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Abstract

We introduce a new notion of classification accuracy based on the top ⌧ -quantile
values of a scoring function, a relevant criterion in a number of problems aris-
ing for search engines. We define an algorithm optimizing a convex surrogate of
the corresponding loss, and discuss its solution in terms of a set of convex opti-
mization problems. We also present margin-based guarantees for this algorithm
based on the top ⌧ -quantile value of the scores of the functions in the hypothesis
set. Finally, we report the results of several experiments in the bipartite setting
evaluating the performance of our solution and comparing the results to several
other algorithms seeking high precision at the top. In most examples, our solution
achieves a better performance in precision at the top.

1 Introduction

The accuracy of the items placed near the top is crucial for many information retrieval systems such
as search engines or recommendation systems, since most users of these systems browse or consider
only the first k items. Different criteria have been introduced in the past to measure this quality,
including the precision at k (Precision@k), the normalized discounted cumulative gain (NDCG)
and other variants of DCG, or the mean reciprocal rank (MRR) when the rank of the most relevant
document is critical. A somewhat different but also related criterion adopted by [1] is based on the
position of the top irrelevant item.

Several machine learning algorithms have been recently designed to optimize these criteria and other
related ones [6, 12, 11, 21, 7, 14, 13]. A general algorithm inspired by the structured prediction
technique SVMStruct [22] was incorporated in an algorithm by [15] which can be used to optimize
a convex upper bound on the number of errors among the top k items. The algorithm seeks to
solve a convex problem with exponentially many constraints via several rounds of optimization
with a smaller number of constraints, augmenting the set of constraints at each round with the
most violating one. Another algorithm, also based on structured prediction ideas, is proposed in
an unpublished manuscript of [19] and covers several criteria, including Precision@k and NDCG.
A regression-based solution is suggested by [10] for DCG in the case of large sample sizes. Some
other methods have also been proposed to optimize a smooth version of a non-convex cost function
in this context [8]. [1] discusses an optimization solution for an algorithm seeking to minimize the
position of the top irrelevant item.
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However, one obvious shortcoming of all these algorithms is that the notion of top k does not gen-
eralize to new data. For what k should one train if the test data in some instances is half the size and
in other cases twice the size? In fact, no generalization guarantee is available for such precision@k
optimization or algorithm.

A more principled approach in all the applications already mentioned consists of designing algo-
rithms that optimize accuracy in some top fraction of the scores returned by a real-valued hypothe-
sis. This paper deals precisely with this problem. The desired objective is to learn a scoring function
that is as accurate as possible for the items whose scores are above the top ⌧ -quantile. To be more
specific, when applied to a set of size n, the number of top items is k = ⌧n for a ⌧ -quantile, while
for a different set of size n0 6= n, this would correspond to k0 = ⌧n0 6= k.

The implementation of the Precision@k algorithm in [15] indirectly acknowledges the problem that
the notion of top k does not generalize since the command-line flag requires k to be specified as a
fraction of the positive samples. Nevertheless, the formulation of the problem as well as the solution
are still in terms of the top k items of the training set. A study of various statistical questions related
to the problem of accuracy at the top is discussed by [9]. The authors also present generalization
bounds for the specific case of empirical risk minimization (ERM) under some assumptions about
the hypothesis set and the distribution. But, to our knowledge, no previous publication has given
general learning guarantees for the problem of accuracy in the top quantile scoring items or carefully
addressed the corresponding algorithmic problem.

We discuss the formulation of this problem (Section 3.1) and define an algorithm optimizing a
convex surrogate of the corresponding loss in the case of linear scoring functions. We discuss the
solution of this problem in terms of several simple convex optimization problems and show that these
problems can be extended to the case where positive semi-definite kernels are used (Section 3.2).
In Section 4, we present a Rademacher complexity analysis of the problem and give margin-based
guarantees for our algorithm based on the ⌧ -quantile value of the functions in the hypothesis set.
In Section 5, we also report the results of several experiments evaluating the performance of our
algorithm. In a comparison in a bipartite setting with several algorithms seeking high precision
at the top, our algorithm achieves a better performance in precision at the top. We start with a
presentation of notions and notation useful for the discussion in the following sections.

2 Preliminaries

Let X denote the input space and D a distribution over X ⇥ X . We interpret the presence
of a pair (x, x0) in the support of D as the preference of x0 over x. We denote by S =�
(x

1

, x0
1

), . . . , (xm, x0m)

� 2 (X ⇥ X )

m a labeled sample of size m drawn i.i.d. according to D

and denote by bD the corresponding empirical distribution. D induces a marginal distribution over
X that we denote by D0, which in the discrete case can be defined via

D0
(x) =

1

2

X

x02X

�
D(x, x0) + D(x0, x)

�
.

We also denote by bD0 the empirical distribution associated to D0 based on the sample S.

The learning problems we are studying are defined in terms of the top ⌧ -quantile of the values taken
by a function h : X ! R, that is a score q such that Prx⇠D0

[h(x) > q] = ⌧ (see Figure 1(a)). In
general, q is not unique and this equality may hold for all q in an interval [q

min

, q
max

]. We will be
particularly interested in the properties of the set of points x whose scores are above a quantile, that
is sq = {x : h(x) > q}. Since for any (q, q0) 2 [q

min

, q
max

]

2, sq and sq0 differ only by a set of
measure zero, the particular choice of q in that interval has no significant consequence. Thus, in
what follows, when it is not unique, we will choose the quantile value to be the maximum, q

max

.

For any ⌧ 2 [0, 1], let ⇢⌧ denote the function defined by

8u 2 R, ⇢⌧ (u) = �⌧(u)� + (1� ⌧)(u)

+

,

where (u)

+

= max(u, 0) and (u)� = min(u, 0) (see Figure 1(b)). ⇢⌧ is convex as a sum
of two convex functions since u 7! (u)

+

is convex, u 7! (u)� concave. We will denote by
argMinu f(u) the largest minimizer of function f . It is known (see for example [17]) that the
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Figure 1: (a) Illustration of the ⌧ -quantile. (b) Graph of function ⇢⌧ for ⌧ = .25.

(maximum) ⌧ -quantile value bq of a sample of real numbers X = (u
1

, . . . , un) 2 Rn can be
given by bq = argMinu2R F⌧ (u), where F⌧ is the convex function defined for all u 2 R by
F⌧ (u) =

1

n

Pn
i=1

⇢⌧ (ui � u).

3 Accuracy at the top (AATP)

3.1 Problem formulation and algorithm

The learning problem we consider is that of accuracy at the top (AATP) which consists of achieving
an ordering of all items so that items whose scores are among the top ⌧ -quantile are as relevant as
possible. Ideally, all preferred items are ranked above the quantile and non-preferred ones ranked
below. Thus, the loss or generalization error of a hypothesis h : X ! R with top ⌧ -quantile value
qh is the average number of non-preferred elements that h ranks above qh and preferred ones ranked
below:

R(h) =

1

2

E

(x,x0
)⇠D

⇥
1h(x)>qh

+ 1h(x0
)<qh

⇤
.

qh can be defined as follows in terms of the distribution D0: qh = argMinu2R Ex⇠D0
[⇢⌧ (h(x)�u)].

The quantile value qh depends on the true distribution D. To define the empirical error of h for a
sample S =

�
(x

1

, x0
1

), . . . , (xm, x0m)

�2 (X⇥X )

m, we will use instead an empirical estimate bqh of
qh: bqh = argMinu2R Ex⇠ bD0 [⇢⌧ (h(x) � u)]. Thus, we define the empirical error of h for a labeled
sample as follows:

bR(h) =

1

2m

mX

i=1

⇥
1h(xi)>bqh

+ 1h(x0
i)<bqh

⇤
.

We first assume that X is a subset of RN for some N � 1 and consider a hypothesis set H of linear
functions h : x 7! w ·x. We will use a surrogate empirical loss taking into consideration how much
the score w ·xi of a non-preferred item xi exceeds bqh, and similarly how much lower the score w ·x0i
for a preferred point x

0
i is than bqh, and seek a solution w minimizing a trade-off of that surrogate

loss and the norm squared kwk2. This leads to the following optimization problem for AATP:

min

w

1

2

kwk2 + C
h mX

i=1

�
w · xi � bqw + 1

�
+

+

�
bqw �w · x0i + 1

�
+

i
(1)

subject to bqw = argMin

u2R
Q⌧ (w, u),

where C � 0 is a regularization parameter and Q⌧ the quantile function defined as follows for a
sample S, for any w 2 RN and u 2 R:

Q⌧ (w, u) =

1

2m

h mX

i=1

⇢⌧

�
(w · xi)� u)

�
+ ⇢⌧

�
(w · x0i)� u)

�i
.

In the following, we will assume that ⌧ is a multiple of 1/2m, otherwise it can be rounded to the
nearest such value.

3.2 Analysis of the optimization problem

Problem (1) is not a convex optimization problem since, while the objective function is convex, the
equality constraint is not affine. Here, we further analyze the problem and discuss a solution.
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The equality constraint could be written as an infinite number of inequalities of Q⌧ (w, bqw) 
Q⌧ (w, u) for all u 2 R. Observe, however, that the quantile value qw must coincide with the score
of one of training points xk or x

0
k, that is w · xk or w · x0k. Thus, Problem (1) can be equivalently

written with a finite number of constraints as follows:

min

w

1

2

kwk2 + C
h mX

i=1

�
w · xi � bqw + 1

�
+

+

�
bqw �w · x0i + 1

�
+

i

subject to bqw 2 {w · xk,w · x0k : k 2 [1,m]}
8k 2 [1,m], Q⌧ (w, bqw)  Q⌧ (w,w · xk),8k 2 [1,m], Q⌧ (w, bqw)  Q⌧ (w,w · x0k).

The inequality constraints do not correspond to non-positivity constraints on convex functions.
Thus, the problem is not a standard convex optimization problem, but our analysis leads us
to a simple approximate solution for the problem. For convenience, let (z

1

, . . . , z
2m) denote

(x

1

, . . . ,xm,x0
1

, . . . ,x0m). Our method consists of solving the convex quadratic programming (QP)
problem for each value of k 2 [1, 2m]:

min

w

1

2

kwk2 + C
h mX

i=1

�
w · xi � bqw + 1

�
+

+

�
bqw �w · x0i + 1

�
+

i
(2)

subject to bqw = w · zk.

Let wk be the solution of Problem (2). For each k 2 [1, 2m], we determine the ⌧ -quantile value
of the scores {wk ·zi : i2 [1, 2m]}. This can be checked straightforwardly in time O(m log m) by
sorting the scores. Then, the solution w

⇤ we return is the wk for which wk ·zk is closest to the
⌧ -quantile value, the one for which the objective function is the smallest in the presence of ties. The
method for determining w

⇤ is thus based on the solution of 2m simple QPs. Our solution naturally
parallelizes so that on a distributed computing environment, the computational time for solving the
problem can be reduced to roughly the same as that of solving a single QP.

3.3 Kernelized formulation

For any i2 [1, 2m], let yi =�1 if im, yi =+1 otherwise. Then, Problem (2) admits the following
equivalent dual optimization problem similar to that of SVMs:

max

↵

2mX

i=1

↵i � 1

2

2mX

i,j=1

↵i↵jyiyj(zi � zk) · (zj � zk) (3)

subject to: 8i 2 [1, 2m], 0  ↵i  C,

which depends only on inner products between points of the training set. The vector w can be
obtained from the solution via w =

P
2m
i=1

↵iyi(zi�zk). The algorithm can therefore be generalized
by using equivalently any positive semi-definite kernel symmetric (PDS) kernel K : X ⇥ X ! R
instead of the inner product in the input space, thereby also extending it to the case of non-vectorial
input spaces X . The corresponding hypothesis set H is that of linear functions h : x 7! w · �(x)

where � : X ! H is a feature mapping to a Hilbert space H associated to K and w an element of
H. In view of (3), for any k 2 [1, 2m], the dual problem of (2) can then be expressed as follows:

max

↵

2mX

i=1

↵i � 1

2

2mX

i,j=1

↵i↵jyiyjKk(zi, zj) (4)

subject to: 8i 2 [1, 2m], 0  ↵i  C,

where, for any k 2 [1, 2m], Kk is the PDS kernel defined by Kk : (z, z0) 7! K(z, z0)�K(z, zk)�
K(zk, z0) + K(zk, zk). Our solution can therefore also be found in the dual by solving the 2m QPs
defined by (4).

4 Theoretical guarantees

We here present margin-based generalization bounds for the AATP learning problem.
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Let �⇢ : R ! [0; 1] be the function defined by �⇢ : x 7! 1x0

+ (1 � x/⇢)

+

1x>0

. For any ⇢ > 0

and t2R, we define the generalization error R(h, t) and empirical margin loss bR⇢(h, t), both with
respect to t, by

R(h, t) =

1

2

E

(x,x0
)⇠D

⇥
1h(x)>t + 1h(x0

)<t

⇤ bR⇢(h, t) =

1

2m

mX

i=1

⇥
�⇢(t� h(xi)) + �⇢(h(x0i)� t)

⇤
.

In particular, R(h, qh) corresponds to the generalization error and bR⇢(h, qh) to the empirical margin
loss of a hypothesis h for AATP. For any t > 0, the empirical margin loss bR⇢(h, t) is upper bounded
by the average of the fraction of non-preferred elements xi that h ranks above t or less than ⇢ below
t, and the fraction of preferred ones x0i it ranks below t or less than ⇢ above t:

bR⇢(h, t)  1

2m

mX

i=1

⇥
1t�h(xi)<⇢ + 1h(x0

i)�t<⇢

⇤
. (5)

We denote by D
1

the marginal distribution of the first element of the pairs in X ⇥ X derived from
D, and by D

2

the marginal distribution with respect to the second element. Similarly, S
1

is the
sample derived from S by keeping only the first element of each pair: S

1

=

�
x

1

, . . . , xm

�
and

S
2

the one obtained by keeping only the second element: S
2

=

�
x0

1

, . . . , x0m
�
. We also denote

by RD1
m (H) the Rademacher complexity of H with respect to the marginal distribution D

1

, that is
RD1

m (H) = E[

bRS1(H)], and RD2
m (H) = E[

bRS2(H)].

Theorem 1 Let H be a set of real-valued functions taking values in [�M,+M ] for some M > 0.
Fix ⌧ 2 [0, 1] and ⇢ > 0, then, for any � > 0, with probability at least 1 � � over the choice of a
sample S of size m, each of the following inequalities holds for all h 2 H and t 2 [�M,+M ]:

R(h, t)  bR⇢(h, t)+
1

⇢

✓
RD1

m (H) + RD2
m (H) +

2Mp
m

◆
+

r
log 1/�

2m

R(h, t)  bR⇢(h, t)+
1

⇢

✓
bRS1(H) +

bRS2(H) +

2Mp
m

◆
+3

r
log 2/�

2m
.

Proof. Let eH be the family of hypotheses mapping (X ⇥ X ) to R defined by eH = {z = (x, x0) 7!
t � h(x) : h 2 H, t 2 [�M,+M ]} and similarly eH 0

= {z = (x, x0) 7! h(x0) � t : h 2 H, t 2
[�M,+M ]}. Consider the two families of functions eH and eH0 taking values in [0, 1] defined by
eH = {�⇢ � f : f 2 eH} and eH0

= {�⇢ � f : f 2 eH 0}. By the general Rademacher complexity
bounds for functions taking values in [0, 1] [18, 3, 20], with probability at least 1� �,

1

2

E

⇥
�⇢(t� h(x)) + �⇢(h(x0)� t)

⇤  bR⇢(h, t) + 2Rm

⇣
1

2

(

eH+

eH0
)

⌘
+

r
log 1/�

2m

 bR⇢(h, t) + Rm(

eH) + Rm(

eH0�
+

r
log 1/�

2m
,

for all h 2 H . Since 1u<0

 �⇢(u) for all u 2 R, the generalization error R(h, t) is a lower bound
on left-hand side: R(h, t)  1

2

E

⇥
�⇢(t� h(x)) + �⇢(h(x0)� t)

⇤
, we obtain

R(h, t)  bR⇢(h, t) + Rm(

eH) + Rm(

eH0�
+

r
log 1/�

2m
.

Since �⇢ is 1/⇢-Lipschitz, by Talagrand’s contraction lemma, we have Rm

� eH�  (1/⇢)Rm(

eH)

and Rm

� eH0�  (1/⇢)Rm(

eH 0
). By definition of the Rademacher complexity,

Rm(

eH)=

1

m
E

S⇠Dm,�

"
sup

h2H,t

mX

i=1

�i(t� h(xi))

#
=

1

m
E

S,�

"
sup

t

mX

i=1

�it + sup

h2H

mX

i=1

��ih(xi)

#

=

1

m
E

�

h
sup

t2[�M,+M ]

t
mX

i=1

�i

i
+

1

m
E

�


sup

h2H

mX

i=1

��ih(xi)

�
.
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Since the random variables �i and ��i follow the same distribution, the second term coincides with
RD1

m (H). The first term can be rewritten and upper bounded as follows using Jensen’s inequality:

1

m
E

�

"
sup

�MtM

mX

i=1

�it

#
=

M

m

X
Pm

i=1 �i>0

Pr[�]

mX

i=1

�i � M

m

X
Pm

i=1 �i<0

Pr[�]

mX

i=1

�i

=

M

m
E

�

"���
mX

i=1

�i

���

#
 M

m
E

�

h� mX

i=1

�i

�
2

i 1
2

=

M

m
E

�

h mX

i=1

�2

i

i 1
2

=

Mp
m

.

Note that, by the Kahane-Khintchine inequality, the last upper bound used is tight modulo a constant
(1/
p

2). Similarly, we can show that Rm(

eH 0
)  RD2

m (H)+M/
p

m. This proves the first inequality
of the theorem; the second inequality can be derived from the first one using the standard bound
relating the empirical and true Rademacher complexity. 2

Since the bounds of the theorem hold uniformly for all t 2 [�M,+M ], they hold in particular for
any quantile value qh.

Corollary 1 (Margin bounds for AATP) Let H be a set of real-valued functions taking values in
[�M,+M ] for some M > 0. Fix ⌧ 2 [0, 1] and ⇢ > 0, then, for any � > 0, with probability at least
1� � over the choice of a sample S of size m, for all h 2 H it holds that:

R(h) bR⇢(h, qh)+

1

⇢

✓
RD1

m (H) + RD2
m (H) +

2Mp
m

◆
+

r
log 1/�

2m

R(h) bR⇢(h, qh)+

1

⇢

✓
bRS1(H) +

bRS2(H) +

2Mp
m

◆
+3

r
log 2/�

2m
.

A more explicit version of this corollary can be derived for kernel-based hypotheses (Appendix A).

In the results of the previous theorem and corollary, the right-hand side of the generalization bounds
is expressed in terms of the empirical margin loss with respect to the true quantile value qh, which
is upper bounded (see (5)) by half the fraction of non-preferred points in the sample whose score is
above qh � ⇢ and half the fraction of the preferred points whose score is less than qh + ⇢. These
fractions are close to the same fractions with qh replaced with bqh since the probability that a score
falls between qh and bqh can be shown to be uniformly bounded by a term in O(1/

p
m).1 Altogether,

this analysis provides a strong support for our algorithm which is precisely seeking to minimize the
sum of an empirical margin loss based on the quantile and a term that depends on the complexity, as
in the right-hand side of the learning guarantees above.

5 Experiments

This section reports the results of experiments with our AATP algorithm on several datasets. To
measure the effectiveness of our algorithm, we compare it to two other algorithms, the INFINITE-
PUSH algorithm [1] and the SVMPERF algorithm [15], which are both algorithms seeking to em-
phasize the accuracy near the top. Our experiments are carried out using three data sets from the
UC Irvine Machine Learning Repository http://archive.ics.uci.edu/ml/datasets.html:
Ionosphere, Housing, and Spambase. (Results for Spambase can be found in Appendix C). In ad-
dition, we use the TREC 2003 (LETOR 2.0) data set which is available for download from the
following Microsoft Research URL: http://research.microsoft.com/letor.

All the UC Irvine data sets we experiment with are for two-group classification problems. From
these we construct bipartite ranking problems where a preference pair consists of one positive and
one negative example. To explicitly indicate the dependency on the quantile, we denote by q⌧ the
value of the top ⌧ -th quantile of the score distribution of a hypothesis. We will use N to denote the
number of instances in a particular data set, as well as si, i = 1, . . . , N , to denote the particular
score values. If n

+

denotes the number of positive examples in the data set and n� denotes the
number of negative examples, then N = n

+

+ n� and the number of preferences is m = n
+

n�.
1Note that the Bahadur-Kiefer representation is known to provide a uniform convergence bound on the

difference of the true and empirical quantiles when the distribution admits a density [2, 16], a stronger result
than what is needed in our context.
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Table 1: Ionosphere data: for each top quantile ⌧ and each evaluation metric, the three rows cor-
respond to AATP (top), SVMPERF(middle) and INFINITEPUSH (bottom). For the INFINITEPUSH
algorithm we only report mean values over the folds.

⌧ (%) P@⌧ AP DCG@⌧ NDCG@⌧ Positives@top

19 0.89 ± 0.04 0.86 ± 0.03 29.21 ± 0.10 0.92 ± 0.06 12.1 ± 12.5
0.89 ± 0.06 0.83 ± 0.04 28.88 ± 1.37 0.89 ± 0.11 6.00 ± 11.1

0.85 0.80 27.83 0.85 10.32
14 0.91 ± 0.05 0.84 ± 0.03 28.15 ± 0.95 0.91 ± 0.07 13.31 ± 12.5

0.82 ± 0.11 0.79 ± 0.04 27.02 ± 1.37 0.75 ± 0.16 4.10 ± 11.1
0.87 0.80 27.91 0.87 11.51

9.50 0.93 ± 0.06 0.84 ± 0.03 28.15 ± 0.95 0.91 ± 0.09 13.31 ± 12.49
0.77 ± 0.18 0.79 ± 0.04 27.02 ± 1.35 0.70 ± 0.21 4.50 ± 10.9

0.90 0.80 27.90 0.89 11.51
5 0.91 ± 0.14 0.84 ± 0.03 28.15 ± 0.95 0.89 ± 0.15 13.31 ± 12.49

0.66 ± 0.27 0.79 ± 0.04 27.02 ± 1.36 0.60 ± 0.30 4.60 ± 11.0
0.86 0.81 27.90 0.87 11.59

1 0.85 ± 0.24 0.84 ± 0.03 28.15 ± 0.95 0.88 ± 0.19 13.30 ± 12.53
0.35 ± 0.41 0.79 ± 0.04 27.02 ± 1.36 0.34 ± 0.41 4.50 ± 11.0

0.85 0.80 27.91 0.86 11.50

5.1 Implementation

We solved the convex optimization problems (2) using the CVX solver http://cvxr.com/. As
already noted, the AATP problem can be solved efficiently using a distributed computing envi-
ronment. The convex optimization problem of the INFINITEPUSH algorithm (see (3.9) of [1])
can also be solved using CVX. However, this optimization problem has as many variables as
the product of the numbers of positively and negatively labeled instances (n

+

n�), which makes
it prohibitive to solve for large data sets within a runtime of a few days. Thus, we experi-
mented with the INFINITEPUSH algorithm only on the Ionosphere data set. Finally, for SVM-
PERF’s training and score prediction we used the binary executables downloaded from the URL
http://www.cs.cornell.edu/people/tj and used the SVMPERF’s settings that are the clos-
est to our optimization formulation. Thus, we used L1-norm for slack variables and allowed the
constraint cache and the tolerance for termination criterion to grow in order to control the algo-
rithm’s convergence, especially for larger values of the regularization constant.

5.2 Evaluation measures

To evaluate and compare the AATP, INFINITEPUSH, and SVMPERF algorithms, we used a number
of standard metrics: Precision at the top (P@⌧ ), Average Precision (AP), Number of positives at the
absolute top (Positives@top), Discounted Cumulative Gain (DCG@⌧ ), and Normalized Discounted
Cumulative Gain (NDCG@⌧ ). Definitions are included in Appendix B.

5.3 Ionosphere data

The data set’s 351 instances represent radar signals collected from phased antennas, where ‘good’
signals (225 positively labeled instances) are those that reflect back toward the antennas and ‘bad’
signals (126 negatively labeled instances) are those that pass through the ionosphere. The data has
34 features. We split the data set into 10 independent sets of instances, say S

1

, . . . , S
10

. Then, we
ran 10 experiments, where we used 3 consecutive sets for learning and the rest (7 sets) for testing.
We evaluated and compared the algorithms for 5 different top quantiles ⌧ 2 {19, 14, 9.5, 5, 1} (%),
which would correspond to the top 20, 15, 10, 5, 1 items, respectively. For each ⌧ , the regulariza-
tion parameter C was selected based on the average value of P@⌧ . The performance of AATP is
significantly better than that of the other algorithms, particularly for the smallest top quantiles. The
two main criteria on which to evaluate the AATP algorithm are Precision at the top, (P@⌧ ), and
Number of positive at the top, (Positives@top). For ⌧ = 5% the AATP algorithm obtains a stellar
91% accuracy with an average of 13.3 positive elements at the top (Table 1).
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Table 2: Housing data: for each quantile value ⌧ and each evaluation metric, there are two rows
corresponding to AATP (top) and SVMPERF(bottom).

⌧ (%) P@⌧ AP DCG@⌧ NDCG@⌧ Positives@top

6 0.14 ± 0.05 0.11 ± 0.03 4.64 ± 0.40 0.13 ± 0.08 0.20 ± 0.45
0.13 ± 0.05 0.10 ± 0.02 4.81 ± 0.46 0.16 ± 0.09 0.21 ± 0.45

5 0.17 ± 0.07 0.10 ± 0.03 4.69 ± 0.26 0.16 ± 0.07 0.00 ± 0.00
0.12 ± 0.10 0.09 ± 0.03 4.76 ± 0.60 0.16 ± 0.14 0.20 ± 0.48

4 0.19 ± 0.13 0.12 ± 0.03 4.83 ± 0.45 0.18 ± 0.15 0.00 ± 0.00
0.14 ± 0.05 0.10 ± 0.02 4.66 ± 0.25 0.13 ± 0.07 0.00 ± 0.00

3 0.20 ± 0.12 0.10 ± 0.03 4.70 ± 0.26 0.18 ± 0.11 0.00 ± 0.00
0.17 ± 0.12 0.09 ± 0.02 4.65 ± 0.40 0.18 ± 0.13 0.00 ± 0.00

2 0.23 ± 0.10 0.10 ± 0.03 4.69 ± 0.26 0.19 ± 0.11 0.00 ± 0.00
0.25 ± 0.17 0.10 ± 0.03 4.89 ± 0.48 0.27 ± 0.16 0.20 ± 0.46

1 0.20 ± 0.27 0.12 ± 0.03 4.80 ± 0.45 0.17 ± 0.23 0.00 ± 0.00
0.30 ± 0.27 0.09 ± 0.02 4.74 ± 0.56 0.29 ± 0.27 0.20 ± 0.45

5.4 Housing data

The Boston Housing data set has 506 examples, 35 positive and 471 negative, described by 13
features. We used feature 4 as the binary target value. Two thirds of the data instances was randomly
selected and used for training, and the rest for testing. We created 10 experimental folds analogously
as in the case of the Ionosphere data. The Housing data is very unbalanced with less than 7%
positive examples. For this dataset we obtain results very comparable to SVMPERF for the very top
quantiles, see Table 2. Naturally, the standard deviations are large as a result of the low percentage
of positive examples, so the results are not always significant. For higher top quantiles, e.g., top
4%, the AATP algorithm significantly outperforms SVMPERF, obtaining 19% accuracy at the top
(P@⌧ ). For the highest top quantiles the difference in performance between the two algorithms is
not significant.

5.5 LETOR 2.0

This data set corresponds to a relatively hard ranking problem, with an average of only 1% relevant
query-URL pairs per query. It consists of 5 folds. Our Matlab implementation (with CVX) of the
algorithms prevented us from trying our approach on larger data sets. Hence from each training fold
we randomly selected 500 items for training. For testing, we selected 1000 items at random from the
test fold. Here, we only report results for P@1%. SVMPERF obtained an accuracy of 1.5%± 1.5%

while the AATP algorithm obtained an accuracy of 4.6% ± 2.4%. This significantly better result
indicates the power of the algorithm proposed.

6 Conclusion

We presented a series of results for the problem of accuracy at the top quantile, including an AATP
algorithm, a margin-based theoretical analysis in support of that algorithm, and a series of experi-
ments with several data sets demonstrating the effectiveness of our algorithm. These results are of
practical interest in applications where the accuracy among the top quantile is sought. The analysis
of problems based on other loss functions depending on the top ⌧ -quantile scores is also likely to
benefit form the theoretical and algorithmic results we presented.

The optimization algorithm we discussed is highly parallelizable, since it is based on solving 2m
independent QPs. Our initial experiments reported here were carried out using Matlab with CVX,
which prevented us from evaluating our approach on larger data sets, such as the full LETOR 2.0
data set. However, we have now designed a solution for very large m based on the ADMM (Al-
ternating Direction Method of Multipliers) framework [4]. We have implemented that solution and
will present and discuss it in future work.
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