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In this talk, we focus on H,,. Same ideas carry through for
Hy/H, as well - see paper.



()-Parametrization

G
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e Set of all achievable stable closed loop maps is:
{G=P,u +P..K(I— P,K) P, | K stabilizing}

— set of stabilizing K's not obvious
— parametrization is linear fractional
— P’s and K can be unstable

e Can transform into equivalent parametrization:
{G=H-UQV | Q stable}

—now H, U, V and () stable
— affine in () — Good for optimization
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General Regulator Problem
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e Typically want:
1. Small |Gy, ||« for “good regulation”

2. Small |G yu, || for “efficient control”

3. "Reject” disturbances w, = [Z)]

e Usually conflicting requirements:
“good” regulation requires “large” control



Multiobjective Design Paradigm

e Define:
JHQ) = (1= M NG ( Q)% + A |G (Q)IZ

e Compute tradeoff curve:

for A\=0to1
solve for Q)): infgen. Ji”(@)

plot Hsze(Q/\>HOO Versus HGuwe<Q)\>Hoo

end

e Tradeoff curve gives limits of performance - very useful
in practice!
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Standard vs Multiobjective H>
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Standard H*° Problem: z, =
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Multiobjective > Problem: minimize

K@) = (1= M Gaw Q5 + M | Guwn (@)%

= (1 — A) sup I + A\ su [l
we0 || Wel|2 we0 || Wel|2

Comments
e In multiobjective design maximization of z and u over
w, is done independently

e In standard design maximization of z and u over w, is
done simultaneously - artificially couples z and «

e Why would we care about the gain from w, to the sum
of z and u? They might peak at different frequencies.
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More Remarks

e Note that since

Jf = “sup of sum”
JY = “sum of sups”
we have
Q) < Q) VQ € Hy

infpg_ Jf < infpy_ J){W

e Also, since GG, (@) and Gy, (Q) are both affine in )
—> both problems convex

e Finally, note that the problems are infinite
dimensional

e In Standard problem, state space structure provides
means for minimizing exactly via bisection applied
to Riccati equations or LMIs .

e In Multiobjective problem cannot solve exactly in
general. Can only minimize conservative upper
bound. But no analysis for degree of conservativeness.

e So why not use finite dimensional ()-based approach
which fell out of favor because no analysis was
available for degree of approximation?



Previous Research

e State space, upper bound on H,,/H>

'89: Bernstein & Haddad
'91: Khargonekar & Rotea

e Finite dimensional (), convex optimization

'88: Boyd, Barratt, Balakrishnan, Kabamba & Meyer
'94: Sznaier, Rotstien & Sideris

e Finite dimensional () and LMIs

'95: Chen & Wen
'95: Scherer - our method was first proposed

e Lyapunov Shaping, LMls
'05: Scherer, Gahinet & Chilali
'95: El-Ghaoui & Folcher

e Solve nonconvex problem

'08: Halder, Hassibi & Kailath



|G| via Bounded Real Lemma

e To avoid truncation errors of QDES, we use state
space

e Given closed loop system GG with then
|1Glloo = |D + C (21 — A) ' Bllos ="
if and only if v* is optimizer of

minimize vy

ATXA-X ATXB  CT]

subject to B'XA B'XB-~I D' | <0

C D —~ 1
X >0 )

o A, B,C,D are closed loop matrices - contain
controller variables

e Due to cross terms between A, B, and X, have
nonlinear matrix inequality

e In '93 '94, Gahinet & Apkarian and |wasaki & Skelton
showed that using elimination lemma can reduce to 3
LMI's

(Similar LMI's exist for Hy norm)
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Multiobjective H,, Problem

e \We now want to minimize

(1 o )‘> HGZHOO + A HGuHoo

e Apply bounded real lemma to GG, and G, separately
— SDP in 7., 7., X., X4, and closed loop matrices of

GG, and Gy:
(ATX. A, - X, ATX.B, ct ]
s.t. BYX.A., BIX.B.—~.1 DI | <0
i C: D —Vzd_
X, >0
ATX, A, - X, AIX,B, clh
BI'X,A, BIX,B,—~vI DI | <0
i Cu Dy —Yul ]
Xy >0

e Again cross terms between A's, X's and B'’s.
e But now elimination lemma fails
e Note C's and D'’s appear linearly

e If could put all controller variables in C''s and D'’s, get
LMI's - done!. This is our goal.
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State Space SISO FIR

e Given FIR system () with pulse response

{QO7 d1, 42, 43, 07 07 s }

e We have (control canonical form) realization

o O =

0
Ag|Bo | _ 10
Co Do | — 010

_[(h 2 C]3J 40

e All variables ¢; are in C and D¢ matrices.
e Matrices Ag and B are fixed.

e Later on, we will assume that the component SISO

systems ();; of () in the ()-parametrization are all SISO
FIRs.
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Pulling Out @

e Recall that in (Q-parametrization: H, U, (), and V are
just matrices in H..

e \Want to write

Q) =H-UQV

in terms of SISO components of () explicitly.

e Decompose () as sum of its SISO components (),
times elementary matrices F,., = e, eg:

T
Q — Z Qrs €r €g
T,8

e Hence:

GQ)=H-U() Queel)V

=H - Qun((Ue)(elV))

e [ herefore:

G(Q) = H — Z Qrs Trs

where T, = (Ue,)(el V).
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Kronecker Products

e So we have

G(Q) = H — Z Qrs Trs

e Now ;s 7} is just scalar (SISO) x matrix (MIMO)
in He. So

A i Qrs T?“(sll) e Qrs Tr(sln) ]
Qrs Trs — : e :
Qrs T?“(:ﬂ) e Qrs T?“(:m)
— Qrs X Trs

where ® denotes Kronecker multiplication

_allB alnB_
A®B=| + . :+ | € RwM™
_CLmlB CLmnB

e So to be explicit we write:

G(Q) = H — ZQTS X Trs
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State Space Representation of () ® T'

e Given: () € HX?and T' € HL™"

Q

AQ\BQ _ AT\BT
[cQDQ] and T—[cTDT]

Then: () ® T has state space

_AQ(X)]m BQ(X)CT BQ(X)DT_
[élf?@T g%T] — 0 I,®Ar | I,® By
QT | ZReT ' Co® 1, Dy®Cr|Dg® Dy

e If () has SISO FIR structure, then all coefficients
q; of @) (contained in Cp & Dg) appear only in Coer
and Dggr.
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State Space for Closed Loop System G

e Assume: that () is SISO, then there's just one () and
one 7'. Can then drop r and s indexes:

ZQm@Trs:Q@T-

(general case same idea - see paper)

e Then closed loop transfer function
GQ) =H-QxT

e This is just H in parallel with —(Q ® T).

e Therefore it's easy to write down state space for G:

An By
[ éG gG ] — AQ@T BQ@T
G ' Cg —Coer|Du — Doer |

e Note that if () is FIR, then all coefficients of () are
contained in Cg and D¢
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State Space for Multiobjective Closed Loop

e Start with

G(@) = H — ZQTS X Trs-

e Partition GG, H, 1" according to z, = [i] ;

o= [ = (8 n)

e Again assume just one () and 1.
e Now get state space of G, and G;:

A | B, A, Ba.
C D — AQ®TZ BQ®TZ
S Cy. —Coer. | Di, — Dger.

A, | B, A, Bu,
C D — AQ®TU BQ®Tu
e Cu, —Coer, |Du, — Dger,

e Note that if () is FIR, then all coefficients of () are
contained in C,, D, and C,, D, — done !
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Numerical Example

Tradeoffs: Multiobjective (solid) vs Standard (dashed)
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e System was:

— unstable, second order, fy =1, ( = —0.5.
— discretized at T, ~ 1/6
— 0.97 delay in loop

e Stabilized with LQG to get H, U, and V
e Modified with 12-tap FIR ()

Result: 25% reduction in control effort!

16



Conclusion

Proposed Method

e based on Q-parametrization & finite dimensional convex
optimization

e conservative, but can outperform standard H,, and
Lyapunov shaping

e extends to Hy/H, (and other problems)

e involves more computation than standard methods, but
structure can be exploited for speedup
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