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Abstract

We present a simple bisection algorithm to com-
pute the H,, norm of a transfer matrix. The
bisection method is far more efficient than algo-
rithms which involve a search over frequencies,
and moreover can compute the Hy,, norm with
guaranteed accuracy.

1 Preliminaries

Throughout this paper A, B, C, D will be real
matrices of sizes n X n, n xm, pxn,and pxm,
respectively. We refer to the linear dynamical
system
& = Az + Bu (1)
y =Cz+ Du

as the system {A,B,C,D}. We refer to H(s) =
C(sl — A)"'B + D as the transfer matriz of the
system {A, B,C, D}.

A is stable means that all eigenvalues of A have
negative real part. If A is stable, we define the
H norm of the transfer matrix H(s) to be

|Hllw = 5UPRe .50 Tmas(H(s)) (2)
= SUPeR Tmas( H(jw))

where oma:(-) denotes the maximum singular
value of a matrix, that is, omee(F) = A2 (F*F).
The H,, norm of a transfer matrix arises often
in control theory. An important interpretation
of || H || is as the L; or RMS gain of the system
(1) (see e.g. [2]).
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|| ]leo i8 usually ‘computed’ by searching for
the maximum of o pe.(I/(jw)) over w € R. Ob-
vious problems associated with such a method
are (a) determining the range and spacing of the
frequencies to be checked, and (b) the large num-
ber of computations involved (a singular\value
decomposition (SVD) is often performed at'each .
frequency point). The problem (a) is particularly
evident when A has lightly damped eigenvalues.

We propose instead a bisection method in- -
spired by Byers’ bisection method for measuring
the distance of a stable matrix to the unstable
matrices [3]. The bisection method not only in-
volves less computation, but has the advantage
of computing || /7||.. with a guaranteed accuracy.

2 SVs of H via a Hamilto-
nian

We start by establishing a connection between
the singular values of the transfer matrix and the
imaginary eigenvalues of a certain Hamiltonian

matrix. Let v > 0, and not a singular value of
D. Define

M, =
A-BR'DTC -~BR-BT
7CTS-1C —AT + CTDR-BT

where R = (D7D — 4*I) and S = (DDT - 4*]).
Note that M, is a Hamiltonian matrix.

The following theorem relates the singular val-
ues of If(jw) and the imaginary eigenvalues of
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Theorem 1 Assume A has no imaginary eigen-
values, ¥ > 0 is not a singular value of D, and
wo c R.

Then, v is a singular value of H(jwy) <=
(M, — jiwol) is singular.

Remark 1:
There ar~ no observability, controllability, or
stability conditions on the system {A, B,C, D}.
A simple consequence of Theorem 1 is

Theorem 2 Let A be stable and v > omaz(D).
Then || H||o 2 v <> M., has imaginary eigen-
values (i.e. af least one).

Remark 2:

The imaginary eigenvalues of My, are ex-
actly the frequencies for which opa(I(jw)) =
1 |o.-

Rlemark 3:

Theorem 2 is also readily derived via several
methods, e.g., quadratic optimal control [4] or
spectral factorization [3).

3 Bisection Algorithm

Theorem 2 suggests a bisection algorithm for
computing | H ||e. Let vs and 7, be some lower
and upper bounds, respectively, on ||H||,. For
example, one could use the bounds derived by
Enns and Glover,

Ty = MaX{Omaz(D), o}

Vb = Omac(D) + 2 omi
=1l

where oy1; are the Hankel singular values of the
system {A, B,C, D} [6, 7).

The bisection algorithm is as follows:
TL = Vb
YU 2= Yubs
repeat {

v :={v + 70)/2;

Form M.;

if M., has no imag. eigenvalues, vy := 17,

elseyp =7 }
until { Yy — v < 2¢ 7L},

Note that we always have 7z < ||Hileo £ Y-

On exit, (7, + vn)/2 is guaranteed to approxi-
mate ||/}l within a relative accuracy of ¢, i.e.,

I(vz + 0)/2 = [ Hlleo| £ e€ll H o

397

Remark 4.

Checking if M., has any imaginary eigenvalues
can be done in a finite number of steps via a
Sturm sequence test on the characteristic poly-
nomial [8].
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