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A Robust Control Design for FIR Plants with
Parameter Set Uncertainty

MinG K. Lavu? STEPHEN Boyp®

Abstract This paper proposes a method of computing
the finite-horizon control inputs for FIR plants whose pa-
rameters are only known to lie in a set. The parameter
set is assumed to be described by an ellipsoidal bound,
which could be provided by some identification scheme
with a parameter set estimator. The finite-horizon con-
trol obtained minimizes the maximum LQR cost from all
plants with parameters in the given set. The computation
of this robust control 1s shown to be a convex optimiza-
tion problem, thus global minimization is guaranteed and
many efficient methods are available to compute the min-
imizing control. In addition, the method can also be used
to compute the control for the dual problem in which the
plant parameters are known but the initial states of the
plant are assumed to lie in a set.

1 Introduction

A problem of great interest in control theory is the design
of a controller which can guarantee some level of perfor-
mance in the presence of plant parameter uncertainty.
Kharitonov’s theorem provides a necessary and sufficient
analysis test for determining the robust stability of poly-
nomials with perturbed coefficients, however, there are
few results that exploit Kharitonov’s theorem for synthe-
sizing robust controllers, e.g., [4] and [10]. Another ap-
proach to this problem is to define a set of nominal values
of the uncertain parameters and consider deviations from
these nominal values. A comprehensive survey of the dif-
ferent parameter space methods, as opposed to frequency
domain methods, can be found in [13].

Motivated by recent work from [11], {12}, and [1], where
the identified plant parameters are described by ellip-
soidal sets, we pose the following problem: given that
the plant parameters are known to lie in an ellipsoid, find
the finite-horizon control which minimizes the maximum

LQR cost from all plants with parameters in-the given - -

set. At time k, this minimization produces the control
vector [u(k) u(k + 1) u(k + N)}, but only u(k) is
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applied. At time k + 1, a new minimization problem is
solved. This approach of control application is the same
as the generalized predictive control described in [5] and

2.

In this paper, we choose to work with finite impulse
response (FIR) models for the plant with the assumption
that they are accurate models provided they of sufficient
lengths. (In doing so, we have also assumed that the
plant is stable.) Our goals are to show that the above
mnimization problem is a convex optimization problem
and to design an algorithm to compute the minimizing
control. In order to solve the minimization problem, a
constrained maximization problem must also be solved.
The procedures of which are given in the Appendix. We
will also show that the same algorithm can be used to
compute the control for the duai problem in which the
plant parameters are known but the initial states of the
plant are assumed to lie in a set. The paper is organized as
follows, after stating the problem in the next section, we
will show convexity in section 3 and outline the algorithm.
The dual problem of uncertain initial states is considered
in section 4. A numerical example is given in section 5.
Some concluding remarks are given in section 6.

2 Problem Statement

We shall consider a discrete FIR plant

y(k)

bu(k -1)+ ...
8T $(k)

where y(k) and u(k) are the output and control of the
plant at time k, respectively, and

[ b &, b |7
[ uk-1) u(k-2)

+bpulk —m) (1)

b =
o(k)

The parameter vector of the plant, 8, is assumed to be in
a set,

T (2)

where I = IT > 0. Note that © describes an ellipsoid

ai

u(k — m) ]T

feOL{6:(6+6.)TT(B-6)<1)

in the parameter space with its center at #.. The matrix

T gwea the size snd. ofien unm-o{--thgaﬂ@omd i.e., the




teprmmedinr stnte 'pace

The pla.nt in (1) can a.lso

W, !nll solve the minimax problem of (6) by showing that

itis a convex optimisation problem. Note that since uTu
format, ‘is not & function of #, we have f
l -
2(k+1) = iﬂz(k) + bu(k) @) ' =argmin{Ji(u) + 2(w)]
wk) = f’(") {4)  where
where l Ji(w) = pulu 8
P o T —Jqfu) - = r;lgy v- -(9)
1 0 O 0 0
We can express y as o
A= 1 0 0| -0} y= U
: where
0 0 1 0 0 J
u(~1) u(-2) u(-m) ]
and u(0) u{—1) u(-m+1)
e=[h m ] =67 uv=| u(l) ' '
Thus, the states of the FIR plant are S :
| u(N-1) u(N-2) u(N —m) |

z(k) = [ u(k=1) u(k—-2) u(k—m) |7 = ¢(k)

Due to past disturbances, the states at some time kg are
displaced to ¢(ko) = ¢o # 0, s0 y(ko) # 0. Without loss
of generality, we let ko = 0. We now define the control
and output vectors

u

u(N) |7
wn) |7

[ uw(0) u(l) wu(2)
[ w(0) ¥(1) ¥(2)

([ .llg

y

and the quadratic cost function

A
JoE2puTu+yTy (5)
where p i3 a weight to trade control effort for regulation.
The problem is to find a control which minimizes the cost

function for the worst possible plant in O, i.e.,

u® = arg min (r.neag Jo) (6)
Thus, u° is designed to be robust with respect to the
parameter set uncertainty given in (2). Note that if there
were no parameter uncertainty in the plant, 8§ = 4, then
(6) becomes

YLQR = argn}‘inJ, (7)
which is the standard finite-horizon linear quadratic reg-
ulator problem. The optimal control in (7) requires the
solution of the discrete Riccati equation, which can be
found in texts such as [7, 2}.

We now state and prove the following corollary, which
states that the maximizer of (9) always lies on the bound-
ary of ©.

Corollary 1 Let{|-||; denote the Euclidean norm, i.e.

28T
lzli; = =7z

For a fired matrz U,
£(8) = ||\Usl3

is convez in § and

max |[U])3 = max || U8 (10)
where
0,={6:(6-9.)TT(0-0.)=1} (11)

Proof of Corollary 1 Let a € [0, 1}, then

f(aby + (1= a)8s) — af(61) — (1 - a)f(f2)

NU(ab; + (1 — a)da)iis — a \UB]I3 — (1 —a) [|U6a]I3
—a(1-a)||U(8: - 82)13

0

A

Thus, f(6) is convex in 8. Now let 8,, 83 € ©,, then
flady + (1 = a)d;) < af(6:)+ (1 - a)f(6s)

Since the graph of f(8) along the line segment joining
any #; and 84 lies on or below the line segment with its
ends at f{#,) and f(f;), (10) follows. (A different proof
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of the maximun occurring on the boundary can be found
in [14].) u]

Thus, the maximizer of (9) is given by

. __ 2
0" = arg max U} (12)
Theorem 1 The functional
J(u) = J1(u) + J2(v) (13)
is conver in u.
Proof of Theorem 1 We express y as
vy = B1(8)u + B2(0)¢, {14)
where
[ 0 0 0 0 0 "
b 0 0 0 0
by by 0 0 0
By(6) =
bm bm—l bl 0 0
0 ' 00
L bm bm—l : bl 0 J
[ bl b2 bm-l bm W
by by - bm 0
ba bm O 0
Loy .
B:(6)= 14, 0 o0 0
0 0 0
0 0o ..o .- 0 |
and r
¢o=[ u(=1) u(-2) - u(-m) ]
Then
vy = ¢7 BT Byé, + 2¢7 Bl Biu + v B] Biu  (15)

The first term on the right-hand side of (15) is constant
in u, the second term is linear in u, and the third term
u? BT Byu = }| B, ul|} is convex in u by Corollary 1. Thus,
yTy is convex in u for each # € ©. Since the maximum

of a set of convex functionals is also convex [3, page 131], -

Ja(u) is convex. By Corollary 1, Jy(u) = p||u|l§ is convex
also. Since the sum of convex functionals is convex |3,
page 131], J(u) is convex in u. m)

With Theorem 1, we are guaranteed that there is a

"~ global minimum solution for * and many efficient meth-

ods are available to compute it. However, we want to
"_point out that although J3(u) is convex in u, it is noy dif-

i forentiable for aBl w. We will illustrate this point with the
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Figure 1: J and J; as functions of u.

following simple example. Consider the case where m =2
and N = 1,808 =[b by)7 and u= [u(0) u(1)]7. Since
y(1) does not depend on u(1), we have u(1) = 0 and can
consider u = u(0). Let © be the set of points which lie
on the line segment from 8§, = [0.5 =17 to 6, =1 1]7,
and ¢, = [-1 I]T. As shown in Corollary 1, for a given
u, the maximum of y7 y must be at either endpoints of 8,

Jo(u) = max (yTyI,=,l ' yTle=0=)

Figure 1 shows that for this example, there are two points
where J3(u) is not differentiable. Also shown in Figure 1
is J(u) with its minimum at u* = -0.4.

Since Ja(u) is not differentiable for all u, we choose not
to use the usual descent methods to find u®. Instead, we
will show that we can easily compute a subgradient of
J(u) and apply the ellipsoid algorithm described in (3,
pages 324-332].

We first give the definition of a subgradient. If J :
RVM+! o R is convex, but not necessarily differentiable,
then g € R¥*! is a subgradient of J at u, if

J(u) > J(uo) + g7 (v~ u,) forall u

‘The set of all subgradients of J at u, is denoted by

8J(u,), the subdifferential of J at u,. The following two
facts from [3, page 300] will be used.

1. Since Jy(u) and Jg(ul) are convex, any subgradient of
the form ¢ = ¢; + g2 is in 8J(u), where g, € 8J;(u)
and g3 € 8J3(u). |

2. Let y7y from (15) eyaluated at 8° from (12) be de-




~ noted by =

Ja(u,8%) = ¢7 BT (0°)B16" )4, + 247 B (6°)B,(0°)u
+uT BT (o )B1(8*u (16)

!
Since yTy is convex in u for each 8 € ©;, g, €
8J3(u,0°) implies g2 € §J2(u). In the event that
there are more than one maximum, we only need to
pick one.

Thus, from (8) and (16) the subgradient of J at u is given

by
9= 2pu+ [2B](6")B1(6" )¢, + 2BY (6*)B,(6")u) (17)
The computation of 4* is not difficult, but the deriva-
tion ig rather long. To avoid breaking the flow of this sec-
tion, the method of finding 8* is given in the Appendix.

The ellipsoid algorithm for computing u* € IRX is as fol-
lows:;

1. Select any u; and E, such that u® is in the initial
ellipsoid,

u* € {u:(v—u)TE7 (u—uy)}

2. k=0,
J k—k+1;
4. Compute any g; € 8J(u;):

(a) Compute z* from Theorem 2;
(b} Compute 8* from (31);
(c) Compute g, from (17);

5. Compute new ellipsoid:

i -~ gk
;;QIEHA:
+1 K41
K? 2
E - gar
k41 K’—l( (k231 Ek)

6. If \/gT Exgy > ¢, go to step 3.

The stopping criterion in step 6 guarantees that on exit,
J{uy) is within € of J(u*).

4 Uncertain Initial States

In this section, we will consider the dual problem in which
the parameter vector # of the plant is known, but the

L ]

initial states of the plant ¢, is assumed to be in a set
_similar to_(2), 7
HeRR B0 - 80TT6 -4 <1} (18)
The problem posed in (6) now becomes
u = argnun:r.xg.f, (19)
_ : T T
= argmin [pu u + maxy y]

‘Note that yTy from (15) is convex in @, for a given u. This
means that the maximum of y” y lies on the boundary of
@, &;. Furthermore, using the same arguments from the
proof of Theorem 1,

J = puT m T
+(u) = pu u+ max y'y

can be shown to be convex in u. Therefore, all we need
to show is that we can compute a subgradient of J4(u),

94 = 2pu + 2B] Byu + 2B7 B¢ (20)
where
¢, = arg max Ty
From (14), we have
¢ = arg Jnax | B2do + Brull,

This is similar to the form of (12) except that we have
the extra term B;u. Thus, if we solve for 8° with

¢ = —(B3¢. + Bu)

in (29) and replace I' and 6, of (2) with T and ¢, from
(18), we have

®,=6"
Therefore, u* in (19) can be computed by the same ellip-

soid algorithm given in Section 4, where the subgradient
is now computed using (20).

5 Numerical Example

For our example, we use a 10-tap FIR plant, i.e., m = 10.
The control vector u has N = 10, so if u = 0, the output
will be zero after 10 delays, y(10) = 0. The parameter
ellipsoid © in (2) is a 10-dimensional ball with a radius
of 5 and center at §.. 4, plotted in Figure 2 with the
‘+' symbol, is the first ten terms of the impulse response
from the transfer function

10z(z + 0.7 cos(x/4))
22 = 2(0.7) cos(n/4)z + (.72

The initial state of the plant,

2(0) = [u(~1) u(=2) --- u(=10)]7
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Figure 2: Plant parameters: o - 8, x - 6,, * - 03, and
+-4..

is scaled such that ||z(0)|}, = 1.

Using p = 1, we will compare the cost J in (13) as-
sociated with three controls, u; = 0, u = urgr, and
uy = u", where u;gg s given by (7) with § = 6. The
controls uzor and u* are plotted in Figure (3), where
flurqrll, = 2.63 and ||u*|j, = 1.58. We now define three
plants from ©,

Y i =
6; = arg Teag (Jo I“=U.) i=123

They are the worst-case plants for their associated con-
trols and are plotted in Figure 2. Table 1 shows the cost
matrix, C, for the different plants and controls. We make
the following observations from C:

1. Fori=1, 2, 3, C(i,{) is the largest in each row, as
the 8,'s are chosen that way.

2. urqr has the lowest cost for 6, 403, but only 8%
lower than u®.

3. u* has the lowest maximum cost, 697, 48% lower
than the maximum cost from urqr and 87% lower
“thap that from u = 0. Thus, the robust design per-
formed as expected.

3
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Figure 3: Controls: x - uzqgr and * - u®.

01 92 93 ec

[u, =0 1306 | 902 | 1136 | 837
Uz = ULQR 587 | 1031 | 785 | 403
uz=u" 650 | 632 | 697 | 437

Table 1: Cost matrix for different u’s and ¢'s.

the finite-horizon control to minimize the maximum LQR
cost from all plants with parameters in the given set 1s
a convex optimization problem. An algorithm is given
to compute this minimizing contro}. Although the aigo-
rithm can also compute the minimizing control when the
plant parameters are known but the initial states of the
plant are in an ellipsoid, it would be desirable to mini-
mize the maximum over both parameter and initial state
uncertainties simultaneously. Furthermore, we would like
to extend out method to the infinite-horizon case for in-
finite impulse response (IIR) plants. These are areas of
our current research.

7 Appendix

Given the following matrices,

U € ]R(Ni-l)!m (21)
r «e R™™ r=r"so0 (22)
- ---8-~ Concluding Remarks 6.6 € RT (23)

we want to find the maximizer #* in (12). This is similar to the jeast
squares problem with quadratic and Linear constraints, which was
investigated in [8] and [9]. Howewver, we are seeking » maximizer as

compared to & minimizer. i

87 !

We have shown in this paper that given that the FIR
plant parameters are known to lie in an ellipsoid, finding




i 1 -
i

Fﬁcrhumt*.mmd&mﬁ;nwl“ﬁmﬂ@x"
[ =TATT -

whers A s diagonal witheigenvd\luoﬂ‘nndthnoolummﬂ.nﬁ ’

cigenvectors of ['. We now transfokm ©, in (11) to the uiilt ‘badl,

B = {x:thrz=1} (24)
where “
z= Ai Tr(a -8 (35}
Substituting
8=TA %240, (26}
into (12), we have
- : z*= arg max {{Ds = qﬂg n
1T ami
where
D = UTA-? (28)
g = =Ub. (29)
Define
a £ D™D
B & D7
then
1* =arg max z7Qz — 287 (30)
2T sm1
Substituting z* into {26), * in (12) is given by
0 =TA-¥:" 46, (31)

To find z* in (30), we introduce the Lagrange multiplier A and
adjomn the constraint, Tz=1,

L=:Tqz- 2BTz + A (1 - sz)

Necessary conditions for the stationary points are

E— = 2z-20-2xz2=0
9z
aL T
a—/\ = 1-2z2=0
or
Qz: = A2+ 8 {32)
Tz = 1 {33)

The problem of finding all the stationary points of such a second-
degree polynomial on the unit sphere was first investigated in [6],
but the computation of the solution was not considered there. A

proof similar to the one given in [8], however, can be used to show
the following:

Corollary 2 If (z1,M) ond (23,)2) satisfy (32) and (33) and
A1 > A3, then

z;"ﬂzl - 20Tz| > z,TQZQ - 2671, (34)

Thus, in place of the maximization problem in -(30). we need to
solve the Lagrange equations (32) and (33) with

A = mazimum (35)

In [9], it was shown that (32} and (33) can be transformed to a
quadratic eigenvalue problem,

(- A)Pn=08Tq

Furthermore, the quadratic cigenvalue problem can be reduced to
an ordinary eigenvalue problem by finding the cigenvalues of

a -1
M= [ o ]
The solution of (30) is summarized in the following theorem:

¥ 4o _poseible caserfor the masimizer of (30):

; are

Theoremn 2 -Let A* be ths largest vigenvaiss of M, then thers

Ly X¢ is not s n',nulié,___q_f €T, then 2* = (O = A1)~ B,
T I A% ia sn sigenvalne of T, then let v w (D) - A ntgdwkere
t denotes the paevdoinverse, and

(¢) If z = v satiafies (32) and (33), then 2° = v,

{3) If 3 = v satisfies [32) and vTuv <), them 2* = v+ ( is
one of many solutions, where { iz an cigenvecior fo the
eigenvalue A® of O with (T¢=1- vTo,

Proof of Theorem 2 _In {9], the minimization of (30) was an-
alyzed. Due to Corollary 2, we can apply all the results from [9] by
replacing the amallest eigenvalue of M with the largest eigenvalue.
a
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