
MAXDET

Software for Determinant Maximization Problems

User's Guide

Alpha Version May 24, 1996

Shao-Po Wu Lieven Vandenberghe Stephen Boyd

clive@isl.stanford.edu vandenbe@isl.stanford.edu boyd@isl.stanford.edu

Information Systems Laboratory

Electrical Engineering Department

Stanford University

Copyright c
1996 by Shao-Po Wu, Lieven Vandenberghe and Stephen Boyd. Permission to use, copy, modify,
and distribute this software for any purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy or modi�cation of this software and in all
copies of the supporting documentation for such software. This software is being provided \as is", without
any express or implied warranty. In particular, the authors do not make any representation or warranty of
any kind concerning the merchantability of this software or its �tness for any particular purpose.

1



1 Introduction

Purpose

This package contains software for solving the optimization problem

minimize cTx+ log detG(x)�1

subject to G(x) > 0

F (x) � 0;

(1)

where the optimization variable is the vector x 2 Rm. The functions G : Rm ! Rl�l and F : Rm ! Rn�n

are a�ne:

G(x) = G0 + x1G1 + � � �+ xmGm;

F (x) = F0 + x1F1 + � � �+ xmFm;

where Gi = GT
i and Fi = FT

i for i = 0; : : : ;m. The inequality signs in (1) denote matrix inequalities, i.e.,
G(x) is positive de�nite and F (x) is positive semi-de�nite. We will refer to (1) as a maxdet-program.

For background information and applications, see the manuscript [VBW96], which is included as part of
the software distribution. We follow the notation of [VBW96], with one addition: the matrices Fi and Gi

are block diagonal: Fi has L diagonal blocks, with dimensions n1, : : : , nL (hence, n = n1 + � � �+ nL); Gi

has K diagonal blocks, with dimensions l1, : : : , lK (l = l1 + � � � + lK ).

Overview

The package is available via anonymous ftp at isl.stanford.edu in pub/boyd/maxdet. It contains:

� C-source: maxdet_src.c and maxdet.h contain a C-function maxdet that solves the maxdet-program.
See x2 for further details.

� Matlab interface: Compiled mex-�les maxdet.mex4 (for Sun4, e.g., Sun SparcStation), maxdet.mexds
(for DECstation) and maxdet.mexhp7 (for HP 9000/700 series). These mex-�les allow the user to call
the C-function maxdet from within matlab as if it is a built-in matlab function maxdet.m. See x3 for
details.

� Matlab routine: phase1.m. See x3.

� Matlab examples: we provide matlab scripts that solve various maxdet-programs as examples: (some
of them are described in the manuscript [VBW96]): positive de�nite matrix completion with partially
speci�ed inverse (mat_completion.m), minimum-volume ellipsoid containing points (minVe_pts.m),
minimum-volume ellipsoid containing ellipsoids (minVe_ell.m), D-optimal experiment design (exp_design.m),
and the educational testing problem (etp.m). See x4.

� The manuscript [VBW96], in compressed postscript format (maxdet.ps.Z).

How to use the package

You can use the package in di�erent ways.

� The easiest method is to solve maxdet-programs indirectly using sdpsol. sdpsol is a parser/solver
that simpli�es the speci�cation and solution of optimization problems involving matrices such as
maxdet-programs and semide�nite programs [BW95].

� The easiest method to solve maxdet-programs directly (provided you have matlab) is to use the ex-
ecutable mex-�les for Sun4, DECstation, or HP 9000/700 series workstation. If your machine is one
of these types, all you have to do is retrieve the appropriate mex-�le, i.e., maxdet.mex4 (for Sun4),
maxdet.mexds (for DECstation), or maxdet.hp7 (for HP 9000/700), and copy it to the appropriate
directory on your machine. See x3.

2



� Create a mex-�le for use in matlab by compiling maxdet.c using cmex, and linking it with LAPACK
and BLAS (see x2 for more details).

� Write a C-program that calls the function maxdet in maxdet_src.c, and link the code with LAPACK
and BLAS. You should be able to do this on any machine with an ansi-C compiler; see x2 for more
details.

Caveat

Our goal is to provide a program that is easy to use, reasonably e�cient, and useful for small to medium-
sized problems (say, up to a few hundred variables). If your problem is large scale (say, several hundreds or
thousands of variables), you probably should use an implementation that exploits problem structure. The
only structure maxdet exploits is the block-diagonal structure of F and G.

2 C routine

The main routine is a C-function maxdet:

int maxdet(int m, int L, double *F, int *F_blkszs, int K, double *G, int *G_blkszs,

double *c, double *x, double *Z, double *W,

double *ul, double *hist, double gamma, double abstol, double reltol,

int *NTiters, double *work, int lwork, int *iwork, int *info)

Purpose

maxdet solves the maxdet-program

minimize cTx+ log detG(x)�1

subject to G0 + x1G1 + � � �+ xmGm > 0

F0 + x1F1 + � � �+ xmFm � 0

and its dual

maximize logdetW � TrG0W �TrF0Z + l

subject to TrGiW + TrFiZ = ci; i = 1; :::;m;

W = WT > 0; Z = ZT � 0;

given a strictly primal feasible initial point x, and, optionally, a strictly dual feasible initial point (Z;W ).

Storage convention

Warning: di�erent storage conventions are used in the matlab and C functions.
The matrices Fi and Z have L diagonal blocks:

Fi =

2
66664

F
(1)

i 0 � � � 0

0 F
(2)

i � � � 0
...

...
. . .

...

0 0 � � � F
(L)

i

3
77775

Z =

2
6664

Z(1) 0 � � � 0

0 Z(2) � � � 0
...

...
. . .

...

0 0 � � � Z(L)

3
7775

with block dimensions n1; : : : ; nL. The dimensions ni are given in the array F_blkszs of length L: F_blkszs=
fn1; : : : ; nLg. We use packed storage for every diagonal block, i.e., we store the lower triangular part colum-
nwise.

3



For example, if F_blkszs is f2, 3, 1g, the matrix

Z =

2
6666664

1 2 0 0 0 0
2 3 0 0 0 0
0 0 4 5 6 0
0 0 5 7 8 0
0 0 6 8 9 0
0 0 0 0 0 10

3
7777775

would be stored as

f 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 g :

Similar storage convention is used for Gi andW , with K diagonal blocks and the block dimensions stored
in G_blkszs = fl1; : : : ; lKg.

Arguments

1. m (integer): The number of variables. m � 1.

2. L (integer): The number of diagonal blocks in Fi and Z. L � 1.

3. F (pointer to double): An array of length (m + 1)
PL

i=1 ni(ni + 1)=2, containing the matrices Fi,
i = 0; : : :m, using the storage scheme described above. The matrices diag(Fi; Gi), i = 1; : : : ;m, must
be linearly independent.

4. F_blkszs (pointer to integer): An array of L integers F_blkszs = fn1; : : : ; nLg. nj is the dimension
of the jth block of F and Z.

5. K (integer): The number of diagonal blocks in Gi and W . K � 1.

6. G (pointer to double): An array of length (m + 1)
PK

i=1 li(li + 1)=2, containing the matrices Gi,
i = 0; : : :m, using the storage scheme described above. The matrices diag(Fi; Gi), i = 1; : : : ;m, must
be linearly independent.

7. G_blkszs (pointer to integer): An array of K integers G_blkszs = fl1; : : : ; lKg. lj is the dimension
of the jth block of G and W .

8. c (pointer to double): Array of length m. Vector that speci�es the linear part of the primal objective.

9. x (pointer to double): Array of length m. On entry, a strictly primal feasible point, i.e., we must have
F0 +

Pm

i=1 xiFi > 0 and G0 +
Pm

i=1 xiGi > 0. On exit, the last iterate for x. The meaning of the last
iterate depends on the stopping criterion.

10. Z (pointer to double): Array of length
PL

i=1 ni(ni+1)=2, using the storage scheme described above. On
entry, if Z and W (see below) are strictly dual feasible, i.e., satisfy TrZFi+TrWGi = ci, i = 1; : : : ;m,
Z > 0 and W > 0, Z is used in the preliminary phase; otherwise, Z is not used at all. On exit, Z is
the last dual iterate. The meaning of the last dual iterate depends on the stopping criterion.

11. W (pointer to double): Array of length
PK

i=1 li(li+1)=2, using the storage scheme described above. On
entry, if Z and W are strictly dual feasible, W is used in the preliminary phase; otherwise, W is not
used at all. On exit, W is the last dual iterate. The meaning of the last dual iterate depends on the
stopping criterion.

12. ul (pointer to double): Array of length two. On exit, ul[0] is the primal objective value cTx +
logdetG(x)�1 (i.e., an upper bound on the optimal value); ul[1] is the dual objective value logdetW�
TrG0W � TrF0Z + l (i.e., a lower bound on the optimal value).

4



13. hist (pointer to double): Array of length three times the maximumnumber of Newton iterations (see
NTiters below). On exit, hist[3*i-3], hist[3*i-2] and hist[3*i-1] contain the primal objective
value, the duality gap and the number of Newton iterations at the ith outer iteration, respectively.

14. gamma (double). The algorithm parameter 
, which a�ects convergence rate (see [VBW96, x5 { x6]).
gamma must be positive. Typical value: 10{1000.

15. abstol (double). Absolute tolerance. For the precise interpretation of abstol, see the section on
convergence criteria below. If abstol < 1e-10, a value of 1e-10 is used instead.

16. reltol (double). Relative tolerance. For the precise interpretation of reltol, see the section on
convergence criteria below.

17. NTiters (pointer to integer). On entry, the maximum number of total Newton (and predictor) it-
erations. If *NTiters < 1, it is set to 100. On exit, the number of total Newton (and predictor)
iterations.

18. work (pointer to double). Work space. Array of length lwork.

19. lwork (integer). The size of the array work. lwork must be at least equal to

(2m+ 5)Npd + 2(n+ l) +maxfm +NpdNB; 3(bmax +Nmax); 3(m+m2 +Nmax)g

with

Fpd =

LX
i=1

ni(ni + 1)=2; Gpd =

KX
i=1

li(li + 1)=2; Npd = Fpd + Gpd;

Nmax = maxfFpd; Gpdg; nmax = max
i

ni; lmax = max
i

li; bmax = maxfnmax; lmaxg;

and NB � 1. For best performance, NB should be at least equal to the optimal block size required by
LAPACK routine dgels (see [ABB+92, x6.2]).

20. iwork (pointer to integer). Work space. Array of length m.

21. info (pointer to integer). On exit, *info = 1 if the maximumnumber of Newton iterations is exceeded;
*info = 2 if the absolute accuracy has been reached; *info = 3 if the relative accuracy has been
reached; Negative values of *info indicate errors: *info = �i means that the ith argument has an
illegal value; *info = �23 means diag(Fi; Gi) are not linearly independent. *info = �24 stands for
all other errors.

maxdet returns 0 for normal exit, and 1 if an error occurs.

Convergence criteria

On exit, maxdet returns an interval in which the optimal value has been located. The two-vector ul gives an
upper bound ul[0] and a lower bound ul[1] for the optimal value. The quantity ul[0] - ul[1] is called
the duality gap (See [VBW96] for the underlying theory).

The program exits normally under four possible conditions:

� The maximum number of Newton iterations is exceeded.

� The absolute tolerance is reached:

ul[0]� ul[1] � abstol:

� The relative tolerance is reached. The primal objective ul[0] and the dual objective ul[1] are both
positive and

ul[0]� ul[1] � reltol*ul[1];

or the primal and dual objective are both negative and

ul[0]� ul[1] � �reltol*ul[0]:

5



Caveats

� The code returns with an error message if the matrices diag(Fi; Gi), i = 1; : : : ;m, are linearly depen-
dent. If the matrices are dependent, the problem is unbounded below or can be reduced to one with
fewer variables.

� The code requires a strictly primal feasible initial point, which means that the standard trick of writing
equality constraints Ax = b as the two vector inequalities Ax� b � 0, b�Ax � 0, will not work. You
have to explicitly eliminate equality constraints.

� The algorithm will sometimes fail for problems that are not strictly dual feasible. For such problems,
maxdet will use the maximum number of Newton iterations attempting to solve the �rst centering
problem. Conversely, if maxdet uses the maximumnumber of iterations and fails to complete even one
outer iteration, it may be that the problem is not strictly dual feasible.

Compiling

The source code for the function maxdet is in the �les maxdet_src.c and maxdet.h. It is written in ansi-C
with calls to LAPACK and BLAS.

LAPACK can be obtained via Netlib (http://www.netlib.org or anonymous ftp at ftp.netlib.org).
A set of optimized BLAS-routines should be supplied by your computer vendor. A non-optimized version
can also be obtained from Netlib.

You can also create a mex-�le for use in matlab by compiling maxdet.c using cmex, and linking it with
LAPACK and BLAS. The details of compiling the code vary with the compiler used and other factors such
as where various libraries are located. We have provided a sample Make�le in the source directory. In order
to compile the mex-interface, edit this Make�le as indicated, and type make.

If you use a Sun4, DECstation, or HP 9000/700 series workstation, you can just use the executable
mex-�les provided in the ftp directory pub/boyd/maxdet at isl.stanford.edu.

3 Matlab routines

To solve a maxdet-program from within matlab, you can proceed as follows:

1. if you know a primal feasible point, use maxdet.m,

2. if you do not know a primal feasible point, use phase1.m to �nd one, followed by a call to maxdet.m.

3.1 maxdet.m

[x,Z,W,ul,hist,infostr]=maxdet(F,F_blkszs,G,G_blkszs,c,x0,Z0,W0,abstol,reltol,gam,NTiters)

Purpose

maxdet solves the maxdet-program and its dual, given a strictly feasible primal initial point, and optionally,
a strictly dual feasible initial point.

Storage convention

Warning: di�erent storage conventions are used in the matlab and C functions.
The matrices Fi and Z have L diagonal blocks:

Fi =

2
66664

F
(1)

i 0 � � � 0

0 F
(2)

i � � � 0
...

...
. . .

...

0 0 � � � F
(L)

i

3
77775

Z =

2
6664

Z(1) 0 � � � 0

0 Z(2) � � � 0
...

...
. . .

...

0 0 � � � Z(L)

3
7775

6



with block dimensions n1, : : : , nL. The dimensions ni are given in the (row or column) vector F_blkszs of
length L: F_blkszs = [n1 : : :nL]. We store these block-diagonal matrices as column vectors, by converting
the blocks to vectors and simply concatenating the resulting vectors. Thus the matrix Fi above is stored as
the vector h

F
(1)

i (:); F
(2)

i (:); � � � F
(L)

i (:)
i
:

For example, if F_blkszs is [2, 3, 1], the matrix

Z =

2
6666664

1 2 0 0 0 0
2 3 0 0 0 0
0 0 4 5 6 0
0 0 5 7 8 0
0 0 6 8 9 0
0 0 0 0 0 10

3
7777775

would be stored as the column vector

[1.0, 2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 7.0, 8.0, 6.0, 8.0, 9.0, 10.0 ]' :

The matrices Fi, i = 0; : : : ;m are stored in a single matrix with m+ 1 columns and
PL

i=1 n
2
i rows. The

ith column contains Fi stored in the format described above.
Similar storage convention is used for Gi andW , with K diagonal blocks and the block dimensions stored

in G_blkszs = [l1; : : : ; lK ].

Input arguments

For more details, see the description of the C function arguments.

1. F: matrix with m + 1 columns and
PL

i=1 n
2
i rows containing the block diagonal matrices F0; : : : ; Fm,

using the storage convention described above. The matrices stored in F are assumed to be symmetric,
and only their lower triangular parts are accessed. The matrices diag(Fi; Gi), i = 1; : : : ;m, must be
linearly independent.

2. F_blkszs: L-vector with dimensions of the diagonal blocks in F and Z.

3. G: matrix with m + 1 columns and
PK

i=1 l
2
i rows containing the block diagonal matrices G0; : : : ; Gm,

using the storage convention described above. The matrices stored in G are assumed to be symmetric,
and only their lower triangular parts are accessed. The matrices diag(Fi; Gi), i = 1; : : : ;m, must be
linearly independent.

4. G_blkszs: K-vector with dimensions of the diagonal blocks in G and W .

5. c: m-vector that speci�es the linear part of the primal objective.

6. x0: m-vector. The primal starting point x0. x0 must be strictly primal feasible, i.e., satisfy F0 +Pm

i=1 x
0
iFi > 0 and G0 +

Pm

i=1 x
0
iGi > 0.

7. Z0: vector of length
PL

i=1 n
2
i , which contains an n-by-n symmetric matrix Z0 using the storage de-

scribed above. Only the lower triangular part of Z0 is accessed. If Z0 and W 0 (see below) are strictly
dual feasible, i.e., satisfy TrZ0Fi + TrW 0Gi = ci, i = 1; : : : ;m, Z0 > 0 and W 0 > 0, they are used in
the preliminary phase [VBW96, x7]; otherwise, Z0 and W 0 are not used at all.

8. W0: vector of length
PK

i=1 l
2
i , which contains an l-by-l symmetric matrixW 0 using the storage described

above. Only the lower triangular part of W 0 is accessed.

9. abstol: absolute tolerance.

10. reltol: relative tolerance.

7



11. gam: algorithm parameter 
, which a�ects convergence rate. gam must be positive. Typical value:
10{1000.

12. NTiters: maximum number of total Newton (and predictor) iterations. maxNTiters� 1.

Output arguments

1. x: m-vector. The last primal iterate x.

2. Z: vector of length
PL

i=1 n
2
i , the last dual iterate Z in the storage described.

3. W: vector of length
PK

i=1 l
2
i , the last dual iterate W in the storage described.

4. ul: 2-vector. ul(1) is the primal objective value cTx + log detG(x)�1; ul(2) is the dual objective
value log detW � TrG0W � TrF0Z + l.

5. hist: matrix with 3 rows and the number of columns equal to the number of outer iterations. The ith
column contains the primal objective value, the duality gap and the number of Newton iterations at
the ith outer iteration.

6. infostr: string. infostr = 'maximum iterations exceeded', 'absolute accuracy reached', or
'relative accuracy reached'.

Caveats

See caveats in C function description.

� The matlab variables F and G will be modi�ed if maxdet.m is terminated by an interrupt.

� All input arguments are full matrices. No provision is made (in this version) for sparse matrices.

3.2 phase1.m

[x,Z,W,ul,infostr] = phase1(F,F_blkszs,G,G_blkszs,gam,abstol,reltol,NTiters);

Purpose

phase1 computes x that satis�es

F0 +

mX
i=1

xiFi > 0 and G0 +

mX
i=1

xiGi > 0; (2)

or proves that no such x exists. More precisely, phase1 examines whether the optimal value of the semide�nite
program

minimize t

subject to F0 + x1F1 + � � �+ xmFm + tI � 0

G0 + x1G1 + � � �+ xmGm + tI > 0

(3)

is negative or not. It either provides a strictly feasible pair x, t with t < 0 or a strictly feasible pair Z, W
for the dual problem

maximize � TrF0Z � TrG0W

subject to TrFiZ + TrGiW = 0; i = 1; : : : ;m

TrZ + TrW = 1

Z � 0; W > 0

with objective value �TrF0Z � TrG0W � 0. More details can be found in [VB96, x6].

8



Input arguments

For more details, see the description of the matlab routine arguments.

1. F: matrix with m + 1 columns and
PL

i=1 n
2
i rows containing the block diagonal matrices F0; : : : ; Fm,

using the storage convention described above. The matrices stored in F are assumed to be symmetric,
and only their lower triangular parts are accessed. The matrices diag(Fi; Gi), i = 1; : : : ;m, must be
linearly independent.

2. F_blkszs: L-vector with dimensions of the diagonal blocks in F and Z.

3. G: matrix with m+ 1 columns and
PK

i=1 l
2
i rows containing the block diagonal matrices G0; : : : ; Gm.

4. G_blkszs: K-vector with dimensions of the diagonal blocks in G and W .

5. gam: algorithm parameter 
. gam > 0. Typical value: 10{1000.

6. abstol: absolute tolerance.

7. reltol: relative tolerance.

8. NTiters: maximum number of Newton iterations.

Output arguments

1. x: m-vector. The last primal iterate. (t is returned in ul(1).)

2. Z: vector of length
PL

i=1 n
2
i . The last dual iterate of Z.

3. W: vector of length
PK

i=1 l
2
i . The last dual iterate of W .

4. ul: 2-vector. ul(1) is the �nal value of t. ul(2) is the dual objective �TrF0Z � TrG0W .

5. infostr: information string. infostr = 'feasible', 'infeasible', or 'feasibility cannot be

determined'.

Caveat

If the maximum number of iterations is reached before a primal feasible point can be found, or infeasibility
cannot be proved, then phase1 returns infostr = 'feasibility cannot be determined'. This outcome
often means the problem is feasible, but not strictly feasible.

4 Example matlab �les

4.1 Positive de�nite matrix completion with partially speci�ed inverse

A = mat_completion(Ainit,indices,C)

Purpose

In this example, we are given a positive de�nite matrix Ainit and a symmetric matrix C; Ainit ; C 2 Rn�n.
Our goal is to adjust certain o�-diagonal entries of Ainit such that the inverse of the resulting matrix A

matches C in every adjustable entry, while the rest (�xed) entries of A are given by Ainit. Let the free
entries of the lower triangular part of A be given by the index pairs (ik; jk), ik > jk, k = 1; : : : ;m. This is
su�cient to specify the adjustable entries of A since A is symmetric. The problem of positive de�nite matrix
completion with partially speci�ed inverse can then be expressed as the maxdet-program [VBW96, x2.4]

minimize TrCA(x) + log detA(x)�1

subject to A(x) > 0

9



Figure 1: Left: minimum-volume ellipsoid containing 50 points. Right: minimum-volume ellipsoid containing
5 ellipsoids.

with

A(x) = Ainit +

mX
k=1

xk (Eikjk + Ejkik) ;

where Eij denotes the matrix with (i; j) element equal to one and all other elements zero.

Input and output arguments

� Ainit: n-by-n positive de�nite matrix Ainit.

� indices: 2-by-m matrix. The kth column of indices gives the index pair (ik; jk).

� C: n-by-n symmetric matrix C. If C is not given, it is set to zero.

� A: n-by-n positive de�nite matrix, the desired completion of A.

4.2 Minimum-volume ellipsoid containing points

[A,b,c] = minVe_pts(X)

Purpose

minVe_pts.m determines the minimum volume ellipsoid which contains a given set of points in R2, X =
[x1; : : : ; xK] [VBW96, x2.1]. Figure 1 shows an instance of the problem.

Input and output arguments

� X: 2-by-K matrix, [x1; : : : ; xK ], containing K points in R2.

� A, b, c: the minimum volume ellipsoid f x j xTAx+ 2bTx+ c � 0; x 2 R2 g.

4.3 Minimum-volume ellipsoid containing ellipsoids

[A,b,c] = minVe_ell(As,bs,cs)

Purpose

minVe_ell.m determines the minimumvolume ellipsoid which containsK given ellipsoids inR2, f x j xTAix+
2bTi x+ ci g for i = 1; : : : ;K [VBW96, x2.1]. Figure 1 shows an instance of the problem.

10



Figure 2: A D-optimal experiment design involving 50 test vectors in R2. Left: the test vectors used (shown
as crosses) and not used (shown as dots). The circle indicates the origin. Right: the previous plot with the
minimum-volume ellipsoid, centered at origin, containing the test vectors.

Input and output arguments

� As: 2-by-2K matrix, [A1; : : : ; AK ].

� bs: 2-by-K matrix, [b1; : : : ; bK].

� cs: K-vector, [c1; : : : ; cK ].

� A, b, c: the minimum volume ellipsoid f x j xTAx+ 2bTx+ c � 0; x 2 R2 g.

4.4 D-optimal experiment design

[lambda,S] = exp_design(V)

Purpose

Consider the problem of estimating a vector x from a measurement y = Ax + w, where w � N (0; I) is
measurement noise [VBW96, x2.6]. The error covariance of the minimum-variance estimator is equal to

Ay(Ay)T = (ATA)�1. We suppose that the rows of the matrix A = [a1 : : : aq]
T
can be chosen among M

possible test vectors v(i) 2 Rp, i = 1; : : : ;M :

ai 2 fv
1; : : : ; vMg; i = 1; : : : ; q:

The goal of D-optimal experiment design is to choose the vectors ai so that the determinant of error covariance

det(ATA)�1 is minimized. We can write ATA = q
PM

i=1 �iv
ivi

T
, where �i is the fraction of rows ak equal to

the vector vi. We ignore the fact that the numbers �i are integer multiples of 1=q, and instead treat them
as continuous variables, which is justi�ed in practice when q is large. exp_design.m determines the optimal
distribution �, given M possible test vectors, V = [v1; : : : ; vM ].

Figure 2 shows an instance in R2 involving 50 test vectors.
In the dual of the D-optimal experiment design problem we compute the minimum volume ellipsoid,

centered at origin, that contains the test vectors [VBW96, x3]. The test vectors with a non-zero weight lie
on the boundary of the optimal ellipsoid. This is illustrated in Figure 2.

Input and output arguments

� V: p-by-M matrix, [v1; : : : ; vM ], containing M possible test vectors in Rp.

� lambda: M -vector, [�1; : : : ; �M ].

� S: p-by-p matrix,
PM

i=1 �iv
ivi

T
.

11



4.5 Educational testing problem

[d,Q] = etp(A)

Purpose

etp.m solves the educational testing problem [VB96, x2]:

maximize

nX
i=1

di

subject to A� diag(d) � 0

d � 0:

This example illustrates how to solve semide�nite programs using maxdet.

Input and output arguments

� A: n-by-n matrix. A must be positive de�nite.

� d: n-vector. Solution of the primal problem.

� Q: n-by-n matrix. Solution of the dual problem.

5 Future improvements

Please send e-mail to clive@isl.stanford.edu, vandenbe@isl.stanford.edu or boyd@isl.stanford.edu
if you wish to be informed about future updates of this software. The present version is rudimentary, and we
expect important improvements in the near future, including an improved interface with sdpsol [BW95], a
parser/solver that simpli�es the speci�cation and solution of optimization problems involving matrices, and
ability to handle problems with sparse matrices.

Acknowledgment

The research was supported in part by AFOSR (under F49620-95-1-0318), NSF (under ECS-9222391 and
EEC-9420565), and MURI (under F49620-95-1-0525).

References

[ABB+92] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM, 1992.

[BW95] S. Boyd and S.-P. Wu. SDPSOL: A Parser/Solver for Semide�nite Programs with Matrix Struc-

ture. User's Guide, Version Alpha. Stanford University, March 1995.

[VB96] L. Vandenberghe and S. Boyd. Semide�nite programming. SIAM Review, 38(1):49{95, March
1996.

[VBW96] L. Vandenberghe, S. Boyd, and S.-P.Wu. Determinantmaximizationwith linear matrix inequality
constraints. submitted to SIMAX, February 1996.

12


