b =[b0; bl; b21];
G = [1 1 01];
h = log(0.5);
szs = [size(A0,1); size(Al,1); size(A2,1) 1; %i.e., [3; 2; 3 1]
[x,status,lambda,nu,mu] = gpcvx(A,b,szs,G,h);

After executing the code, you can see the result by typing x in Matlab.

>>

ans

X

1.2465
-0.5534
0.0980

4 Performance

gpcvx is not optimized for performance, but shows reasonable speed. The following table
shows the execution times of gpcvx on some typical problems. These times given are for a

5

2.8GHz Pentium 4, 512Mb RAM, Linux operating system.

Problem | n m
testl 100 100
test2 | 1000 | 1000

P nnz | Execution time
50 | 5000 2sec
0 | 50000 36sec

| ot

S| S|oofoy e
ot
o

test3 | 1000 | 10000 0 | 500000 171sec
test4 | 100 | 1000 500000 d3sec
test5 | 1000 | 1000 0 | 500000 138sec

Here, n is the number of variables, m is the number of inequality constraints, w is the number
of terms (summands) per inequality constraint, and p is the number of equality constraints.
The matrices A and G are sparse; nnz is the number of nonzero elements in the A matrix.
The code that runs these experiments, as well as the test problems, can be found in the
examples_gpsolver directory.

References

[BKVH] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric
programming. To appear in Optimization and Engineering, 2005. Available at
www.stanford.edu/~boyd/gp_tutorial .html.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004. Available at www.stanford.edu/~boyd/cvxbook.html.

