
sdpsol

A Parser/Solver for Semide�nite Programming and Determinant

Maximization Problems with Matrix Structure

User's Guide

Version Beta May 31, 1996

Shao-Po Wu and Stephen Boyd

The program sdpsol parses semide�nite programming (SDP) and determinantmaximiza-

tion (MAXDET) problems expressed in the sdpsol language, solves them using interior-point

algorithms, and reports the results in a convenient form. This user's guide gives a brief in-
troduction to the problems sdpsol solves, the language parsed by sdpsol, and the usage of
sdpsol.

1 Introduction

The problems

sdpsol solves the MAXDET optimization problem

minimize cTx+ log detG(x)�1

subject to G(x) > 0; F (x) > 0

Ax = b

(1)

where the optimization variable is the vector x 2 Rm. The functions G : Rm ! Rl�l and

F : Rm ! Rn�n are a�ne:

G(x) = G0 + x1G1 + � � � + xmGm;

F (x) = F0 + x1F1 + � � �+ xmFm;

where Gi = GT
i and Fi = F T

i for i = 0; : : : ;m. Here A 2 Rp�m, b 2 Rp; we take p = 0
if there are no equality constraints. The inequality signs in (1) denote matrix inequalities,
i.e., G(x) and F (x) are positive de�nite. Since these matrix inequalities depend a�nely

on x, we call them linear matrix inequalities (LMIs). The MAXDET problem reduces to

a semide�nite programming (SDP) problem when the log determinant term is absent (i.e.,
l = 0)

minimize cTx

subject to F (x) > 0

Ax = b:

(2)

1

The MAXDET problem (including its special case, SDP) is a convex optimization prob-

lem, i.e., the objective function is convex and the constraint set is convex. In fact, LMI

constraints can represent many common convex constraints, including linear inequalities,

convex quadratic inequalities, matrix norm and eigenvalue constraints. Conversely, many

common convex optimization problems can be expressed as MAXDET or SDP problems.

See [BEFB94], [VB96] and [VBW96] for many examples that arise in control, statistics,

computational geometry, information and communication theory, as well as additional ref-

erences.

What sdpsol does

In many MAXDET or SDP problems, the variable x has matrix structure, which makes it

tedious in practice to put the problem into form (1) or (2). The purpose of sdpsol is to

automate this task by allowing the user to specify (and solve) a MAXDET or SDP problem in

a format close to its natural mathematical description, in which variables that are matrices
are expressed as matrices instead of some vectorized form. The following example will
illustrate the idea.

We consider the matrix completion problem with partially-speci�ed inverse [VBW96,
x2.4]. We are given a positive de�nite diagonal matrix D 2 Rn�n and a matrix C = CT 2

Rn�n. The problem is to `complete' D to a positive de�nite matrix whose inverse matches

C in the o�-diagonal entries. Thus we seek a matrix � = �T such that

D +� > 0; �ii = 0; i = 1; : : : ; n; (D +�)�1ij = Cij for i 6= j:

This problem can be solved by solving the following MAXDET problem:

minimize TrC(D +�) + log det(D +�)�1

subject to D +� > 0

�ii = 0; i = 1; : : : ; n;

in which the symmetric matrix � 2 Rn�n is the optimization variable. We can express

this problem in the form (1) by �nding a basis P1; : : : ; Pm for symmetric n � n matrices
(m = n(n + 1)=2), then expressing the optimization variable � as � =

Pm
i=1 xiPi, etc.

Clearly this is straightforward but inconvenient.
However, the problem (or rather, an instance of the problem) can be speci�ed conveniently

in the sdpsol language as follows:

2

sdpsol Source 1 positive de�nite matrix completion

D=diag([2.34, 0.57, 1.13, 3.95]);

C=[3.46, -1.01, 0.38, -1.47;

-1.01, 4.44, -1.48, 2.88;

0.38, -1.48, 2.43, 0.94;

-1.47, 2.88, 0.94, 3.97];

variable Delta(4,4) symmetric; % declare 4x4 symmetric variable Delta

% equality constraints

diag(Delta) == zeros(4,1);

% LMI constraint

D+Delta > 0;

% specify the objective

minimize obj_value = Tr(C*(D+Delta))-logdet(D+Delta);

This problem speci�cation reveals some important features of sdpsol. It is possible to
construct matrices from constants, form matrix expressions using operators and functions,
make assignments, declare optimization variables, specify LMI and equality constraints, and
de�ne an objective.

When sdpsol processes this problem speci�cation, it produces the following output:

Results 1 sdpsol output of the matrix completion example

sdpsol version beta, Thu May 16 23:30:53 1996

*** Problem: mat_c

10 variables

4 linear equality constraints

LMI size: 4-by-4

1 diagonal block

MAXDET problem.

*** Algorithm parameters:

ABSTOL = 7.99e-08

RELTOL = 7.99e-08

BIGM = 7990

NU = 10

GAMMA = 100

MAXITER = 100

*** Optimization result

OPTIMAL after 16 iterations,

sdpsol stopped because RELATIVE TOLERANCE was reached.

*** Objective value

obj_value = 11.63

*** Variable

Delta =

[0.0000, -0.8277, -1.2558, 2.6579;

-0.8277, 0.0000, 0.6525, -1.3174;

-1.2558, 0.6525, 0.0000, -1.8167;

2.6579, -1.3174, -1.8167, 0.0000]

The output reports some basic information about the problem, the optimization algo-
rithm parameters used, the status of the optimization phase, the optimal values of the

3

variables, and the optimal objective value.

2 The sdpsol language

Comments

sdpsol supports two styles of comments: C and Matlab. The former starts with /* and

ends with */; the latter begins with % and includes any following text on the same line.

Comments are stripped and ignored by sdpsol.

Forming vectors and matrices

The only data type used by sdpsol is matrix. In other words, every expression is a matrix

with �xed dimension, i.e., number of rows and columns. Matrices with one row and column
are considered scalars; matrices with only one column are considered vectors; and matrices
with only one row are considered (row) vectors. A matrix is formed from numbers using the

symbols [and] to enclose the matrix, semicolons to delimit rows, and commas to delimit
entries within a row. For example, the matrix

2
641 2 3
4 5 6
7 8 9

3
75

can be expressed as [1,2,3; 4,5,6; 7,8,9]. Row and column vectors (which are just
matrices) are expressed the same way. For example, [1, 2, 3] denotes the row vector

h
1 2 3

i
;

and [1; 2; 3] denotes the vector 2
6412
3

3
75 :

Since sdpsol considers 1� 1 matrices to be scalars, [3] is the same as the scalar 3.

Newlines are completely equivalent to spaces; in particular newlines do not delimit the

rows of a matrix, as they do in Matlab. Thus [1 2; 3 4] is not a valid sdpsol expression

(although it is legal in Matlab), and

[1, 2,

3, 4]

represents the row vector [1; 2; 3; 4], and not the 2� 2 matrix it represents in Matlab.
So far we have formed matrices (and vectors) from scalar constants. In fact the same

constructions can be used to form matrices from other matrices, provided the sizes make
sense: the matrices in any given row (delimited by commas) must have the same number of

4

rows, and each row must have the same total number of columns. As a complicated example,

[[1,2,3], 4; [5;9], [6;10], [7,8; [11,12]]] denotes the matrix2
64
1 2 3 4

5 6 7 8

9 10 11 12

3
75 :

Several special matrices are provided:

� zeros(i,j) denotes an i� j zero matrix.

� ones(i,j) denotes an i� j matrix with all entries one.

� eye(i,j) denotes an i � j matrix with main diagonal one; eye(i) denotes an i � i

identity matrix.

� [a:b] generates a row vector of consecutive integers. If a � b it generates the (ascend-
ing integer) vector [i; i+1; : : : ; j], where i is a rounded toward zero and j is b rounded
toward zero. If a > b it generates the (descending integer) row vector [i; i� 1; : : : ; j].

Variables

The matrices in the preceding section are constants, since they have speci�c numerical
values. sdpsol also supports variables, which are the optimization variables in the prob-

lem. Variables are explicitly declared with declaration statements. The syntax of variable
declaration is

variable variable name[(dimension)] [,variable name[(dimension)] : : :][attribute];

Arguments enclosed by brackets are optional. attribute gives the structure of the variable(s)
declared; it can be either symmetric or diagonal. Variable declaration without attribute
indicates that the variables have no structure. variable name serves as the name of the
variable declared. A valid name starts with a letter and is followed by letters, digits or

underscores. As an example,

variable A(5,5) symmetric;

variable b(k,1);

variable c(1,1), d;

declares a 5 � 5 symmetric matrix variable A, a k � 1 vector variable b (k is an internal
variable, see page 9), and two scalar variables c and d.

A variable name cannot be the name of any previously declared variable, or a reserved
key word:

include variable constraint initialize minimize

maximize symmetric diagonal ones zeros

eye toeplitz diag ip Tr

reshape sum rows cols what

disp logdet sumlog for end

5

If a variable name has been used as an internal variable, sdpsol simply overwrites its previous

assignment by the variable declaration. In this version of sdpsol, all variable declarations

must precede all constraint or objective statements (see page 9).

It is possible to initialize a variable for the optimization phase, with a statement of the

form

initialize variable name = constant expression ;

Variables must be declared before they can be initialized. It's important to understand

that initializing a variable does not assign it a value; it simply gives the variable a starting

value to use in the optimization phase. The only purpose of initialization is to speed up the

optimization phase.

Expressions

Constants and variables can be combined using various operators (such as addition, mul-

tiplication, and transpose) and functions (such as trace and inner product) to form ex-

pressions. For example (and assuming that P has already been declared as a 3� 3 matrix
variable),

[1,2,3; 4,5,6; 7,8,9]' * P + P * [1,2,3; 4,5,6; 7,8,9] + [1;2;3]*[1;2;3]'

represents 2
641 2 3
4 5 6
7 8 9

3
75
T

P + P

2
641 2 3
4 5 6
7 8 9

3
75+

2
6412
3

3
75
2
6412
3

3
75
T

:

Note that this expression is a 3�3 matrix that is an a�ne function of the variable P . We say
this expression is an a�ne expression. If an expression does not depend on any variable,
i.e., has a speci�c numerical value, we say it is a constant expression. In the current version

of sdpsol, except special expressions that are used to form the log determinant objective
(see page 8), all expressions are a�ne (or constant) functions of the variables. This limits
the ways you can combine expressions to form others. For example, you cannot multiply
two a�ne expressions, since this would result in an expression that depends quadratically

on the variables.

Operators

sdpsol provides the following matrix operations, from higher precedence to lower precedence:

transpose, unary plus/minus, multiplication (including scalar multiplication/division and

componentwise multiplication/division), and addition/subtraction.

� A' is the transpose of A.

� -A denotes the negative of A; +A is just A.

� A*B, A multiplied by B, can mean two things:

6

� Matrix multiplication. The number of columns of A equals the number of rows of

B. In this case A*B means the usual matrix multiplication AB.

� Scalar/matrix multiplication. A or B is a scalar, i.e., a 1� 1 matrix. In this case

A*B means scalar multiplication of the matrix by the scalar.

Either A or B must be a constant expression.

� A/a denotes scalar multiplication of the matrix A by 1=a, where a is a non-zero scalar

constant expression.

� A.*B denotes componentwise multiplication of A and B, i.e., (A.*B)ij = AijBij . A and

B must have the same dimension and at least one of them is a constant expression.

� A./B denotes componentwise division of A by B, i.e., (A./B)ij = Aij=Bij. A and B

must have the same dimension and B must be a constant expression, with all entries
non-zero.

� A+B means one of the following (similar rules apply to A-B):

� A+B denotes A+B, if A and B are matrices of the same dimension.

� a+B denotes aI +B, if a is scalar and B is square. Similarly, A+b denotes A+ bI.

� a+B means (a+B)i = a + Bi, if a is scalar and B is a (column or row) vector.
Similarly, A+b means (A+b)i = Ai + b.

If one of the operands is scalar and the other is not a vector or a square matrix
(including scalar), the operation is invalid. Note that this nonstandard extension
of addition/subtraction, in which a scalar can be added or subtracted from vectors
and square matrices, is consistent with common mathematical notation and greatly

simpli�es the description of some SDPs.

Operations are carried out in the order of precedence. For example in the expression A*B+C',

C' is formed �rst, then the product A*B, and �nally the sum. Parentheses, i.e., (and),

can always be used to force groupings. For example in A*(B+C)', B+C is formed, then its
transpose, and then the multiplication.

Functions

sdpsol provides the following functions:

� cols(A) returns the number of columns of A, a positive, integer scalar.

� rows(A) returns the number of rows of A, a positive, integer scalar.

� reshape(A,r,c) denotes the r� c matrix expression with its elements taken column-
wise from A. The product of the number of rows and columns of A must be rc; sdpsol

gives an error if A does not have rc elements.

7

� diag(A) is used in two ways:

� Forming diagonal matrices. If A is a column or row vector, diag(A) is a diagonal

matrix with entries of A along its diagonal.

� Extracting the diagonal of a matrix. If A is a matrix but not a row or column

vector, diag(A) is a column vector made of the main diagonal entries of A.

� sum(A) denotes the sum of the elements of a vector argument A. If A is a ma-

trix, sum(A) is a row vector containing the sum over each column of A, that is,

ones(1,rows(A))*A.

� Tr(A) denotes the trace of A, i.e., the sum of the diagonal entries of A. A has to be

square.

� ip(A,B) denotes the inner-product of A and B, i.e., TrATB. A and B must have the
same dimension, and one must be a constant expression.

sdpsol provides the following functions used to specify log determinant objectives:

� logdet(A) denotes the log determinant of (the symmetric part of) the matrix A,
i.e., log det(A+AT)=2. Using this expression automatically adds the constraint (A+

AT)=2 > 0 to the problem speci�cation.

� sumlog(a)denotes
P

i log(ai), where a is a row or column vector. sdpsol automatically
adds the constraint a > 0.

When the arguments to these two functions are constant expressions, the functions return
constant scalar expressions, which can then be used anywhere constant scalar expressions

can be used. When the arguments to these two functions are a�ne expressions, these func-
tions return expressions that (obviously) do not depend a�nely on the variables. There are
therefore several limitations on how and where they can be used and combined:

� They cannot be used in any constraint (since they are not a�ne).

� They cannot be multiplied with other expressions, even scalar constant expressions.

� They cannot be used to form matrices.

� They can be added and subtracted with each other and a�ne expressions. (But the

�nal expression used in the objective must be convex if it is a minimization problem,
or concave if it is a maximization problem; see page 10).

Let us consider some examples. Assume X is a square matrix variable and v is a vector

variable, and B and C are constant matrices. The following expression is valid:

3-sumlog(v)-logdet(B*X+X'*B')+2*Tr(X)/logdet(C)

whereas the following expressions are not valid:

-3*sumlog(v)

[1, 0; 0, sumlog(v)]

Tr(X)/logdet(X)

8

Internal variables and assignments

sdpsol allows the user to create internal variables, i.e., give names to expressions using

assignments. The syntax of assignment is

variable name = expression ;

The name must be a valid variable name (see page 5). Consider the example

Aplant = 4*[1, 2, 3; 0, 0, 0; 4, 1, 1] ;

Lyap = Aplant'*P + P*Aplant ;

In the �rst assignment, Aplant is given the constant value

2
64 4 8 12

0 0 0

16 4 4

3
75

(overwriting any previous de�nition of Aplant as an internal variable). Once Aplant has
been assigned it can itself be used in expressions, as in the second assignment, in which Lyap

becomes an expression (that could be used in subsequent expressions, etc.).
It is possible to refer to individual elements (submatrices) of an internal variable via

subscripting. A subscript can be a scalar, a vector or a colon (:); colon denotes all of the
corresponding row or column. For example, Aplant(1,2) refers to the (1; 2) entry of Aplant,
which is the constant scalar 8; Aplant(3,:) is the row vector

h
12 0 4

i

and Aplant([1,3],[3,3,1]) denotes the matrix

"
12 12 4
4 4 16

#
:

No element in a subscript can exceed the dimension of the given internal variable, e.g.,
Aplant(1,4) is invalid.

In this version of sdpsol, expressions cannot be assigned to an internal variable with

subscripts. An assignment such as

Aplant(2,2) = 3;

which is valid in Matlab, is invalid in sdpsol.

Constraints

Expressions can be combined with relation operators to form constraints, as in

diag(Delta) == zeros(4,1);

D+Delta > 0;

9

which are taken from our example. The syntax of constraint speci�cation is

expression rel op expression ;

The relation operator rel op can be equality (==), matrix inequality (>, <) or componentwise

inequality (.>, .<). At least one of the two expressions has to be a�ne; otherwise an error

message results. No expression with special functions, such as logdet() and sumlog() (see

page 8), can be used in constraints.

As with operators, we interpret constraints in a convenient way when one of the expres-

sions is a scalar.

� A == B means A = B, if A and B are matrices of the same dimension. This is the

most common usage, but for consistency sdpsol extends equality to include vector-

scalar and matrix-scalar equality. If a is scalar and B is square, a == B (or B == a)

means aI = B. If a is scalar and B is either a column or row vector, a == B (or

B == a) means a = Bi. If B is a column vector, for example, a == B is the same as
a*ones(1,rows(B)) == B.

� A > 0 means (A+AT)=2 > 0 ((A+AT)=2 is positive de�nite) if A is square. Similarly,
A < 0 means (A +AT)=2 < 0. Note that sdpsol automatically symmetrizes positive
(or negative) de�nite constraints.

� A > k means (A + AT)=2 � kI > 0, if k is a scalar and A is square. A similar rule
applies to A < k.

� A > B means A � B > 0, i.e., ((A � B) + (A � B)T)=2 > 0, if A and B are square

matrices of the same dimension.

� A .> k means the componentwise inequality Aij > k, where k is a scalar. Similarly,

A .< k means Aij < k.

� If A and B are matrices (or vectors) of the same size, A .> B (and B .< A) means
Aij > Bij .

Objective

The objective or cost function is given by an objective statement, e.g.,

minimize obj_value = Tr(C*(D+Delta))-logdet(D+Delta);

which is taken from our example. This statement assigns TrC(D + �) � log det(D + �)
to the internal variable obj value and tells sdpsol to minimize it. The syntax of objective

statement is

minimize variable name = scalar expression ;

maximize variable name = scalar expression ;

10

where scalar expression is composed of scalar a�ne expressions and/or log determinant

expressions. The objective expression must be convex in the optimization variables to be

minimized (or concave in the variables to be maximized).

For example, assume X is a square matrix variable, v is a vector variable, and B is a

constant matrix. Then the following objective statements are valid:

minimize obj_value = 3+2*Tr(X);

maximize obj_value = 3+2*Tr(X);

minimize obj_value = 3-sumlog(v)-logdet(B*X+X'*B')+2*Tr(X);

whereas the following objective statements are not valid:

maximize obj_value = 3-sumlog(v)-logdet(B*X+X'*B')+2*Tr(X);

minimize obj_value = 3-sumlog(v)+logdet(B*X+X'*B')+2*Tr(X);

because the former is convex and the latter is neither convex nor concave in X and v.
The objective statement is optional. If no objective is given (or the objective given is

constant), sdpsol forms and solves the feasibility problem only, i.e., it either �nds a
solution which satis�es all the constraints or proves that the constraints are infeasible. If
there is more than one objective statement, a warning message is issued, and only the last

one is used.

Commands

The command

include("�lename");

includes two types of �les into the workspace of sdpsol: Matlab binary data �les (.mat �les)
and sdpsol source �les. If �lename ends in .mat, sdpsol treats the �le as a Matlab binary
�le and loads all real variables in the �le as internal variables. In this version of sdpsol, all
complex and string variables in the .mat �le are (for now, silently) ignored. If �lename does

not end with the extension .mat, the �le is included as sdpsol source, i.e., as part of the

problem speci�cation. Includes can nest up to a maximum of 10 levels.
what(expression); prints to the standard output the dimension, attribute, and type of

the given expression, along with a list of the variables on which the expression depends.

If the expression is constant, its value will be printed. Using our example, the command

what(C); prints

4x4 internal variable, constant with value:

[3.4600, -1.0100, 0.3800, -1.4700;

-1.0100, 4.4400, -1.4800, 2.8800;

0.3800, -1.4800, 2.4300, 0.9400;

-1.4700, 2.8800, 0.9400, 3.9700]

and what(Tr(C*(D+Delta))-logdet(D+Delta)); prints

1x1 expression, depends on variable(s):

Delta

11

Loops

Loops can be used to repeat statements, as in

for i=1:K;

[eye(n), E*X(:,i)+d;

(E*X(:,i)+d)', 1] > 0;

end;

which declares the K LMI constraints"
I Exi + d

(Exi + d)T 1

#
> 0;

where X = [x1; : : : ; xK] and i = 1; : : : ;K.

The syntax of a loop is

for variable name = scalar constant 1 [: scalar constant 2] : scalar constant 3 ;
[statement ; : : : statement ;]

end ;

Note that the semicolons used to delimit the for-statement and the end-statement above
cannot be omitted. This is di�erent from the syntax of loops in Matlab.

Within a loop, the loop variable variable name is assigned an integer value from

scalar constant 1 with increment scalar constant 2 (or decrement if scalar constant 2 is neg-
ative), one at a time, until it exceeds scalar constant 3. These scalar constants are rounded
toward zero to ensure that they have integer values. scalar constant 2 is optional and it
has a default value 1. For example, for i=1:10; loops 10 times with the loop variable
i = 1; 2; : : : ; 10; for n=10:-2:1; loops 5 times with n = 10; 8; : : : ; 2.

In this version of sdpsol, every loop is executed at least once, even when the loop variable

has a starting value exceeds its ending value. As an example,

for i=1:0;

what(i);

end;

is executed once (with i = 1) and sdpsol prints out

1x1 internal variable, constant with value:

1

Loops can nest up to a maximum of 10 levels.

Algorithm parameters

Several internal variables are reserved by sdpsol to serve as algorithm parameters. See [VB96,

VB94, VBW96, WVB96] for the precise meanings of these parameters, including their al-

lowable and recommended values. The value of these reserved internal variables can be

reassigned by the user via assignments.

12

NU The parameter � controls the rate of convergence when solving SDP problems

(see [VB94]). Default value is 10.

GAMMA The parameter
 controls the rate of convergence when solving MAXDET prob-

lems (see [WVB96]). Default value is 100.

MAXITER The maximum number of iterations allowed. Default value is 100.

ABSTOL Absolute tolerance. Default value is maxf10�8�; 10�8g, where � � maxi2f1;:::;mg kFik.

RELTOL Relative tolerance. Default value is maxf10�8�; 10�8g.

BIGM The parameter M used in the big-M method (see [VB96, x6.1]). Default value is

103�.

3 Using sdpsol

There are two ways to use sdpsol: as a stand-alone command under UNIX, or, from within
Matlab, via the Matlab script sdpsol.m.

Using sdpsol from UNIX

Under UNIX, sdpsol is invoked as

your unix system% sdpsol [options] src �lename

Options are:

{h Show the usage of sdpsol.

{q Quiet mode. Compilation and run-time log messages are suppressed.
However, error messages are still sent to stderr. These error messages

can be suppressed by invoking sdpsol with stderr redirected, e.g.,

sdpsol src �lename >& /dev/null)

{I incl �lename Include the Matlab binary �le incl �lename into the workspace of sdpsol.
This is equivalent to having the command include("incl �lename") at

the top of the source �le.

{m [mat �lename] Export the results of sdpsol to the Matlab binary �le mat �lename. If
mat �lename is not given, src �lename.mat is used.

{o [out �lename] Redirect sdpsol's (text) output from the standard output (default) to
the �le out �lename. If out �lename is not given, src �lename.out is used.

For example,

your_unix_system% sdpsol -q -m my_result.mat my_source

13

invokes sdpsol in quiet mode, solves the problem speci�ed in my source, and exports the

results to the Matlab binary �le my result.mat.

When the {m option is used, an additional Matlab string variable INFO is written to

the .mat �le along with the values of all variables and the objective. INFO has one of the

following values: 'infeasible', 'feasible', 'optimal' or 'error'. Their meanings are

summarized in Table 1.

INFO Feasibility Problem Optimization Problem

'infeasible' problem infeasible problem infeasible

'feasible' problem feasible feasible solution found, but

MAXITER exceeded during optimization

'optimal' (not applicable) optimum solution found

'error' feasibility unknown feasibility unknown

Table 1: Possible values of INFO and their meanings.

Using sdpsol from within Matlab

We have provided a simple Matlab script sdpsol.m that can be used to invoke sdpsol

from within Matlab. The sdpsol source �lename is stored in the Matlab string variable

SDPSOL FILENAME. For example,

>> SDPSOL_FILENAME='my_source';

>> sdpsol

invokes sdpsol to solve the problem speci�ed in my source.
When sdpsol is invoked, all the variables (excluding strings and complex variables) in

the Matlab workspace are included by sdpsol as internal variables. Therefore, no include

statement is necessary in the sdpsol source. When sdpsol processes the problem speci�-
cation, the results (including INFO) are automatically exported back to Matlab's workspace.
To give a simple example, consider the following sdpsol source my source:

% sdpsol source file -- my_source

% WARNING: cannot be run from UNIX, since A and n are not defined.

variable P(n,n) symmetric;

A'*P+P*A < -0.1;

P > 0;

Tr(P) == 1;

This sdpsol source does not work with the stand-alone sdpsol invoked from UNIX, because

A and n are not de�ned. However, within Matlab, we might use sdpsol in the following
way:

>> n=2;

>> A=[-1.3628 -0.7566; -0.7566 -0.5166];

>> SDPSOL_FILENAME='my_source';

>> sdpsol

14

: : : some messages from sdpsol will appear : : :

>> P

P =

0.2744 -0.4034

-0.4034 0.7256

>> INFO

INFO =

feasible

4 Examples

Minimum volume ellipsoid containing given points

Consider the MAXDET problem arises in determining the minimum volume ellipsoid that

contains given points x1, : : : , xK in Rn. We describe the ellipsoid as E = fx j kAx+bk � 1g,
where A = AT > 0, so the volume of E is proportional to detA�1. Hence the minimum
volume ellipsoid that contains the points xi can be computed by solving the convex problem

minimize log detA�1

subject to kAxi + bk � 1; i = 1; : : : ;K

A = AT > 0;

(3)

where the variables are A = AT 2 Rn�n and b 2 Rn. The norm constraints kAxi + bk � 1,
which are just convex quadratic inequalities in the variables A and b, can be expressed as
LMIs "

I Axi + b

(Axi + b)T 1

#
� 0:

Thus (3) is a MAXDET problem in the variables A and b, and it can be speci�ed using the
sdpsol language as shown in Source 2.

Log Chebychev approximation

Suppose we wish to solve Ax � b approximately, where A = [a1 : : : ap]
T 2 Rp�k and b 2 Rp.

In some applications bi has the dimension of a power or intensity (e.g., �lter design), and

is typically expressed on a log scale. In such cases we would like to solve a log Chebychev
approximation to minimize the L1-norm of the log residual, i.e., we solve

minimize max
i
j log(aTi x)� log(bi)j (4)

(assuming bi > 0, and interpreting log(aTi x) as �1 when aTi x � 0).

This log Chebychev approximation problem can be cast as a semide�nite program. To
see this, note that

j log(aTi x)� log(bi)j = logmax(aTi x=bi; bi=a
T
i x)

15

sdpsol Source 2 minimum volume ellipsoid containing given points
% sdpsol source minVe_pts -- find minimum volume ellipsoid

% { x | || A*x+b ||<=1 }

% containing K points in R^n, x_i, i=1,...,K (stored in X, an n-by-K matrix)

%

% maxdet program:

% minimize - log det A

% subject to || A*x_i+b || <= 1, i=1,...,n

% A > 0

%

% WARNING: cannot be run from UNIX, since X, n, K are not defined.

variable A(n,n) symmetric;

variable b(n,1);

for i=1:K;

[eye(n), A*X(:,i)+b;

(A*X(:,i)+b)', 1] > 0;

end;

A > 0;

minimize obj = -logdet(A);

(assuming aTi x > 0). Problem (4) is therefore equivalent to

minimize t

subject to Ax � tb"
aTi x 1

1 t=bi

#
� 0; i = 1; : : : ; p

which is a semide�nite program. This problem can be described using the sdpsol language

as shown in Source 3.

sdpsol Source 3 log Chebychev approximation
% sdpsol source log_chebychev -- find x such that Ax > 0

% and |log(Ax) - log(b)|_\infty is minimized.

%

% WARNING: cannot be run from UNIX, since A, b, p, k are not defined.

variable x(k,1),t;

A*x .< t*b;

for i=1:p;

[A(i,:)*x, 1;

1, t/b(i,1)] > 0;

end;

minimize err_bnd = t;

5 Caveats

The most important caveats for this version are:

16

� it is limited to small problems, and

� it handles only strict LMIs.

We hope that both of these short-comings will be removed in future versions.

The matrix structure of x can be exploited to great bene�t in the optimization algorithm;

see [VB95, BVG94]. This version of sdpsol, however, does not exploit such structure, and

hence is only appropriate for small and medium-sized problems (say, with total number of

optimization variables on the order of a hundred.)

sdpsol solves the problem (1) and (2), with strict LMIs. If the problem you want

to solve does not have a strictly feasible point, sdpsol will, of course, fail to �nd a strictly

feasible point. At the same time it will fail to conclude that the problem is infeasible (sdpsol

terminates with the message \feasibility cannot be determined" and INFO equal to 'error').

Indeed, this gives a hint that your problem does not have a strictly feasible point.

References

[BEFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities

in System and Control Theory, volume 15 of Studies in Applied Mathematics.
SIAM, Philadelphia, PA, June 1994.

[BVG94] S. Boyd, L. Vandenberghe, and M. Grant. E�cient convex optimization for engi-
neering design. In Proceedings IFAC Symposium on Robust Control Design, pages
14{23, September 1994.

[VB94] L. Vandenberghe and S. Boyd. sp: Software for Semide�nite Programming. User's

Guide, Beta Version. K.U. Leuven and Stanford University, October 1994.

[VB95] L. Vandenberghe and S. Boyd. A primal-dual potential reduction method for
problems involving matrix inequalities. Mathematical Programming, 69(1):205{
236, July 1995.

[VB96] L. Vandenberghe and S. Boyd. Semide�nite programming. SIAM Review,
38(1):49{95, March 1996.

[VBW96] L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear

matrix inequality constraints. submitted to SIMAX, February 1996.

[WVB96] S.-P. Wu, L. Vandenberghe, and S. Boyd. maxdet: Software for Determinant

Maximization Problems. User's Guide, Alpha Version. Stanford University, April

1996.

17

