
SOCP

Software for

Second-order Cone Programming

User's Guide

Beta Version April 1997

Miguel Sousa Lobo mlobo@isl.stanford.edu

Lieven Vandenberghe vandenbe@isl.stanford.edu

Stephen Boyd boyd@isl.stanford.edu

Copyright c
1997 by Miguel Sousa Lobo, Lieven Vandenberghe, and Stephen Boyd. Permis-

sion to use, copy, modify, and distribute this software for any purpose without fee is hereby

granted, provided that this entire notice is included in all copies of any software which is

or includes a copy or modi�cation of this software and in all copies of the supporting doc-

umentation for such software. This software is being provided \as is", without any express

or implied warranty. In particular, the authors do not make any representation or warranty

of any kind concerning the merchantability of this software or its �tness for any particular

purpose.

1

1 Introduction

This package contains software for solving the second-order cone programming (SOCP) prob-

lem
minimize fTx

subject to kAix+ bik � cTi x+ di i = 1; : : : ; L:
(1)

The optimization variable is the vector x 2 Rm. The problem data are f 2 Rm, and, for

i = 1; : : : ; L, Ai 2 RNi�m, bi 2 RNi , ci 2 Rm and di 2 R. The norm appearing in the

constraints is the Euclidean norm, i.e., kvk = (vTv)1=2. If Ni = 0 we interpret the ith

constraint as

0 � cTi x+ di; (2)

i.e., a linear inequality.

We refer to [LVBL97] (distributed with this software package) for a survey of applications

of second-order programming.

1.1 Overview

The package contains:

� C-source: socp.c and socp.h contain a C-function socp that solves the general second-

order cone programming problem. See x4.

� A Matlab4 interface, which allows the user to call the code from matlab4. Compiled

mex-�les for some platforms are included; for other platforms you can compile the

interface from its source code socp mex.c. See x4.

� A Matlab routine socp.m. Although the mex-�les can be called directly from matlab,

they can also be accessed with this routine that greatly simpli�es their usage. It

provides default parameters, diagnostics and procedures for �nding initial points. See

x2.

� Matlab routine: socp1.m. When the problem has only one constraint, it has an analytic

solution, which can be computed with this function. See x3.

� Matlab examples: we provide simple matlab routines that use socp.m to solve various

problems (some of which are described in the survey paper [LVBL97]). See x5.

� Documentation, in postscript format: doc.ps (this document).

� The survey paper [LVBL97], in postscript format: socp.ps.

This software package is available at http://www-isl.stanford.edu/people/boyd/group_index.html

(or via anonymous ftp from isl.stanford.edu in pub/boyd/).

2

1.2 How to use the package

You can use the package in di�erent ways.

� Write a C-program that calls the function socp in socp.c, and link the code with

LAPACK and BLAS. You should be able to do this on any machine with a C compiler;

see x4 for more details.

� The easiest method (provided you have matlab4) is to use the m-�le socp.m. socp.m

calls the C-function via a mex-�le interface. Both socp.m and the mex-�les must be

in your matlab path. See x2.

� If none of the compiled mex-�les is appropriate for your machine, create a mex-�le for

use in matlab4 by compiling socp mex.c using cmex, and linking it with LAPACK and

BLAS (see x4 for more details).

1.3 Who can/should use the code?

The code is intended for researchers who want to apply second-order cone programming

(which includes quadratically constrained quadratic programming). Our aim is to provide a

program that is simple, easy to use, reasonably e�cient, and useful for small and medium-

sized problems (say, up to hundreds of variables).

1.4 Caveat

SOCP is a simple, general code, and does not exploit problem structure, nor sparsity.

3

2 Matlab function: socp.m

[x,info,z,w,hist,time] = ...

socp(f,A,b,C,d,N,x,z,w,abs_tol,rel_tol,target,max_iter,Nu,out_mode);

Any of the input parameters x, z, w, abs tol, rel tol, target, max iter, Nu and

out mode, and/or the output parameters info,z,w,hist and time can be omitted. They

must be omitted in order from the end, i.e., if a given parameter is used, all the preceeding

ones must also be used. Alternatively, any of these parameters can be replaced by the matlab

empty list: []. In both cases, the parameter is replaced by a default value or, in the case of

the initial points, an alternative procedure is used to compute them. See detailed discussion

of parameters below.

The shortest calling sequence is:

x = socp(f,A,b,C,d,N);

2.1 Purpose

socp solves the second-order cone program

minimize fTx

subject to kAix + bik � cTi x + di i = 1; : : : ; L

and its dual
maximize �

PL
i=1

�
bTi zi + diwi

�
subject to

PL
i=1

�
AT
i zi + ciwi

�
= f

kzik � wi i = 1; : : : ; L

given strictly feasible primal and dual initial points.

2.2 Storage convention

The problem data Ai 2 RNi�n, bi 2 RNi, ci 2 Rn, di 2 R, and the dual variables zi 2 RNi ,

and wi 2 R, are stored as matrices and vectors A, b, C, d, z and w, de�ned as follows:

A =

2
664
A1

...

AL

3
775 b =

2
664
b1
...

bL

3
775 C =

2
664
cT1
...

cTL

3
775 d =

2
664
d1
...

dL

3
775 z =

2
664
z1
...

zL

3
775 w =

2
664
w1

...

wL

3
775 :

Note that the socp.m data storage convention is di�erent from the convention used in the

C and mex functions.

4

2.3 Input arguments

1. f: Vector of length n, speci�es the primal objective.

2. A: Matrix of size
LX
i=1

Ni by n, as described above.

3. b: Vector of length
LX
i=1

Ni, as described above.

4. C: Matrix of size L by n, as described above.

5. d: Vector of length L, as described above.

6. N: Vector of length L. The i-th element is the number of rows in Ai.

7. x: Vector of length n. Primal starting point. Must be strictly feasible. If x is omitted,

a phase 1 method is used to �nd an initial primal point (See xs-phase1).

8. z: Vector of length
LX
i=1

Ni. Dual starting point (together with w).

9. w: Vector of length L. Dual starting point (together with z). z and w must be strictly

dual feasible. If omitted, a big-M constraint is added to the SOCP (See xs-bigM)

10. abs tol: Absolute tolerance. Default value: 10�6. See discussion of convergence

criteria below.

11. rel tol: Relative tolerance. Default value: 10�4. See discussion of convergence criteria

below.

12. target: Target value, only used if rel tol< 0:0. Default value: 0:0. See discussion of

convergence criteria below.

13. max iter: Maximum number of iterations. Default value: 100.

14. Nu: The parameter � that controls the rate of convergence. � � 1:0. Default value:

10.

15. out mode: Speci�es what should be output in hist; 0{ nothing (default value); 1{ the

duality gap, for the initial point and after each iteration; 2{ the duality gap and the

deviation from centrality, for the initial point and after each iteration. (For more on

duality gap and deviation from centrality, see [LVBL97] and [VB96].)

5

2.4 Output arguments

1. x: Vector of length n. The last primal iterate x.

2. info: String; possible values: 'absolute accuracy reached', 'relative accuracy

reached', 'target value reached', 'target value is unachievable',

'maximum iterations exceeded', 'error'.

3. z, and

4. w: Vectors of length
LX
i=1

Ni and of length L. The last dual iterate z; w.

5. hist: See out mode.

6. time: Vector with 3 numbers; performance statistics: time(1) is user time (cpu time

used), time(2) is system time (time spent in system calls), time(3) is total number

of iterations performed.

2.5 Convergence criteria

socp computes an interval in which the optimal value has been located. The upper bound is

the primal objective p = fTx evaluated at the primal feasible solution stored in x; the lower

bound is the dual objective d = �
PL
i=1

�
bTi zi + diwi

�
evaluated at the dual feasible solution

stored in z.

The length of this interval (p � d) is called the duality gap associated with x and z

(see [LVBL97]).

The program exits normally under �ve possible conditions:

� The maximum number of iterations is exceeded.

� The absolute tolerance is reached:

p� d � abs tol:

� The relative tolerance is reached. The primal objective p and the dual objective d are

both positive and
p� d

d
� rel tol;

or the primal and dual objective are both negative and

p� d

�p
� rel tol:

� The target value is reached. rel tol is negative and the primal objective p is less than

target.

6

� The target value is unachievable. rel tol is negative and the dual objective d is greater

than target.

The target value stopping condition is useful for feasibility problems: socp stops when

it has either found a point with objective less than the given target, or has found a dual

point with objective value greater than target (which proves the optimal objective is greater

than target). The target value stopping condition is enabled by passing a negative relative

tolerance argument, e.g., rel tol = �1:0.

2.6 Caveats

� The columns of

"
A

C

#
should be linearly independent. If this is not the case, either

the problem is not dual feasible (which means the primal is unbounded) or it can be

reduced to another problem with fewer variables.

This reduction is done by default in socp, but requires some computational e�ort. If,

due to the nature of your problem, you know that the matrix is full-rank, you can skip

the veri�cation and size reduction procedure by editing the appropriate line in the �le

socp.m from

check_rank=1;

to

check_rank=0;

� If

"
A

C

#
is such that (even after the transformation above) its size is close to square,

some numerical di�culties may arise. In this case you should consider using the dual

problem as the primal.

� The optimization procedure uses strictly feasible primal and dual points, which means

that the standard trick to add equality constraints (writing Ax = b as the two vector

inequalities Ax � b � 0, b � Ax � 0) will not work. You have to explicitly eliminate

equality constraints.

2.7 Initial dual point: Big-M

Note: If you just want to use socp.m and are not interested in how it works, you can skip

this and the next sections.

When the dual variables z and w are not speci�ed in the call to socp.m, a big-M procedure

is used. The original problem is extended to include a bound on the primal variable. The

dual of the modi�ed problem is such that a strictly feasible dual point can always be easily

computed.

However, the solution to the original problem may lie outside of the added bound. In

this case, the optimization would converge to a point on the boundary of the set de�ned by

the new bound, and not to the desired solution. This problem is circunvented by increasing

the value of the bound repeatedly, to ensure it is not active in the solution.

7

The modi�ed second-order cone program solved by socp.m is

minimize fTx

subject to kAix + bik � cTi x + di i = 1; : : : ; LPL
i=1(c

T
i x + di) �M

and its dual is

maximize �
PL
i=1

�
bTi zi + di(wi � v)

�
�Mv

subject to
PL
i=1

�
AT
i zi + ci(wi � v)

�
= f

kzik � wi i = 1; : : : ; L

v � 0:

A strictly feasible primal initial point is assumed.

For

"
A

C

#
with independent columns, all the primal variables xi are bounded by the addi-

tional constraint. In this case, the extra dual variables associated with the added constraint

allow for the easy computation of a strictly feasible dual point.

M is iteratively increased to keep the bound inactive. Every BigM iter iterations, if

M > BigM K

LX
i=1

(cTi x+ di):

the bound M is changed to

M = BigM K

LX
i=1

(cTi x + di):

The default values are BigM iter=2 and BigM K=2.

The solution returned by socp.m is to the original problem. (The original convergence

criteria are still strictly met, since the duality gap of the modi�ed problem is an upper bound

on the duality gap of the original problem.)

2.8 Initial primal point: Phase 1

When the primal variable x is not speci�ed in the call to socp.m, a phase 1 procedure is

used. A feasibility problem is �rst solved, and its solution is then used as an initial point for

the original problem.

The feasibility problem is

minimize �

subject to kAix + bik � cTi x + di + � i = 1; : : : ; L:

A strictly feasible primal point is always trivially found by taking � large enough. As for

an initial dual point, the big-M procedure described above is used. (In practice, socp.m

constructs the modi�ed problem and makes a recursive call to itself.)

8

The convergence criteria for this problem are speci�ed by target=0.0 (activated by

rel tol=-1.0). socp will stop when � < 0; or when it can be shown that, subject to the

constraints, min� � 0. That is, it will stop as soon as x becomes strictly feasible for the

original problem; or as soon as it can be shown that there is no such strictly feasible point.

If a strictly feasible primal point is found, it is then used as an initial primal point to

solve the original problem.

As a �nal note, we must say that these approaches (big-M and phase 1) are certainly not

as good as using an infeasible method. However they have the advantage of being simple, and

are e�ective enough for small to medium sized problems (with, say, a few hundred variables).

9

3 Matlab function: socp1.m

[x,info,z,w,fsbl,bndd] = socp1(f,A,b,c,d);

socp1 computes an analytic solution to the single constraint second-order cone program

minimize fTx

subject to kAx + bk � cx + d

and its dual
maximize �bT z + dw

subject to AT z + cTw = f

kzk � w

Note that here c is a row vector. The problem is de�ned by A 2 Rm�n, b 2 Rm, c 2 Rn

and d 2 R. It's variables are x 2 Rn, z 2 Rm, and w 2 R.

3.1 Input arguments

1. f: Vector of length n, speci�es the primal objective.

2. A: Matrix of size m by n.

3. b: Column vector of length m.

4. c: Row vector of length n.

5. d: Scalar.

3.2 Output arguments

1. x: Vector of length n. Primal solution x, if one could be computed.

2. info: String; possible values: 'solution found', 'problem is infeasible',

'problem is unbounded', 'error'.

3. z: Vector of length m, and

4. w: Scalar. z and w provide a dual solution, if one could be computed.

5. fsbl: Scalar. 1 if the problem is feasible, 0 otherwise.

6. bndd: Scalar. 1 if the problem has a bounded solution, 0 otherwise.

10

4 C-function: socp.c

The main routine is a C-function in socp.c:

int socp(int L, int *N, int n, double *f, double *A, double *b,

double *x, double *z,

double abs_tol, double rel_tol, double target, int *iter,

double Nu,

int *info, int out_mode, double *hist,

double *dblwork, int *intwork)

To compute the amount of workspace required (dblwork, ptrwork and intwork), another

C-function is provided in socp.c. This should be called before socp:

void socp_getwork(int L, int *N, int n, int max_iter, int out_mode,

int *mhist, int *nhist,

int *ndbl, int *nint)

4.1 Purpose

socp solves the second-order cone program

minimize fTx

subject to kAix + bik � cTi x + di i = 1; : : : ; L

and its dual
maximize �

PL
i=1

�
bTi zi + diwi

�
subject to

PL
i=1

�
AT
i zi + ciwi

�
= f

kzik � wi i = 1; : : : ; L

given strictly feasible primal and dual initial points.

4.2 Storage convention

The sizes of the constraints are given in a vector N , of length L. Ni de�nes the dimensionality

of the i-th conic constraint, i.e., the dimension of the argument of the norm plus one. Hence,

Ai 2 R(Ni�1)�n, bi 2 R(Ni�1), ci 2 Rn, di 2 R, zi 2 R(Ni�1), and wi 2 R.

For the C and mex functions, A, b, and the dual variable z, are conventioned to be

A =

2
66666664

A1

cT1
...

AL

cTL

3
77777775

b =

2
66666664

b1
d1
...

bL
dL

3
77777775

z =

2
66666664

z1
w1

...

zL
wL

3
77777775
:

Note that this is di�erent from the data storage convention used in socp.m.

11

4.3 Arguments for socp

1. L (integer, in): The number of conic constraints.

2. N (pointer to integer, in): Array of length L. Thei-th element is the dimension of i-th

constraint.

3. n (integer, in): The number of variables.

4. f (pointer to double, in): Array of length n, speci�es the primal objective.

5. A (pointer to double, in): Array of length mn, as described above (storage is one

column at a time, i.e., element i; j of matrix is entry i+m � (j � 1) of array).

6. b (pointer to double, in): Array of length m, as described above.

7. x (pointer to double, in/out): Array of length n. On entry, a strictly feasible primal

point. On exit, last primal iterate x. Meaning depends on stopping criterion (solution

to primal problem, if appropriate).

8. z (pointer to double, in/out): Array of length m. On entry, a strictly feasible dual

point, as described above. On exit, last dual iterate z. Meaning depends on stopping

criterion (solution to dual problem, if appropriate).

9. abs tol (double, in): Absolute tolerance. See discussion of convergence criteria

below.

10. rel tol (double, in): Relative tolerance. See discussion of convergence criteria below.

11. target (double, in): Target value, only used if rel tol< 0:0. See discussion of

convergence criteria below.

12. iter (pointer to integer, in/out): On entry, *iter is the maximum number of

iterations, socp is aborted if more are required for convergence. On exit, *iter is the

number of iterations performed.

13. Nu (double, in): The parameter � that controls the rate of convergence. � � 1:0.

Recommended range: 5:0{50:0.

14. info (pointer to integer, out): Stopping criteria that caused exiting; 0{ error; 1{

absolute tolerance; 2{ relative tolerance; 3{ target value (was achieved or is

unachievable); 4{maximum iterations.

15. out mode (integer, in): Speci�es what should be output in hist; 0{ nothing; 1{

duality gap, for initial point and after each iteration; 2{ duality gap and deviation

from centrality, for initial point and after each iteration.

16. hist (pointer to double, out): Array of length greater or equal to the product of

*mhist by *nhist. See out mode.

12

17. dblwork (pointer to double): Array of doubles for workspace. See socp getwork for

length.

18. intwork (pointer to integer): Array of integers for workspace. See socp getwork for

length.

socp returns 0 if it exited due to any of the stopping criteria, or an error code from the

LAPACK routine dgelss.

4.4 Arguments for socp getwork

1. n (integer, in): Use same value as in socp.

2. L (integer, in): Use same value as in socp.

3. N (pointer to integer, in): Use same values as in socp.

4. max iter (integer, in): Use entry value of *iter in socp.

5. out mode (integer, in): Use same value as in socp.

6. mhist (pointer to integer, out), and

7. nhist (pointer to integer, out): The required length of hist in number of doubles is

the product of mhist by nhist. (These are included to make it easy to edit the code to

send other output through hist; currently the values are always 1 and max iter + 1,

since hist returns a vector with the duality gap for the initial point and after each

iteration.)

8. ndbl (pointer to integer, out): Returns required length for dblwork, in number of

doubles.

9. nint (pointer to integer, out): Returns required length for intwork, in number of

integers.

4.5 Convergence criteria

(This is the same as for socp.m.)

socp computes an interval in which the optimal value has been located. The upper

bound is the primal objective p = fTx evaluated at the primal feasible solution stored in x;

the lower bound is the dual objective d = �
PL
i=1

�
bTi zi + diwi

�
evaluated at the dual feasible

solution stored in z.

The length of this interval (p � d) is called the duality gap associated with x and z

(see [LVBL97]).

The program exits normally under �ve possible conditions:

� The maximum number of iterations is exceeded.

13

� The absolute tolerance is reached:

p� d � abs tol:

� The relative tolerance is reached. The primal objective p and the dual objective d are

both positive and
p� d

d
� rel tol;

or the primal and dual objective are both negative and

p� d

�p
� rel tol:

� The target value is reached. rel tol is negative and the primal objective p is less than

target.

� The target value is unachievable. rel tol is negative and the dual objective d is greater

than target.

The target value stopping condition is useful for feasibility problems: socp stops when

it has either found a point with objective less than the given target, or has found a dual

point with objective value greater than target (which proves the optimal objective is greater

than target). The target value stopping condition is enabled by passing a negative relative

tolerance argument, e.g., rel tol = �1:0.

4.6 Caveats

� Little or no e�ort in parameter validation is made in these functions, so some surprises

are to be expected if they are used without care. The mex and m-�les include parameter

validation.

� For socp.c, the columns of A must be linearly independent. If this is not the case,

either the problem is not dual feasible (which means the primal is unbounded) or it

can be reduced to one with fewer variables. This reduction is done automatically in

the m-�les.

� If A is such that its size is close to square, some numerical di�culties may arise. In

this case you should consider using the dual problem as the primal.

� The big-M and phase 1 procedures are not implemented in C; a strictly feasible primal

and dual initial point must be provided.

� The optimization procedure uses strictly feasible primal and dual points, which means

that standard trick of adding equality constraints (writing Ax = b as the two vector

inequalities Ax � b � 0, b � Ax � 0) will not work. You have to explicitly eliminate

equality constraints.

14

4.7 Compiling

The source code for the function socp is in the �les socp.c and socp.h. It is written in

ansi-C with calls to LAPACK and BLAS.

LAPACK can be obtained via Netlib (http://www.netlib.org or anonymous ftp at

ftp.netlib.org). A set of optimized BLAS-routines should be supplied by your computer

vendor. A non-optimized version can also be obtained from Netlib.

You can also create a mex-�le for use in matlab4 by compiling socp mex.c using cmex,

and linking it with LAPACK and BLAS. The details of compiling the code vary with the

compiler used and other factors such as where various libraries are located. We have provided

a sample Make�le in the source directory. In order to compile the mex-interface, edit this

Make�le as indicated, and type make.

Executable mex-�les are provided for some platforms.

15

5 Example matlab �les

Most of the examples provided can be easily be understood by reading the initial comments

in the �les. We provide here some additional comments on some of the examples.

5.1 grasp

The �les grasp 1.m and grasp robust.m in the directory examples/grasp demonstrate

the grasping problem described in [LVBL97] (this paper includes a diagram of the problem

geometry). The solution is computed by calling the script grasp polyhedron.m. This is a

general script that can be used to treat other grasping problems.

� grasp polyhedron.m

grasp polyhedron.m is a script that transforms a robust grasping problem into an

SOCP. The objective is: �nd the maximum scaling factor K such that there is a grasp

that stabilizes all the force and torque pairs

F i
ext = KF i

a + Fb

T i
ext = KT i

a + Tb
i = 1; : : : ; m

Such a grasp will be stable for any force and torque in the convex hull of the F i
ext and

T i
ext (i.e., a polyhedron in R6).

grasp polyhedron.m uses as input the following variables, that must be pre-de�ned

(n is the number of contact points, and m is the number of vertices in the force/torque

polyhedron):

1. p (matrix, 3 by n): position relative to center of mass for each contact point.

2. u (matrix, 3 by n): direction of force for each contact point.

3. v (matrix, 3 by n): inward normal to the surface for each contact point.

4. Fa (matrix 3 by m): vertices of polyhedron, force component (relative to its center

Fb).

5. Ta (matrix, 3 by m): vertices of polyhedron, torque component (relative to its

center Tb).

6. fmax (scalar): upper bound on forces f.

The script writes its output in the following variables:

1. K (scalar): the maximum scaling factor for which there is a stable grasp.

2. f (vector, length n): the grasping forces in the corresponding to the max-K grasp,

for each contact point.

3. F (matrix, 3 by nm): the friction forces corresponding to the max-K grasp, for

each contact point, and for each external loading.

16

Note that the script uses temporary variables, which may overwrite variables in the

workspace with the same name.

� grasp 1.m

grasp 1.m is a script that de�nes the simple example described in [LVBL97], and calls

grasp polyhedron.m. The problem is solved for di�erent friction coe�cients �. For

each value of � we compute the maximum torque for which there is a stable grasp,

with upper bounds on the grasping forces. It produces the �gure shown in the paper.

� grasp robust.m

grasp robust.m is a script that demonstrates robust grasping, with the approximation

of a ball of possible forces by a polyhedron with m vertices. As m increases, the poly-

hedron converges to the ball (with probability one), and the results of the optimization

also converge.

5.2 matrix-frac

The script mf.m, in the directory examples/matrix-frac, demonstrates the matrix-fractional

programming problem described in [LVBL97].

A particularity of this problem is that the solution to the original problem is obtained

from the dual variable:

xp=zeros(p,1);

for i=1:p,

xp(i)=1/2*(z((i+1)*(n+1))-w(i+1));

end;

The script repeats random problems over a range of sizes, and several times for each size

to obtain statistical information on the performance of the optimization method.

5.3 lp

The script lp.m, in examples/lp, generates and solves random linear programs. It has the

following possibilities:

� Test a range of Nu; this can be controled by editing the line

Nu=[10 20 100];

� Test a range of problem sizes n; de�ned by the line

for n=20:20:100,

� For each value of Nu and n, repeat to obtain statistical measures, average and variance;

this is de�ned by the line

for k=1:11,.

17

6 Acknowledgments

Research supported in part by the Portuguese Government (under Praxis XXI), AFOSR

(under F49620-95-1-0318), NSF (under ECS-9222391 and EEC-9420565), and MURI (under

F49620-95-1-0525).

References

[LVBL97] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Second-order cone pro-

gramming: interior-point methods and engineering applications. Linear Algebra

and Appl., 1997. Submitted.

[VB96] L. Vandenberghe and S. Boyd. Semide�nite programming. SIAM Review,

38(1):49{95, March 1996.

18

