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were introduced by Safonov, Goh, Mesbahi, and others asa uni�ed description of a wide variety of control problems[GLTS94, SGL94, MPS95].We will consider the following BMI optimization prob-lem: minimize f(x; y) = cTx+ dT ysubject to F (x; y) � 0A(y) = A0 + myXj=1 yjAj � 0�li � xi � ui; i = 1; : : : ;mx; (2)where the variables are x and y. Ai = ATi 2 Rp�p, i =1; : : : ;my. The set fy j A(y) � 0g � Y is assumed to bebounded.Note that it has been shown that the BMI problem isNP-hard, see [TO95]. Existing BMI methods are eitherlocal methods that alternate between optimization overy and over x (see also [EB94]), or global (branch-and-bound type) methods [GSP94, GSL95]. In the branchand bound method, lower bounds can be found by re-laxing the BMI to an LMI by substituting the bilinearterms xiyj with new variables wij, and adding bounds onwij. This method has two drawbacks. First the LMI to besolved for the lower bound grows exponentially in size withthe number of variables, and second the relaxation is onlytight for very small rectangular bounds. For some speci�cclasses of BMI problems, for example the low-order con-troller design problem, heuristic specialized methods withlocal convergence have been developed [BG96].The method presented in this paper uses a techniquecalled generalized Benders decomposition [Ben62, Geo72].It can be interpreted as an extension of the GOP algo-rithm of Visweswaran and Floudas[FV93, VFIP96], which



is a global optimization method for bilinear and biconvexoptimization problems.The outline of the paper is as follows. In the next sec-tion we present the duality theory, which provides com-putable upper and lower bounds. for the BMI optimiza-tion problem. In the following section the generalized Ben-der's decomposition is presented. In section 4 we show theuse and e�ectiveness of the algorithm on two simple con-trol problems. We conclude in section 5.2 Duality theoryIn this section we show how to compute upper and lowerbounds for (2), based on Lagrange duality. We de�ne thesetRx = fx j �li � xi � ui; i = 1; : : : ;mxg � Rmx : (3)Since Y and Rx are bounded and closed, and f(x; y) islinear it follows that there exists an optimum. We willdenote this by f�.We will assume that all y 2 Y are feasible. By introduc-ing a slack variable t � 0, we can transform the possiblyinfeasible problem (2) tominimize cTx+ dTy + �tsubject to F (x; y) + tI � 0;A(y) � 0�li � xi � ui; i = 1; : : : ;mx;0 � t �M; (4)where �;M are �xed. M should be chosen such that for ally 2 Y it is possible to �nd x; t implying F (x; y) + tI � 0.� should be chosen in a way that �t does not change theglobal minimum. By including t in the x variables we geta problem of the form (2). We can therefore assume thatF (x; y) � 0 is feasible for all y 2 Y.2.1 Upper boundIf we �x y = ŷ 2 Y in (2) we obtain a semide�nite pro-gramming (SDP) problemminimize cTx+ dT ŷsubject to F (x; ŷ) � 0;�li � xi � ui; i = 1; : : : ;mx; (5)We know that the problem is feasible. We will denote theoptimum by f(ŷ), and the optimal x by x̂. Since we haverestricted the variable y in the BMI problem to y = ŷ, wecall (5) the restricted problem.Solving the SP (5) yields an upper bound on the optimalvalue of (2): f(y) � f� for all y 2 Y. Solving the BMIproblem (2) is equivalent to minimizing the (non-convex)function f over Y.

2.2 Lower boundWe introduce Lagrange variables Z = ZT � 0, � � 0,� � 0 associated with (5). For future use we will introducethe Lagrangian:L(x; y; Z; �; �)= cTx+ dTy �TrZF (x; y)+�T (�l � x) + �T (�u+ x)= dT y � TrZ0@F0 + myXj=1 yjGj1A � �T l � �Tu+ mXi=1 xi0@ci � TrZFi � myXj=1 yjTrZHij � �i + �i1A :This Lagrangian can be used to provide lower boundsvalid over Y. First observe that for all Z; �; �,F (x; y) � 0x 2 Rx �=) cTx+ dTy � L(x; y; Z; �; �);and therefore, for all y 2 Y,f(y) � infx2Rx L(x; y; Z; �; �)= dT y � TrZ0@F0 + myXj=1 yjGj1A � �T l � �Tu+ infx2Rx mXi=1 xi0@ci �TrZFi � myXj=1 yjTrZHij � �i + �i1A= dT y � TrZ0@F0 + myXj=1 yjGj1A � �T l � �Tu+ mxXi=1 infli�xi�ui xi0@ci �TrZFi � myXj=1 yjTrZHij � �i + �i1A :(6)De�negi(y) �= ci � TrZFi � myXj=1 yjTrZHij � �i + �i:The in�mum of L(x; y; Z; �; �) over x 2 Rx can be foundby computing infli�xi�ui xig(y) separately. For gi(y) > 0the optimalxi is to choose li, and for gi(y) < 0 the optimalxi is ui. For g(y) = 0 any choice will do. By introducinga sign variable si we can write the in�mum in closed forminfxi xigi(y) =(ui + li)� si(ui � li)2 gi(y)for sigi(y) � 0; si 2 f�1; 1g : (7)Choosing a speci�c si for all i = 1 : : :mx the combina-tion of halfspaces fy j sigi(y) � 0g de�nes a polyhedron



in Rmy . On this polyhedron we can provide the followinglower bound from (6):f(y) � dTy � TrZ0@F0 + myXj=1 yjGj1A � �T l � �Tu+ mxXi=1 (ui + li)� si(ui � li)2 gi(y);for sigi(y) � 0; i = 1; : : : ;mx : (8)Considering all the possible sign vectors s, which corre-sponds to all the corners in Rx, the right hand side of (8)de�nes a set of lower bounding functions (linear in y) thatcompletely covers Y. Combining these lower boundingfunctions we get piecewise linear, concave and continousfunction lying as a pyramid under f(y). Therefore, to ob-tain a lower bound on f�, we need to examine all 2mxvectors s 2 Rmx with si 2 f�1;+1g, by solving the 2mxSDPsminimize dTy � TrZ (F0 + myXj=1 yj Gj)� �T l � �Tu+ mxXi=1 (ui + li)� si(ui � li)2 gi(y)subject to A(y) � 0sigi(y) � 0; i = 1; : : : ;mxin the variable y. We call this problem for the regionproblem associated with the sign vector s, and denote theoptimal solution by ��s. We then havef� � mins ��s:The lower bound (8) is valid for any choice of Z � 0,�; � � 0. In the next section we discuss a special choicewhich follows from the dual of the SDP (5).2.3 Star-shaped partitionThe dual problem of (5) follows from the LagrangianL(x; ŷ; Z; �; �), and is an SDPmaximize L(0; ŷ; Z; �; �)subject to @@xL(x; ŷ; Z; �; �) = 0Z � 0; � � 0; � � 0 (9)with variables Z = ZT 2 Rn�n, �; � 2 Rm, or, moreexplicitly,maximize dT ŷ � TrZ �F0 +Pmyj=1 ŷjGj� � �T l � �Tusubject to ci �TrZFi �Pmyj=1 ŷjTrZHij � �i + �i = 0Z � 0; � � 0; � � 0: (10)

This dual SDP is always strictly feasible and therefore itsoptimal value is equal to f(y), i.e., the optimal value of (5)(see [VB96]).We denote the primal optimal solution of (5) by x̂, andthe dual optimal solution of (10) by Ẑ, �̂, �̂. Due to theequality in (10) and the zero duality gap the objective ofthe dual problem equals f(ŷ), i.e.f(ŷ) = dT ŷ � TrZ0@F0 + myXj=1 ŷjGj1A � �T l � �Tu:If we choose Z = Ẑ, � = �̂, � = �̂ in the lower bound (8),then the expression simpli�es tof(y) � f(ŷ)+ mxXi=1 (ui + li) � si(ui � li)2 gi(y); (11)wheregi(y) = ci � TrẐFi � myXj=1 yjTrẐHij � �̂i + �̂i= � myXj=1(yj � ŷj)TrẐHij: (12)The last equality follows by subtracting 0 = ci�TrẐFi�Pmyj=1 ŷjTrẐHij � �̂i + �̂i.From this we conclude that Ẑ, �̂, �̂ de�ne a parti-tion with hyperplanes that pass through ŷ, and that thepiecewise-linear lower bound is equal to f(ŷ) at ŷ. We callthis a star-shaped partition.As a function of a sign vector we can characterize eachregion Qŷ(s) asQŷ(s) �= �y ���� sigi(y) � 0;i = 1; : : : ;m: � : (13)Each inequality sigi(y) � 0 de�nes a half space in Y withthe dividing hyperplane going through ŷ. Combining themx inequalities we get a star-shaped partition of Y.On each such region we get an a�ne lower boundhŷ(y; s) �= f(ŷ)� mXi=1 (ui + li) � si(ui � li)2 gi(y): (14)That is for a given s we havef(y) � hŷ(y; s); 8y 2 Qŷ(s):2.4 Re�nementsSuppose we know that f � f� � f , then the followingsimple SDP provides a lower bound on the variable ximinimize xisubject to cTx+ dT y � fcTx+ dT y � fA(y) � 0li � xi � ui; i = 1; : : : ;mx:



Similarly upper and lower bounds can be found for all xi,yj . Exploiting other features of the algorithm even tighterbounds can be obtained.The computation of the lower bounds requires that wesolve 2mx SDP problems. This number of SDP's can oftenbe reduced. For instance, if gi(y) is zero for all y then xihas no in
uence on the lower bound, and the number ofSDP's to be solved is cut down to the half.3 The algorithmThe algorithm presented here is an extension of the gen-eralized Benders decomposition procedure [Geo72], andis based on the more recent work developed in [FV93,VFIP96].The algorithm builds an approximation to f(y) over Yfrom below. At iteration k, we solve (5) and its dual (10)for some yk . We denote the optimal x by xk and theoptimal dual solutions by Zk, �k, �k. By solving (5) atyk we do not only obtain f(yk ), but also, as explainedabove, a set of the linear lower bounds (14) on a star-shaped partition (13). By taking the maximum of thislower bound and the lower bounds fromprevious iterationswe get a piecewise linear approximation to the function f .At the �rst iteration there is only one region, namelyP. In each iteration that follows, one region is selectedand further partitioned.Tree structureThe progress of the algorithm can be represented as atree where each node corresponds to a region. All nodesin the tree that are not leaves correspond to regions thathave been considered in a previous iteration. Associatedwith each such node is a vector yk and the primal and dualsolution to (5), (10). From these variables the star-shapedpartition of the region and the lower-bounding functioncan be reconstructed.The leaves of the tree correspond to the smallest re-gions in the current partition. Associated with each leafis the computed lower bound on that region. At the nextiteration the leaf with the lowest lower bound is selectedfor further partitioning. The solution y where the lowerbound is attained becomes the new yk. An upper boundis computed, and the star-shaped partition of that regionalong with lower bounding function are computed. Thecomputed optimal values and dual variables are saved foreach iteration.InheritanceTracing back in the tree it is possible to obtain additionalinformation from all the parents, i.e., all regions that con-tain the region represented by the current leaf node underexamination. Each parent supplies a lower bounding func-tion valid for all its children. This gives a list L of iteration

numbers from which a region and lower bound functioncan be inherited. For iteration l in the list L a uniquesign vector sl exists such yk 2 Qyl(sl). The polyhedronQyl(sl) and the associated lower function hyl(y; sl) pro-vides additional information to the lower bounding func-tions computed around yk .Region problemsFor each region in the star-shaped partition around yk aset of lower bounding functions is available and by solvingthe next region problem, a new (and better) lower boundis computed.Let s be the sign vector associated with a given region,then the solution to the following region problem providesa lower bound for f(y) over that region:Min. �Ls.t. �L � hyk(y; s)y 2 Qyk(s)�L � hyl(y; sl)y 2 Qyl(sl) � l 2 Ly 2 Y: (15)Termination and progressThe lowest of the upper bounds among the nodes that arenot leaves in the tree provides an upper bound for thesolution to (2) and the lowest of the lower bounds amongthe leaves provides a lower bound for the problem (2).When the di�erence between the upper and lower boundare below a prespeci�ed value � the optimal solution ispicked out, and the algorithm is terminated. The regionto be split next is the leaf with the lowest lower bound.4 Simple control problemThe algorithm presented in last section has been imple-mented in Matlab. The SDP problems are solved by useof the package sp [VB94]. In this section we will show theresult of the algorithm on simple control problem. Theseproblems could have been solved as a generalized eigen-value problem, but their simplicity allows us to �nd theglobal optimum using other methods. By doing this wecan show that the algorithm does indeed �nd a global op-timum.Consider the following plant� _xy� = �A BuCy 0 � �xu�where x 2 Rn; x 2 Rnu,and y 2 Rny . We are looking forcontrollers of the form:� u_xc� = �Dc CcBc Ac�| {z }K � yxc�



where K 2 R(nu+n)�(n+ny). The closed-loop can then bewritten as� _x_xc� = ��A 00 0�+ �Bu 00 Inc�K �Cy 00 Inc��| {z }Acl(K) � xxc� :We now consider the control problem of maximizing thedecay rate �, which can be cast as:minimize ��subject to ATcl(K) ~P + ~PAcl(K) + 2� ~P � 0P � 1=�I; TrP = n�lk � Kij � uk; i = 1 � � � (nu + n)j = 1 � � � (ny + n)0 � � � � (16)where the variables are K, �, and the matrix ~P . � is asimple constant that de�nes how positive P should be.The inequality constraint TrP = n can be removed by asimple variable transformation. Here we will put K and� in the x-variables and the transformed variables of thesymmetric matrix ~P in y. Since the BMI in (16) is (ingeneral) not feasible for all P , we will need to add t asshowned in (4).Suppose we know that the optimal � is above �, we canadd the following constraintCT?y �ATP + PA+ 2�P �CT?Ty < 0where ? denotes the left annihilator, i.e., A? satis�esIm A = Ker A? and A? has full row rankP is the up-per left part of ~P of size n � n. This is in fact one ofthe LMI's known from the free order LMI formulation,see for instance [SIG93, BGFB94]. By introducing morevariables tighter bound can be added.The form of K above is only appropriate for low con-troller orders, because the number of variables required torepresent K grows with the square of nc.We consider two small examples, for which the optimumcan be determined by root-locus techniques or by griddingthe domain of one of the variables.Example 1. Consider the simple example:�A BuCy 0 � = 24 0 1 11 �1 01 1 0 35 : (17)We will look for a static controller �6 � K � �1. Byroot-locus methods it is easy to �nd the global optimum(with the lower bound on P replaced by P � 0): K = �5and � = �3. Since Acl(�5) � (�3)I is singular we can-not �nd a positive de�nite P s.t. the Lyapunov inequalityin (16) holds. We will choose � = 50, and we will get asuboptimal solution. The extra parameter t lies between0 and 100. It is weighted with � = 102. We know that theoptimum will be less than �2, so we set � = 2.We require the precision to be � = 10�2. The al-gorithm provides K = �4:7637 with closed loop poles

at �2:8818 � 0:4716j, where as the optimal value fromthe solver is 2:8775. The optimal Lyapunov matrix isP = �0:4187 0:78900:7890 1:5813�, which has the condition number98:99. The number of iteration is 36. Since x 2 R2 thenumber of region problems per iteration is 22. This meansthat 36(1 + 22) = 180 SDP problems have been solved.In �gure 1 the upper and lower bound available at eachiteration are shown.
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eFigure 1: The evolution of the upper and lower bound foreach iteration in the algorithm.Example 2. Consider the slightly more complex exam-ple: �A BuCy 0 � = 2664 0 1 0 11 �1 0 01 0 1 01 0 2 0 3775 : (18)we will search for a static controller between �1 and �10,that optimizes the decay rate between �:1 and 1:. Wetake � = 10. Root-locus methods show the optimum tobe between 1 and 1:1. Therefore we say � = 1, and wehave again 0 � t � 100 and � = 1e2The algorithm�ndsK = �9:4277 with closed loop polesat �7:31955;�1:0541� 0:5600j. The optimal Lyapunovmatrix is P = 24 0:2164 �0:0411 0:5469�0:0411 0:1145 �0:19290:5469 �0:1929 2:6691 35 ;which has the condition number 28:0000. The number ofiterations was 24. Trying the same with � = 20 increasesthe number of iterations heavily. The di�erence is that inthis case the original BMI in (16) becomes infeasible forsome of the restricted problems.5 ConclusionIn this paper we have presented a global BMI algorithmthat extends a practically e�cient method for bilinear op-timization (the GOP method of [FV93]) to problems withmatrix inequalities. As an example we solved two very
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