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1. Overview

The focus of this NSF-supported combined research
and curriculum development (CRCD) project is con-
ver optimization applied to engineering analysis and
design. The basic idea is that many analysis and de-
sign problems arising in engineering can be cast, or
recast, in the form of a convex optimization prob-
lem, i.e., minimizing a convex objective of some deci-
sion variable subject to some convex constraints on
the variable. Although such problems can appear
difficult—they may have hundreds of variables and a
nonlinear, nondifferentiabie objective function—they
can in fact be solved (numerically) very efficiently
by recently developed interior-point methods that ex-
ploit convexity and the particular problem structure.
Thus, the original engineering problem is effectively
solved.

Of course, not all problems arising in engineering are
convex and hence amenable to rapid numerical solu-
tion. But the number of problems that are convex
or can be transformed to a convex problem is vastly
larger than the number of problems that have an an-
alytical solution. And in cases where the engineer-
ing problem is not convex, convex approximations
can yield suboptimal solutions that are very useful
in practice (see, e.g., [2]). Quite generally, then, it is
a useful skill to recognize convexity in an engineering
problem and to know how to exploit it.

The basic program therefore involves two parts: ex-
pressing an engineering analysis or design problem
as a convex optimization problem, and developing
an interior-point algorithm that solves the resulting
problem very efficiently. When successful, this pro-
gram results in an efficient solution to an engineering
problem that might, at first glance, appear quite dif-
ficult, and in particular is very unlikely to have an
analytical solution.

Development of a convex programming-based solu-
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tion has important practical ramifications. An imple-
mentation of the algorithm can be used as the core
“computational engine” in a customized computer-
aided design or analysis tool for the engineering prob-
lem. If the user-interface for such a tool is designed
properly, the user can specify the problem entirely
in its original, engineering setting. The results are
also displayed in the form most natural for the origi-
nal problem. The translation from engineering prob-
lem to convex optimization problem, solution of the
resulting problem via an interior-point method, and
translation of the results back into the engineering
problem setting are transparent to the user of such a
tool. For more discussion of this topic see [3).

This program has been carried out successfully over
the last eight years, by many researchers, for some
problems arising in control engineering. As a very
partial list of work in this area, see the references
cited in the books (4, 5]. At least one commetcial
computer-aided design tool [6] as well as several aca-
demic/research tools [7, 8] have already been devel-
oped.

There are many other engineering appiication areas
in which the basic program sketched above has been
carried out, at least to some extent. In other areas,
convexity of some important problems has been noted
but, in our opinion, not yet fully exploited, To give an
idea of the breadth, we mention some applications ar-
eas with a sample citation for each. The formulation
of FIR filter design as an LP goes back to the six-
ties [9]; a related application is-antenna array weight
design [10]. VLSI transistor sizing/interconnect opti-
mization is considered in [11]. Image processing and
reconstruction via convex optimization is considered
in, e.g., [12). Convex optimization plays an important
roie in statistics in general (see e.g., [13]) and optimal
design of experiments [14] and design centering and
vield maximization [15, 16) in particular. For opti-
mal design of computer networks and routing in such




networks see [17]. Convexity of several problems in
communications has been noted (see, e.g., {18]). In
mechanical engineering the use of convex program-
ming, especially linear programming and monotone
variational inequalities, is well developed and has a
long history; see, e.g., {19, 20].

2. Convex Analysis and Optimization

In the area of convex optimization our program rests
on some very recent research. The mathematical
foundation, convex analysis, has been developed over
the past fifty vears or so by researchers such as
Fenchel and Rockefellar [21); a recent and complete
reference is [22). Convex analysis has been success-
fully used in several fields including economics, op-
erations research, and statistics, mostly for theoreti-
cal purposes such as concluding existence of a saddle
point, deriving optimality conditions or duality theo-
ries.

Nevertheless rapid development in the area of algo-
rithms for convez optimization is much more recent.
The most obvious landmarks are:

o the ellipsoid algorithm developed in the 1970s
and iater used to prove that linear programs can
be solved in polynomial time [23]

e Karamarkar’s 1984 linear programming al-
gorithm, which sparked intense research on
interior-point methods for linear and quadratic
programming {24] .

o Nesterov and Nemirovsky’s 1994 extension of
interior-point methods to virtually all con-
vex optimization problems arising in engineer-
ing [25]

3. Research Overview

The main questions addressed in the research compo-
nent are:

e What engineering problems can be cast as con-
vex optimization problems? How can one rec-
ognize such problems? What problems cannot
be cast as convex problems, and what partial
or approximate solutions can be obtained via
convex programming in this case?

o Which interior-point algorithms are best suited
to the problems arising from engineering?
What is the best way to exploit problem struc-
ture to gain efficiency? Are some algorithms
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better for use as a computational engine in a
CAD tool?

Let us describe one specific area that merits fur-
ther research. As mentioned above, interior-point
methods have recently been developed for the (of-
ten nonlinear) convex problems that arise in engineer-
ing [25, 8. For these algorithms the number of iter-
ations is small (typical numbers lie between 10 and
50) and grows very slowly with problem size. The
main computational effort of each iteration is the so-
lution of a large, dense. but often highly structured
least-squares problem. Exploiting this structure, via
conjugate-gradients and related techniques, seems to
be the key to an efficient implementation. We have
carried out this plan for a few specialized problems
arising in control engineering with success [26, 27].
By exploiting the underlying structure of the engi-
neering problem we were able to develop algorithms
that solve certain nonlinear nondifferentiable convex
optimization problems with more than 1000 variables
and tens of thousands of constraints in times on the
order of ten minutes on a small workstation [27]. We
envision this method being widely applied to convex
problems that arise in engineering.

4. Curriculum Development Overview

The curriculum development component involves the
creation and development of a compiete set of teach-
ing materials for a course entitled Conver Optimiza-
tion with Engineering Applications, which will be
given at Stanford starting Spring quarter 1995. The
course is aimed at senior undergraduates and first
year graduate students from all fields of engineer-
ing. We hope to expose students to the basics of con-
vex analysis and optimization, but more importantly
to concentrate on developing the background, expe-
rience, and skills required to recognize and exploit
convexity in engineering applications. A secondary
goal is to expose students to applications of convex
optimization in many areas of engineering.

We believe that such a course would be of enormous
value. While we know of other courses that cover re-
lated material, e.g., convex analysis and theory of op-
timization, monotone variational inequalities in theo-
retical mechanics, we believe that none has the same
emphasis and goals. Preliminary and informal discus-
sions with colleagues at other universities indicate a
great interest in adopting such a course once appro-
priate curriculum and teaching materials are avail-
able.

We hope that courses similar to the one we develop




are eventually adopted at most universities with an
advanced engineering program. Our ultimate goal is
that convex optimization and the recently developed
interior-point techniques for solving convex problems
should make their way into the mainstream of nu-
merical mathematics, and—our main point—into en-
gineering practice.
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