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Abstract

We present a new algorithm for the global solution of
optimization problems involving bilinear matrix inequali-
ties (BMIs). The method is based on a technique known
in large-scale and global optimization as the generalized
Benders decomposition. It extends the GOP algorithm of
Visweswaran and Floudas for bilinear and biconvex pro-
gramming to problems with BMI constraints.

1 Problem statement

A bilinear matriz inequality (BMI) is an inequality of the
form

F(z,y) 2 Fo + szFz + Zijj
i=1 = 0

My Mg

—I-Z:Zyjl‘iHij > 0.

j=11i=1

The variables are £ € R™* and y € R™v. The matrices
Fi=Fr e RV i=1,... ,my, G; = G]T ERM" j =
1,...,my, and H;; = Hg;» ERY i =1,...,mgy,j=
1,...,my, are given data, and the inequality sign ">’ de-
notes positive semidefiniteness. For fixed y the BMI (1)
reduces to a linear matrix inequality (LMI) in the variable

x; for fixed x it reduces to an LMI in the variable y. BMIs
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were introduced by Safonov, Goh, Mesbahi, and others as
a unified description of a wide variety of control problems
[GLTS94, SGL94, MPS95].

We will consider the following BMI optimization prob-
lem:

minimize  f(z,y) = clz +dTy
subject to  F(x,y) >0
my 2
Aly) = Ao+ > _yiA; >0 2)
j=1
_lz legula Zzla , Mg,

where the variables are = and y. 4; = AT € RP*? i =
1,...,my. The set {y | A(y) > 0} =V is assumed to be
bounded.

Note that it has been shown that the BMI problem 1s
NP-hard, see [TO95]. Existing BMI methods are either
local methods that alternate between optimization over
y and over z (see also [EB94]), or global (branch-and-
bound type) methods [GSP94, GSL95]. In the branch
and bound method, lower bounds can be found by re-
laxing the BMI to an LMI by substituting the bilinear
terms z;y; with new variables w;;, and adding bounds on
ws;. This method has two drawbacks. First the LMI to be
solved for the lower bound grows exponentially in size with
the number of variables, and second the relaxation is only
tight for very small rectangular bounds. For some specific
classes of BMI problems, for example the low-order con-
troller design problem, heuristic specialized methods with
local convergence have been developed [BG96].

The method presented in this paper uses a technique
called generalized Benders decomposition [Ben62, Geo72].
It can be interpreted as an extension of the GOP algo-

rithm of Visweswaran and Floudas[FV93, VFIP96], which



is a global optimization method for bilinear and biconvex
optimization problems.

The outline of the paper is as follows. In the next sec-
tion we present the duality theory, which provides com-
putable upper and lower bounds. for the BMI optimiza-
tion problem. In the following section the generalized Ben-
der’s decomposition is presented. In section 4 we show the
use and effectiveness of the algorithm on two simple con-
trol problems. We conclude in section 5.

2 Duality theory

In this section we show how to compute upper and lower
bounds for (2), based on Lagrange duality. We define the
set

Rx:{x|—ligxigui,i:l,...,mx}CRm”. (3)
Since Y and R” are bounded and closed, and f(z,y) is
linear it follows that there exists an optimum. We will
denote this by f*.

We will assume that all y € Y are feasible. By introduc-

ing a slack variable ¢ > 0, we can transform the possibly
infeasible problem (2) to

minimize ¢’z 4+ dTy + pt

subject to  F(z,y)+tI >0,
Afy) > 0 (4)
—li legul, i:l,... , Mg,
0<t< M,

where p, M are fixed. M should be chosen such that for all
y € Y it is possible to find z,¢ implying F'(z,y) +tI > 0.
p should be chosen in a way that pt does not change the
global minimum. By including ¢ in the = variables we get

a problem of the form (2). We can therefore assume that
F(x,y) > 0 is feasible for all y € Y.

2.1 Upper bound

If we fix y = § € Y in (2) we obtain a semidefinite pro-
gramming (SDP) problem

minimize Tz +d7y

subject to  F(z,y) > 0, (5)
—li legul, i:l,... , Mg,

We know that the problem is feasible. We will denote the

optimum by f(%), and the optimal # by Z. Since we have

restricted the variable y in the BMI problem to y = y, we

call (5) the restricted problem.

Solving the SP (5) yields an upper bound on the optimal
value of (2): f(y) > f* for all y € Y. Solving the BMI
problem (2) is equivalent to minimizing the (non-convex)
function f over Y.

2.2 Lower bound

We introduce Lagrange variables Z = Z7 > 0, u > 0,
v > 0 associated with (5). For future use we will introduce
the Lagrangian:

L(x,y, Z, p,v)
= do+d'y—TeZF(x,y)
(<l =) + v (—ut z)

= dfy—Txz F0+Zijj e
j=1

¢ —TrZF; — ZijI'ZHij —pitvi
j=1

—I—Zl‘i
i=1

This Lagrangian can be used to provide lower bounds
valid over Y. First observe that for all Z, i, v,

F(z,y) >0
xr €R"

= de+dy> L,y 2 pv),
and therefore, for all y € ),

fly) > inf L(z,y,2,p,v)

=dTy—TvZ | Fy —|—Zijj —uTl — vl

j=1
+ inf Z 2 | ¢ — TeZF; — Z v TeZHij — pii + v;
i=1 j=1
:dTy—TrZ F0+Zijj —ﬂTl—VTU
j=1

¢ —TrZF; — ZijI'ZHij —pi +vi
1= - - j=1

(6)

9i(v) 2 ¢ —TeZF, — Zyj’I‘I'ZHZ'j — pi + v
Jj=1

The infimum of L(z,y, Z, u,v) over & € R¥ can be found
by computing inf;, <, <u, ig(y) separately. For g;(y) > 0
the optimal ; is to choose I;, and for ¢i(y) < 0 the optimal
z; is u;. For g(y) = 0 any choice will do. By introducing
a sign variable s; we can write the infimum in closed form

(w + 1) — si(uy — 1)

inf z;9i(y) = i
inf zigi(y) 5 9:(y) )
for s;gi(y) > 0, s; € {—1,1}.
Choosing a specific s; for all ¢ = 1...m, the combina-

tion of halfspaces {y | s;¢i(y) > 0} defines a polyhedron



in R™¢. On this polyhedron we can provide the following
lower bound from (6):

fly) >dly—Tez Fo—i—Zijj e

e () — s (8)
py et ntztl, )

for s;gi(y) > 0,i=1,...,my

Considering all the possible sign vectors s, which corre-
sponds to all the corners in R”, the right hand side of (8)
defines a set of lower bounding functions (linear in y) that
completely covers Y. Combining these lower bounding
functions we get piecewise linear, concave and continous
function lying as a pyramid under f(y). Therefore, to ob-
tain a lower bound on f*, we need to examine all 2=
vectors s € R™* with s; € {—1,+1}, by solving the 2™«
SDPs

minimize dy — TeZ (Fy + Z y; G;) — prl—vTu
j=1

o4 (ug + 1) — si(ug — 1) '
+ZZ_; 5 gz(y)
subject to  A(y) >0
sigi(y) >0, i=1,... my

in the variable y. We call this problem for the region
problem associated with the sign vector s, and denote the
optimal solution by ¢%. We then have

f* > ming?.

The lower bound (8) is valid for any choice of Z > 0,
v > 0. In the next section we discuss a special choice

which follows from the dual of the SDP (5).

2.3 Star-shaped partition
The dual problem of (5) follows from the Lagrangian
L(x,y, 7, u,v), and is an SDP

maximize L(0,9, 7, u, v)

subject to %L(r,y,Z,u,y) =0 9)

Z220,p>0,v>0

with variables 7 = Z7 € R™" u,v € R™, or, more
explicitly,

maximize d’y— TrZ (Fo + Z;n:yl ijj) — Tl — 1Ty
subject to ¢; — TrZF; — Z;n:yl g TrZHy; —pi +v5 =0
Z>0,up>0,v>0.

(10)

This dual SDP 1s always strictly feasible and therefore its
optimal value is equal to f(y), i.e., the optimal value of (5)
(see [VB96]).

We denote the primal optimal solution of (5) by &, and
the dual optimal solution of (10) by Z, i, 0. Due to the
equality in (10) and the zero duality gap the objective of
the dual problem equals f(g), i.e.

J@) =d"y—Tez [ Fo+> ;G | —p"l—v"u.

j=1

If we choose Z = Z, u = i, v = I in the lower bound (8),
then the expression simplifies to

£6) > 119)
py o nleiz ), )

i=1

where

gi(y) = ¢i — Te/F; — ZijrZHij — i + v

= = (yj —9)TxZHy;.
j=1

The last equality follows by subtracting 0 = ¢; — TeZF;—
Z;n:yl yj'I‘I‘ZHZ'j — [ + U5

From this we conclude that Z, [, v define a parti-
tion with hyperplanes that pass through g, and that the
piecewise-linear lower bound is equal to f(§) at g. We call
this a star-shaped partition.

As a function of a sign vector we can characterize each
region Qy(s) as

Qy(s) 2 {y

Each inequality s;g;(y) > 0 defines a half space in Y with
the dividing hyperplane going through y. Combining the
m, inequalities we get a star-shaped partition of Y.

On each such region we get an affine lower bound

(13)

1=1,...,m.

si9i(y) 2 0, }

hyls) 2 () - Yo Lot =l 2 )

i=1

9i(y).  (14)

That is for a given s we have

f(y) > h@(y’ 5)’ Yy € QQ(S)

2.4 Refinements

Suppose we know that f < f* < f, then the following
simple SDP provides a lower bound on the variable z;
minimize  z;
subject to Tz +dTy
Tz+dly
Afy) >0
li legul, i:l,...

<f
>f

, My



Similarly upper and lower bounds can be found for all z;,
y;. Exploiting other features of the algorithm even tighter
bounds can be obtained.

The computation of the lower bounds requires that we
solve 2™+ SDP problems. This number of SDP’s can often
be reduced. For instance, if g;(y) is zero for all y then z;
has no influence on the lower bound, and the number of
SDP’s to be solved is cut down to the half.

3 The algorithm

The algorithm presented here is an extension of the gen-
eralized Benders decomposition procedure [Geo72], and
is based on the more recent work developed in [FV93,
VFIP96].

The algorithm builds an approximation to f(y) over Y
from below. At iteration k, we solve (5) and its dual (10)
for some y*. We denote the optimal # by x* and the
optimal dual solutions by Z*, u* v*. By solving (5) at
y" we do not only obtain f(y*), but also, as explained
above, a set of the linear lower bounds (14) on a star-
shaped partition (13). By taking the maximum of this
lower bound and the lower bounds from previous iterations
we get a piecewise linear approximation to the function f.

At the first iteration there is only one region, namely
P. In each iteration that follows, one region is selected
and further partitioned.

Tree structure

The progress of the algorithm can be represented as a
tree where each node corresponds to a region. All nodes
in the tree that are not leaves correspond to regions that
have been considered in a previous iteration. Associated
with each such node is a vector y* and the primal and dual
solution to (5), (10). From these variables the star-shaped
partition of the region and the lower-bounding function
can be reconstructed.

The leaves of the tree correspond to the smallest re-
gions in the current partition. Associated with each leaf
is the computed lower bound on that region. At the next
iteration the leaf with the lowest lower bound is selected
for further partitioning. The solution y where the lower
bound is attained becomes the new %*. An upper bound
is computed, and the star-shaped partition of that region
along with lower bounding function are computed. The
computed optimal values and dual variables are saved for
each iteration.

Inheritance

Tracing back in the tree it is possible to obtain additional
information from all the parents, i.e., all regions that con-
tain the region represented by the current leaf node under
examination. Each parent supplies a lower bounding func-
tion valid for all its children. This gives a list £ of iteration

numbers from which a region and lower bound function
can be inherited. For iteration ! in the list £ a unique
sign vector s' exists such y* € Qyz(sl). The polyhedron
Qyz(sl) and the associated lower function Ay (y, sty pro-
vides additional information to the lower bounding func-
tions computed around y*.

Region problems

For each region in the star-shaped partition around y* a
set of lower bounding functions is available and by solving
the next region problem, a new (and better) lower bound
is computed.

Let s be the sign vector associated with a given region,
then the solution to the following region problem provides
a lower bound for f(y) over that region:

Min. (f)L

st. ¢ > hyr(y,s)
(IS ka(S)
¢L Z hyl (ya Sl)
ye Qy’ (Sl)
yely.

}leﬁ

Termination and progress

The lowest of the upper bounds among the nodes that are
not leaves in the tree provides an upper bound for the
solution to (2) and the lowest of the lower bounds among
the leaves provides a lower bound for the problem (2).
When the difference between the upper and lower bound
are below a prespecified value ¢ the optimal solution 1is
picked out, and the algorithm is terminated. The region
to be split next is the leaf with the lowest lower bound.

4 Simple control problem

The algorithm presented in last section has been imple-
mented in Matlab. The SDP problems are solved by use
of the package sp [VB94]. In this section we will show the
result of the algorithm on simple control problem. These
problems could have been solved as a generalized eigen-
value problem, but their simplicity allows us to find the
global optimum using other methods. By doing this we
can show that the algorithm does indeed find a global op-
timum.
Consider the following plant

z| | A By |«

y|  |Cy 0] |u
where x € R",z € R"",and y € R"¥. We are looking for
controllers of the form:



where K € R+t x(?+7y) " The closed-loop can then be
written as

HE (R R s ]

Aq(K)

We now consider the control problem of maximizing the
decay rate a, which can be cast as:
minimize —a
AL(K)P 4+ PAg(K) +2aP <0
P>1/kl, TeP=n
-1 S[{” < ug, 1= 1(nu—|—n)
j=1-(ny+n)

subject to
(16)

0<a<w

where the variables are K, «, and the matrix P. kisa
simple constant that defines how positive P should be.
The inequality constraint TrP = n can be removed by a
simple variable transformation. Here we will put K and
a in the z-variables and the transformed variables of the
symmetric matrix P in y. Since the BMI in (16) is (in
general) not feasible for all P, we will need to add ¢ as
showned in (4).

Suppose we know that the optimal « is above «, we can
add the following constraint

Cyt (ATP+ PA+2aP) CJ+T <0

where 1+ denotes the left annihilator, i.e., A satisfies
Im A = Ker A+ and A' has full row rankP is the up-
per left part of P of size n x n. This is in fact one of
the LMI’s known from the free order LMI formulation,
see for instance [SIG93, BGFB94]. By introducing more
variables tighter bound can be added.

The form of K above is only appropriate for low con-
troller orders, because the number of variables required to
represent K grows with the square of n..

We consider two small examples, for which the optimum
can be determined by root-locus techniques or by gridding
the domain of one of the variables.

Ezample 1. Consider the simple example:

[A Bu (17)

0 1|1
&

We will look for a static controller —6 < K < —1. By
root-locus methods it is easy to find the global optimum
(with the lower bound on P replaced by P > 0): K = —5
and o = —3. Since A (—5) — (—3)I is singular we can-
not find a positive definite P s.t. the Lyapunov inequality
in (16) holds. We will choose x = 50, and we will get a
suboptimal solution. The extra parameter t lies between
0 and 100. It is weighted with p = 102. We know that the
optimum will be less than —2, so we set o = 2.

We require the precision to be ¢ = 10+%. The al-
gorithm provides K = —4.7637 with closed loop poles

at —2.8818 & 0.47165, where as the optimal value from
the solver is 2.8775. The optimal Lyapunov matrix is
p— [0.4187 0.7890

10.7890 1.5813
98.99. The number of iteration is 36. Since z € R? the
number of region problems per iteration is 2?. This means
that 36(1 + 2?) = 180 SDP problems have been solved.

In figure 1 the upper and lower bound available at each
iteration are shown.

], which has the condition number

Upperflower bound

Figure 1: The evolution of the upper and lower bound for
each iteration in the algorithm.

Ezrample 2. Consider the slightly more complex exam-
ple:

we will search for a static controller between —1 and —10,
that optimizes the decay rate between —.1 and 1.. We
take k = 10. Root-locus methods show the optimum to
be between 1 and 1.1. Therefore we say o« = 1, and we
have again 0 <¢ < 100 and p = le2

The algorithm finds K = —9.4277 with closed loop poles
at —7.31955, —1.0541 + 0.56005. The optimal Lyapunov
matrix is

0.2164 —0.0411 0.5469
P=-0.0411 0.1145 -0.1929|,
0.5469 —0.1929 2.6691

which has the condition number 28.0000. The number of
iterations was 24. Trying the same with x = 20 increases
the number of iterations heavily. The difference is that in
this case the original BMI in (16) becomes infeasible for
some of the restricted problems.

5 Conclusion

In this paper we have presented a global BMI algorithm
that extends a practically efficient method for bilinear op-
timization (the GOP method of [FV93]) to problems with
matrix inequalities. As an example we solved two very



small problems (which could have been solved more ef-
ficiently by other methods). However the algorithm is
very general, and as such the results seems very promis-
ing. More numerical experimentation will be necessary to
see if the same practical efficiencies achieved by GOP will
be achieved for bilinear matrix inequalities as well.
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