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Abstract

We consider the problem of minimizing a sum of non-convex func-
tions over a compact domain, subject to linear inequality and equality
constraints. We consider approximate solutions obtained by solving a
convexified problem, in which each function in the objective is replaced
by its convex envelope. We propose a randomized algorithm to solve
the convexified problem which finds an e-suboptimal solution to the
original problem. With probability 1, € is bounded by a term propor-
tional to the number of constraints in the problem. The bound does
not depend on the number of variables in the problem or the number
of terms in the objective. In contrast to previous related work, our
proof is constructive, self-contained, and gives a bound that is tight.

1 Problem and results
The problem. We consider the optimization problem

minimize  f(z) = Z?zl fi(xs)
subject to Az <b (P)
Gz = h,

with variable = (z1,...,2,) € RY, where 2; € R™, with Yowyni = N.
There are m; linear inequality constraints, so A € R™*¥ and my linear
equality constraints, so G € R™*"_ The optimal value of P is denoted p*.
The objective function terms are lower semi-continuous on their domains:



fi + S;i = R, where S; C R™ is a compact set. We say that a point z is
feasible (for P) if Az < b, Gx = h, and x; € S;, i = 1,...,n. We say that P
is feasible if there is at least one feasible point. In what follows, we assume
that P is feasible.

Linear inequality or equality constraints that pertain only to a single
block of variables z; can be expressed implicitly by modifying S;, so that
x; ¢ S; when the constraint is violated. Without loss of generality, we
assume that this transformation has been carried out, so that each of the
remaining linear equality or inequality constraints involves at least two blocks
of variables. This reduces the total number of constraints m = m; + mo; we
will see later why this is advantageous. Since each of the linear equality or
inequality constraints involves at least two blocks of variables, they are called
complicating constraints. Thus m represents the number of complicating
constraints, and can be interpreted as a measure of difficulty for the problem.

We make no assumptions about the convexity of the functions f; or the
convexity of their domains S;, so that in general the problem is hard to solve
(and even NP-hard to approximate [UB13]).

Convex envelope. For each f;, we let fz denote its convexr envelope. The
convex envelope ﬁ : conv(S;) — R is the largest closed convex function
majorized by f;, i.e., fi(x) > ﬁ(w) for all x [Roc97, Theorem 17.2]. In §5,
we give a number of examples in which we compute fl explicitly.

Nonconvexity of a function. Define the nonconvezity p(f) of a function
f:9 =R tobe

~

p(f) = sup(f(z) — f(x)),

where for convenience we define a function to be infinite outside of its domain
and interpret oo — oo as 0. Evidently p(f) > 0, and p(f) = 0 if and only if f
is convex and closed. The nonconvexity p is finite if f is bounded and lower
semi-continuous and S is compact and convex. For later use, we define py;
to be the ith largest of the nonconvexities p(f1),. .., p(fn)-

Convexified problem. Now, consider replacing each f; by fZ to form a
convex problem,
minimize  f(z) = S0, fi(z)) )
subject to Az <b (P)
Gz = h,
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with optimal value p. This problem is convex and is easy to solve, assuming
we can evaluate f and a subgradient (or derivative, if f is dlfferentlable)
Furthermore, P is feasible as long as P is feasible. Evidently p < p*; that is,
the optimal value of the convexified problem is a lower bound on the optimal
value of the original problem. We would like to know when a solution to P
approximately solves P.

Our main result is the following.

Theorem 1. There exists a solution & 0f75 such that

Since p* < f(2) and p < p*, Theorem 1 implies that

min(m,n)
PPEF@ <P Y
i=1
In other words, there is a solution of the convexified problem that is e-
suboptimal for the original problem, with ¢ = Z;n:”ll(m’n) p)- It is not true
(as we show in §2.1) that all solutions of the convexified problem are e-
suboptimal.

Theorem 1 shows that if the objective function terms are not too non-
convex, and the number of constraints is not too large, then the convexified
problem has a solution that is not too suboptimal for the original problem.
This theorem is similar to a number of results previously in the literature; for
example, it can be derived from the well-known Shapley-Folkman theorem
[Sta69]. A slightly looser version of this theorem may be obtained from the
bound on the duality gap given in [AET6].

Theorem 1 also implies a bound on the duality gap for problems with
separable objectives. Define the dual problem to P,

maximize inf, £(z,\) = (31, fi(z:) + AT(Az — b) + ' (Gz — h))
subject to A > 0,

~

(D)
with optimal value g*. The convexified problem P is the dual of D. Since
P is convex and feasible, with only linear constraints, strong duality holds
by Slater’s constraint qualification, and the maximum of the dual problem
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is attained, i.e., g* = p and inf, L(z, \*) = g* for some A* > 0 [BV04]. The
bound from Theorem 1 thus implies

Il’llIl mn

Z Pl

What is not clear in other related work is how to construct a feasible
solution that satisfies this bound. This observation leads us to the main
contribution of this paper.

Theorem 2. Let w € RY be a random variable with uniform distribution on
the unit sphere, and let (z*, \*) denote any primal-dual optimal pair for the
convexified problem P. Now consider the feasible convex problem
minimize w!x
subject to Ax = Ax*
Gr=h
f(@)+ XNTAz < f(z*) + N7 Az*.

Then with probability one, R has a unique solution T which satisfies the
inequality of Theorem 1,

(R)

min(m,n)
f(@)<p+ Z Pl
i=1
i.€., T is e-suboptimal for the orignal problem.

The problem R has a simple interpretation. Any feasible point x for
R is optimal for P, and the constraint f (x) < p is satisfied with equality.
In problem R we minimize a random linear function over the optimal set
of P. Theorem 2 tells us that this construction yields (almost surely) an
e-suboptimal solution of P.

We give a self-contained proof of both of these theorems in §6.2.

2 Discussion

2.1 Mathematical examples

In this section, the results of which we will not use in the sequel, we show
that the bound in Theorem 1 is tight, and that randomization is essential to
achieving the bound in Theorem 1.



The bound is tight. Consider the problem

minimize Y., g(z;) (1)
subject to > x; < B

with ¢ : [0,1] — R defined as

1 0<z<1
9(r) = 0 r=1

The convex envelope g : [0,1] — R of g is given by g(r) = 1 — =z, with
p(g) = 1. The convexified problem P corresponding to (1) is

minimize > | §(z;)
subject to > x; < B (2)
0<z.

Any  satisfying 0 <z < land ) ., 2; = B is optimal for the convexified
problem (2), with value p = n — B. If B < 1, then the optimal value of (1)
is p* = n. Since (1) has only one constraint, the bound from Theorem 1
applied to this problem gives

Letting B — 1, we see that the bound cannot be improved.

Find the extreme points. Not all solutions to the convexified problem
satisfy the bound from Theorem 1. As we show in §6, the value of the
convex envelope at the extreme points of the optimal set for the convexified
problem will be provably close to the value of the original function, whereas
the difference between these values on the interior of the optimal set may be
arbitrarily large.

For example, suppose n — 1 < B < n in the problem defined above. As
before, the optimal set for the convexified problem (2) is

M={z:> " ;,=B, z; >0, i=1,...,n}.

Consider £ € M with &; = B/n, i = 1,...,n, which is optimal for the
convexified problem (2). This & does not obey the bound in Theorem 1. With
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this Z, the left hand side of the inequality in Theorem 1is )., ¢(Z;) = n,
while the right hand side p + p(g) = n — B+ 1 < 2 is much smaller. On the
other hand, & € M defined by

. f1 i=1,....n—1
YT\ B-(m—-1) i=n ’

which is an extreme point of the optimal set for the convexified problem, is
optimal for the original problem as well. That is, , an extreme point of M,
obeys Theorem 1 with equality.

For an even simpler example, consider the following univariate problem
with no constraints. Let S = {0} U {1} with f(z) = 0 for x € S. Then
f:10,1] = {0}, so the optimal set for the convexified problem consists of
the entire interval [0,1]. But & = 1/2 € M is not feasible for the original
problem; its value according to the original objective is thus infinitely worse
than the value guaranteed by Theorem 1. On the other hand, x = 0 and
x = 1, the extreme points of the optimal set for the convexified problem, are

indeed optimal for the original problem.

3 Related work

Our proof is very closely related to the Shapley-Folkman theorem [Sta69],
which states, roughly, that the nonconvexity of the average of a number
of nonconvex sets decreases with the number of sets. In optimization, the
analogous statement is that optimizing the average of a number of functions
is not too different from optimizing the average of the convex envelopes of
those functions, and the difference decreases with the number of functions.
However, we note that using the Shapley-Folkman theorem directly, rather
than its optimization analogue, results in a bound that is slightly worse. For
example, the Shapley-Folkman theorem has previously been used by Aubin
and Ekeland in [AE76] to prove a bound on the duality gap. The bound they
present,
p* —d* <min(m + 1,n)pp,

is not tight; our bound is smaller by a factor of (m + 1)/m. The Shapley-
Folkman theorem has also been used by Bertsekas et al [BLNP83] to solve
a unit commitment problem in electrical power system scheduling, in which
case the terms in the objective are univariate. Many authors [LRO1, Ber82,



Ber99] have also studied convexifications of the constraints as well as of the
objective in separable problems.

The use of randomization to find approximate solutions to nonconvex
problems is widespread, and often startlingly successful [Mot95, GW95]. The
usual approach is to solve a convex problem to find an optimal probabil-
ity distribution over possible solutions; sampling from the distribution and
rounding yields the desired result. By contrast, our approach uses random-
ization only to explore the geometry of the optimal set [SB10]. We rely on the
insight that extremal points of the epigraph of the convex envelope are likely
to be closer in value to the original function, and use randomization simply to
reach these points. Randomization allows us to find “simplex-style” corner
points of the optimal set as solutions, rather than accepting interior points
of the set.

4 Constructing the convex envelope

In this section, we give a few examples illustrating how to construct the
convex envelope for a number of interesting functions and types of functions.

Sigmoidal functions. A continuous function f : [[,u] — R is defined to
be sigmoidal if it is either convex, concave, or convex for z < z € [, u]
and concave for x > z. For a sigmoidal function, the convex envelope is
particularly easy to calculate. We can write f of f piecewise as

fy={ ) o
= f(w)—i—%(x—w) w<r<u
for some appropriate w < z. If f is differentiable, then f’'(w) = %;

in general, W is a subgradient of f at w. The point w can easily be
found by bisection: if z > w, then the line from (z, f(z)) to (u, f(u)) crosses

the graph of f at x; if x < w, it crosses in the opposite direction.

Univariate functions. If the inflection points of the univariate function
are known, then the convex envelope may be calculated by iterating the
construction given above for the case of sigmoidal functions.



Analytically. Occasionally the convex envelope may be calculated analyt-
ically. For example, convex envelopes of multilinear functions on the unit
cube are polyhedral (piecewise linear), and can be calculated using an an-
alytical formula given in [Rik97]. A few examples of analytically tractable
convex envelopes are presented in Table 4. In the table, f :convS - R
is the convex envelope of f : S — R, and p(f) gives the nonconvexity of f.
We employ the following standard notation: card(x) denotes the cardinality
(number of nonzeros) of the vector z; the spectral norm (maximum singular
value) is written as ||M||, and its dual, the nuclear norm (sum of singular
values) is written as || M])..

Via differential equations. The convex envelope of a function can also
be written as the solution to a certain nonlinear partial differential equa-
tion [Obe07], and hence may be calculated numerically using the standard
machinery of numerical partial differential equations [Obe08].

Table 1: Examples of convex envelopes.

S f(z) f(x) p(f)
[0, 1] min(z, y) (r+y—1)4 1/2
[0, 1] Ty (z4+y—1)4 1/4
[0,1]" min(z) | (o1 2 — (n—1))y |
[0,1]" [Tz | Ol @ — (n—1)4 | (57"
[—1,1]" card(x) | ||1 n
{M e RF"™ . |M|| <1} | rank(M) | M. n
5 Examples

Resource allocation. An agent wishes to allocate resources to a collection
of projects ¢+ = 1,...,n. For example, the agent might be bidding on a
number of different auctions, or allocating human and capital resources to
a number of risky projects. There are m different resources to be allocated
to the projects, with each project i receiving a non-negative quantity x;; of
resource j. The probability that project i will succeed is modeled as f;(z;),
and its value to the agent, if the project is successful, is given by v;. The
agent has access to a quantity ¢; of resource j, j = 1,...,m. An allocation



is feasible if Y " | z;; < ¢;, j = 1,...,m. The agent seeks to maximize the
expected value of the successful projects by solving

maximize Y . v;f;(z;)
subject to > xi; <c¢j, j=1,....,m
z > 0.

To conform to our notation in the rest of this paper, we write this as a
minimization problem,

minimize Y . —v; fi(x;)
subject to > 1w <c¢j, j=1,....,m
x> 0.

Here, there are m complicating constraint connecting the variables. Hence
the bound from Theorem 1 guarantees that |[p — p*| < Zin:”f(m’") pr- If
pi : R — [0,1] is a probability, then p(—v;p;) < v;. For example, if there is
only one resource (m = 1), the bound tells us that we can find a solution x
by solving the convex problem R whose value differs from the true optimum

p* by no more than max; v;, regardless of the number of projects n.

Flow and admission control. A set of flows pass through a network
over given paths of links or edges; the goal is to maximize the total utility
while respecting the capacity of the links. Let x; denote the level of each
flow i = 1,...,n and u;(z;) the utility derived from that flow. Each link j,

J = 1,...,m, is shared by the flows i € S;, and can accomodate up to a
total of ¢; units of flow. The flow routes are defined by a matrix A € R™*"
mapping flows onto links, with entries aj, i =1,...,n, j =1,...,m. When

flows are not split, i.e., they follow simple paths, we have a;; = 1 when flow
¢ pass over link j, and a;; = 0 otherwise. But it is also possible to split a
flow across multiple edges, in which case the entries a;; can take other values.
The goal is to maximize the total utility of the flows, subject to the resource
constraint,

maximize Y . w;(x;)

subject to Az < ¢ (3)

z > 0.

The utility function is often modelled by a bounded function, such as
a sigmoidal function [UB13, FC05]. As an extreme case, we can consider



utilities of the form
() = 0 r <1
S I |

Thus each flow has value 1 when its level is at least 1, and no value other-
wise. In this case, the problem is to determine choose the subset of flows,
of maximum cardinality, that the network can handle. (This problem is also
called admission control, since we are deciding which flows to admit to the

network.)
We can replace this problem with an equivalent minimization problem to
facilitate the use of Theorem 1. Let f;j(x) = —u;(z). Then we minimize the

negative utility of the flows by solving

minimize > w;(x;)
subject to Az <c¢
x> 0.

Suppose f; is bounded for every i, so that max; p(f;) < R. Then the bound
from Theorem 1 guarantees that we can quickly find a solution p* —p < mR.
In a situation with many flows but only a modest number of links, the solution
given by solving R may be very close to optimal.

6 Proofs

In this section, we suppose without loss of generality that the problem has
only inequality constraints; the mathematical argument with equality con-
straints is exactly the same. We let A = [A;---A,] with A; € R™™ so
Az =", Ajx;. As before, N =>""  n;.

6.1 Definitions

First, we review some basic definitions from convex analysis (see [Roc97,
LRO1] for more details). The epigraph of a function f is the set of points
lying above the graph of f,

epi(f) = {(z,1) : t > f()}.

The convex hull of a set C'is the set of points that can be written as a convex
combination of other points in the set,

conv S = {Z] gjl'j : 0]' Z 0, Z; € S, Z]- 9]' = 1}
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An extreme point of a set is a point that cannot be written as a convex
combination of other points in the set. A face of a set is a set of points
optimizing a linear functional over that set. It is easy to see that a zero-
dimensional face of a set is an extreme point, and that any extreme point
defines a zero-dimensional face of a set [Roc97].

6.2 Main lemmas

Our analysis relies on two main lemmas. Lemma 1 tells us that at the extreme
points of a face of epi( f), the values of f and f are the same. Lemma
2 tells us that (with probability 1) we can find a point that is extreme in
epi( fl) for most ¢, and feasible, by solving a randomized convex program. We
then combine these two lemmas to prove Theorem 2 and, as a consequence,
Theorem 1.

We use two other technical lemmas as ingredients in the proofs of the two
main lemmas. Lemma 3 gives conditions under which the convex hull of the
epigraph of a function is closed, and Corollary 1 states that the maximum
of a random linear functional over a compact set is unique with probability
1. Their statements and proofs can be found in appendix B and appendix A
respectively.

We begin by finding a set of points where f and f agree.

Lemma 1. Let S C R" be a compact set, and let [ : S — R be lower
semi-continuous on S, with convex envelope f : conv.S — R. Let c € R"
be a given vector. If x is extreme in argmin(f(z) + c'x), then v € S and

f(x) = f(x).
Proof. The vector ¢ defines a face {(y, f) |y e argmiAn(f(m) +cfx)} of

~

epi(f). If z is extreme in argmin(f(x) + ¢’'z), then (x, f(x)) is extreme in

~

epi(f) [Roc97, p. 163]. But

~

epi(f) = cl(conv(epi(f))) = conv(epi(f)),

where the first equality follows from the definition of the convex envelope,
and the second from the requirement that f be lower semi-continuous, and
that S is compact, using Lemma 3. Thus every extreme point of epi( f )is a
point in epi(f) [Roc97, cor. 18.3.1]. So (z, flx)) e epi(f), and hence x € S

and f(x) > f(z). But f is the convex envelope of f, so f(z) < f(x). Thus
f(x) = f(x). O
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Now we show that a solution to a randomized convex program finds a
point that is extreme for most subvectors x; of z.

Lemma 2. Let M; € R", i = 1,...,n, be given convex sets, and let A €
R™N with N = >""  n;. Choose w € RY uniformly at random on the unit
sphere. Let x* be a solution to the convex program

minimize wlx
subject to Ax =1 (4)

Q?z‘EMi, Z:L,Tl

Then almost surely, the solution x* is unique, and for all but m indices i, x7
is an extreme point of M.

To prove the main theorems of this paper, we’ll use an optimal Lagrange
multiplier vector A* to define M. We will pick M = [], M;, where

M; = argmin(f;(z;) + \*" Ax).

Then A\* defines a face of epi( fl) for + = 1,...,n, which allows us to use
Lemma 1. This choice also makes it easy to solve Problem (4). For example,
if each f; is univariate, M; is simply an interval, so Problem (4) is a linear
program.

Proof. By Corollary 1, the maximum of a random linear functional over a
compact set is unique with probability 1. Hence we may suppose Problem (4)
has a unique solution, which we call =, with probability 1. Let B(x) be the
intersection of an open ball around x with the set of supporting hyperplanes
to M at z. Equivalently, B(x) is a d-dimesional open ball around x contained
in M, of maximal dimension d. If z is on the boundary of M, the dimension
of B will be the dimension of the lowest-dimensional face of M containing z,
and d < N.

Now, every y € B(xz)Nnullspace(A) is feasible for Problem (4). The ran-
dom vector w must be orthogonal to y—x for every y € B(z)Nnullspace(A),
for otherwise the solution to Problem (4) could not occur at the center z of
a feasible ball, but would have to occur on the boundary. On the other
hand, if w is orthogonal to this feasible subspace, then any point y € B(z) N
nullspace(A) is a solution to Problem (4). But the solution z is unique, so
it must be that S(z) N nullspace(A) = (). Recalling a few simple identities

12



from linear algebra, we see that dim(range(A)) + dim(nullspace(A)) = N
and dim(B(z)) + dim(nullspace(A) < N, so dim(B(z)) < m.

Furthermore, the dimension of B(x) bounds the number of subvectors z;,
of x that are not extreme in M. If z; is not extreme, it lies on a face of M,
with dimension at least 1, so B(x) contains a vector y; that differs from x
only on the [th coordinate block. This is true for any subvector of x that is
not extreme. For [ # I', y; — x is orthogonal to yy — z, so dim(B(z)) is at
least as large as the number of subvectors that are not extreme. But we have
already bounded dim(B(x)) < m, and so can similarly bound the number of
subvectors that are not extreme.

Thus almost surely, the solution to Problem (4) is unique, and no more
than m subvectors z; of the solution x are not at extreme points. ]

6.3 Main theorems

We are now ready to prove the main theorems, using the previous lemmas.

Proof of Theorem 2. Suppose (z*, A*) form an optimal primal-dual pair for
P. Any such pair satisfies the KKT conditions:

1. The point x* minimizes the Lagrangian at \*.

o € argmin(30, fi(zy) + M (Az —b)).

2. Primal feasibility. Az* <b.
3. Dual feasibility. \* > 0.
4. Complementary slackness. \f(Ax* —b); = 0.

Any other x satisfying the same conditions is also a solution to P.
Define M = argmin L(z, \*), i.e.,

M = argmin(3", fi(z;) + T (Az —b)).
The set M is bounded, since the domain S; of f; (and hence conv S;, the

domain of ﬁ) is bounded, i = 1,...,n. Furthermore, the function defining
the set M is separable. Hence M = M; X --- x M,,, where

M; = argmin(fi(z;) + N7 A;z;).

T

13



In other words, each M; is a face of epi( f ) with normal vector AT\*. Note
that M; is convex, since it is a sublevel set of the convex function ﬁ(xl) +
N1 A;x;, and it is bounded, since M is bounded.

Then using the KKT conditions, we see x is optimal for Pifz e M,
Az < b, and A\J(Ax —b); = 0. Writing these conditions in terms of the
previous primal solution z*, we see x is optimal for Pifx; € M, i=1,...,n,
and Ax = Az*. (Here, the condition z; € M;, i = 1,...,m, guarantees that
x minimizes the Lagrangian, while Az* = Az guarantees that x preserves
primal feasibility and complementary slackness.) We can find a random &
satisfying these conditions by solving Problem R.

By Lemma 2, the solution Z; to Problem R lies at an extreme point of
M; for all but (at most) m of the coordinate blocks i (with probability 1).
By Lemma 1, extreme points x; of the face M; satisfy f;(x;) = ﬁ(xz), SO
fi(#:) > fi(#) for no more than m of the coordinate blocks i. On those
blocks i where #; is not extreme, it is still true that f;(&;) — fi(2:) < p(f;).
Hence

n min(m,n)

0< Zfz(i‘z) —p' = Z(fz(fz) — fi(#:) < Z p(fi)-

i=1 i=1
[l

Proof of Theorem 1. Since a point satisfying the bound in Theorem 1 can
be found almost surely by minimizing a random linear function over M, it
follows that such a point exists. O

7 Numerical experiments

We now present a numerical experiment to demonstrate the utility of finding
an extreme point of the solution set of the convexified problem, rather than
an arbitrary solution.

Investment problem. Consider the following investment problem. Each
variable z; € R represents the allocation of capital to project . The proba-
bility that a project will fail is given by f(x;).

A sector of the economy j is given by the nonzero entries a;; in the matrix
A € R™", and the budget for projects in each sector is given by the vector
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b € R™. The constraint Az < b then prevents overexposure to any given
sector.

The problem of minimizing the expected number of failed projects subject
to these constraints can be written as

minimize 2?11 f(z;)
subject to Ax <b (5)
0<uz.

The results of our numerical experiments are presented in Table 2. We

let
1 0<z<l1

ro={g 05

Random instances of the investment problem are generated with n = 50,
m = 10. Random sector constraints are generated by choosing entries of A
to be 0 or 1 uniformly at random with probability 1/2, and let b = 1/2A1,
where 1 is the vector of all ones, in order to ensure the constraints are binding.
In the table, z is the solution to

minimize Z?:l f ()
subject to Az <b (6)
0<z

returned by an interior point solver, whereas 7 is the minimizer of a random
linear functional over the solution set of (6). Improvement is calculated as
% Solving the random LP usually gives a substantial improvement in
the value of the solution of the convexified problem according to the original
objective. The observed difference between f(Z) and p* is always substan-

tially smaller than the theoretical bound of mp(f) = 10.
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Table 2: Investment problem.
f@) | f(@) | p* D % improved
43.01 | 23.01 | 22.00 | 20.25 | 0.95
29.02 | 26.00 | 22.00 | 20.36 | 0.43
30.09 | 24.00 | 21.00 | 19.92 | 0.67
26.32 | 25.00 | 22.00 | 20.27 | 0.31
24.68 | 24.00 | 22.00 | 20.33 | 0.25
26.01 | 25.00 | 21.00 | 19.26 | 0.20
26.46 | 24.00 | 20.00 | 19.40 | 0.38
28.24 | 25.00 | 23.00 | 20.65 | 0.62
29.04 | 24.00 | 21.00 | 20.21 | 0.63
27.01 | 23.01 | 21.00 | 19.70 | 0.67

A Well-posedness

The following theorem, which may be of interest in its own right, character-
izes the set of vectors in the dual space for which linear optimization over a
compact set S is well-posed. !

Theorem 3 (Well-posedness of linear optimization). Suppose S is a compact
set in R". Then the set of w € R" for which the mazimizer of w'z over S
is mot unique has (Lebesgue) measure zero.

Before proceeding to a proof, we make some remarks to show why the
theorem is intuitive, and why the proof is not trivial. By definition, the
maximizer of a linear functional over a set S is a face R of S. The maximizer
is unique if and only if R is a zero-dimensional face (i.e., an extreme point).
Only an outward normal to a face will be maximized on that face.

It is easy to see that the theorem is true for polyhedral sets S. For each
face of the polyhedron that is not extreme, the set of vectors maximized by
that face (the set of outward normals to the face, i.e., the normal cone) will
have dimension smaller than n. A polyhedron has only a bounded number
of faces, so the union of these sets still has measure zero.

On the opposite extreme, consider the unit sphere. A sphere has an
infinite number of faces. But every face is extreme, and every vector w has

!The authors are indebted to Jon Borwein for his unflagging help on the proof of this
theorem, and to Julian Revalski for his insightful comments on the connection of this
theorem to other related work.
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a unique maximizer.

The difficulty comes when we consider cylindrical sets: those constructed
as the Cartesian product of a sphere and a cube. Here, every outward nor-
mal to the “sides” of the cylinder is a vector whose maximum over the set
is not extreme. That is, we find an uncountably infinite number of faces
(parametrized by the boundary of the sphere) that are not extreme points.

Proof. Let Is : R" — R be the indicator function of S. S is compact, so the
convex conjugate I5(y) = sup, y’z — Is(x) of Ig is finite for every y € R™.
Rachemacher’s Theorem [BV10, Theorem 2.5.1] states that a convex function
g : R" — R is differentiable almost everywhere with respect to Lebesgue
measure on R". Furthermore, if I} is differentiable at y with VI(y) = =,
then yTx — Is(r) attains a strong maximum at x [BV10, Theorem 5.2.3];
that is, there is a unique maximizer of y’z over S. O

Clearly, the statement also holds for the minimizers, rather than maxi-
mizers, of wlx.

The following corollary will be used in the proof of the main theorem of
this paper.

Corollary 1. Suppose S is a compact set in R", and w is a uniform random
variable on the unit sphere in R". Then with probability one, there is a
unique minimizer of w'x over S.

Proof. The property of having a unique minimizer exhibits a symmetry along
radial lines: there is a unique minimizer of w’x over S if and only if there is
a unique minimizer of (w/||wl||2)"x over S. A uniform random vector on the
unit sphere may be generated by taking a uniform random vector on the unit
ball, and normalizing it to lie on the unit sphere. Since the set of directions
whose maximizers are not unique has Lebesgue measure zero, the vectors on
the unit sphere generated in this manner have maximizers that are unique
with probability 1. O

We give one last corollary, which may be of mathematical interest, but is
not used elsewhere in this paper.

Corollary 2. Suppose S is a compact set in R". The union of the normal
cones N(x) of all points x € S that are not extreme has measure zero.
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Proof. A point z minimizes y’x over S if and only if y € N(z). A point z
is the only minimizer of y’z over S if and only if = is exposed, and hence
extreme. Hence no y with a unique minimizer over S lies in the normal cone
of a point that is not extreme. Thus the union of the normal cones N(z) of
all points x € S that are not extreme is a subset of the vectors which do not
have a unique maximizer over S, and hence has measure zero. O
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B Closure

Lemma 3. Let S C R" be a compact set, and let f : S — R be lower
semi-continuous on S. Then conv(epi f) is closed.

Proof. Every point (x,t) € cl(conv(epif)) is a limit of points (z*,t*) in
conv(epi f). These points can be written as

n-+2

(", 8%) =Y N(af, bf)
i=1

with 720 = 1,0 < AP < 1, and (a¥, b)) € epi(f). Since [0,1] and S are
compact, we can find a subsequence along which each sequence af converges
to a limit a; € S, and each sequence A¥ converges to a limit \; € [0, 1].
Let P = {i : \; > 0}. Note that P is not empty, since Y177\ = 1
for every k. If [ € P, then because the limit ¢ exists, lim sup, b¥ is bounded
above. Recall that a lower semi-continuous function is bounded below on a
compact domain, so b¥ is also bounded below. This shows that for i € P,
every subsequence of b¥ has a subsequence that converges to a limit b;. In
particular, we can pick a subsequence k; such that simultaneously, for i =
1,...,n+2, afj , bfj, and /\fj converge along the subsequence k; to a;, b;, and
i, respectively.
Define Sp = >, p Aib;. Then along the subsequence k;, lim;_, Zi¢P )\fj bfj =
t — Sp also exists. Since f is bounded below, b} are all bounded below, and
for i ¢ P, \¥ — 0, sot— Sp > 0. Therefore (z,t) can be written as
ZieP /\i(ai, bz) + (O,t - Sp)
Recall that a function is lower semi-continuous if and only if its epigraph
is closed. Hence (a;, b;) € epi f for i € P. Without loss of generality, suppose
1 € P, and note that (ay,b; +t — Sp) € epi f, since t — Sp is non-negative.
Armed with these facts, we see we can write (z, t) as a convex combination
of points in epi f,

(Z)’J,t) = )\1(G17b1 + t— Sp) —+ Z )\Z‘(CLZ', bz)
1€S5,i#1

Thus every (z,t) € cl(conv(epi f)) can be written as a convex combination
of points in epi f, so conv(epi f) is closed. ]

Corollary 3. Let S C R"™ be a compact set, and let f : S — R be lower

A

semi-continuous on S. Then epi(f) = cl(conv(epi f)) = conv(epi f).
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