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Abstract
The alternating direction method of multipliers is a powerful operator splitting tech-
nique for solving structuredoptimizationproblems. For convexoptimizationproblems,
it is well known that the algorithm generates iterates that converge to a solution, pro-
vided that it exists. If a solution does not exist, then the iterates diverge. Nevertheless,
we show that they yield conclusive information regarding problem infeasibility for
optimization problems with linear or quadratic objective functions and conic con-
straints, which includes quadratic, second-order cone, and semidefinite programs. In
particular, we show that in the limit the iterates either satisfy a set of first-order opti-
mality conditions or produce a certificate of either primal or dual infeasibility. Based
on these results, we propose termination criteria for detecting primal and dual infea-
sibility.
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1 Introduction

Operator splitting methods can be used to solve composite minimization prob-
lems where we minimize the sum of two convex, closed, and proper functions.
These methods encompass algorithms such as the proximal gradient method (PGM),
Douglas–Rachford splitting (DRS), and the alternating direction method of multipli-
ers (ADMM) [1] and have been applied to problems ranging from feasibility and best
approximation problems [2,3] to quadratic and conic programs [4–6]. Due to their
relatively low per-iteration computational cost and ability to exploit sparsity in the
problem data [6], splitting methods are suitable for embedded [7–9] and large-scale
optimization [10] and have increasingly been applied for solving problems arising in
signal processing [11,12], machine learning [13], and optimal control [14].

In order to solve a composite minimization problem, PGM requires differentiability
of one of the two functions. If a fixed step size is used in the algorithm, then one also
requires a bound on the Lipschitz constant of the function’s gradient [10]. On the
other hand, ADMM and DRS, which turn out to be equivalent to each other, do not
require any additional assumptions on the problem beyond convexity, making them
more robust to the problem data.

The growing popularity of ADMM has triggered a strong interest in understand-
ing its theoretical properties. Provided that a problem is solvable and satisfies certain
constraint qualification (see [15, Cor. 26.3] for more details), both ADMM and DRS
are known to converge to an optimal solution [13,15]. The use of ADMM for solving
convex quadratic programs (QPs) was analyzed in [4] and was shown to admit an
asymptotic linear convergence rate. The authors in [16] analyzed global linear conver-
gence of ADMM for solving strongly convex QPs with inequality constraints that are
linearly independent, and the authors in [17] extended these results to a wider class of
optimization problems involving a strongly convex objective function. A particularly
convenient framework for analyzing the asymptotic behavior of such method is by
representing it as a fixed-point iteration of an averaged operator [15,17,18].

The ability to detect infeasibility of an optimization problem is very important in
many applications, e.g., in any embedded application or in mixed-integer optimization
when branch-and-bound techniques are used [19]. It is well known that for infeasible
convex optimization problems some of the iterates of ADMM and DRS diverge [20].
However, terminating the algorithm, when the iterates become large, is unreliable in
practice for several reasons. First, an upper bound on the allowed norm of the iter-
ates should be sufficiently large so that the number of false detections of infeasibility
is reduced. Second, divergence of the iterates is observed to be very slow in prac-
tice. Finally, such termination criterion is just an indication that a problem might be
infeasible, and not a certificate of infeasibility.

Aside from [20], the asymptotic behavior of ADMM and DRS for infeasible prob-
lems has been studied only in some special cases. DRS for solving feasibility problems
involving two convex sets that do not necessarily intersect was studied in [3,21–24].
The authors in [25] study the asymptotic behavior of ADMM for solving convex QPs
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when the problem is infeasible, but impose full rank assumptions on certain matrices
derived from the problem data. The authors in [5] apply ADMM to the homogeneous
self-dual embedding of a convex conic program, thereby producing a larger problem,
which is always feasible and whose solutions can be used either to produce a primal-
dual solution or a certificate of infeasibility for the original problem. A disadvantage
of this approach in application to optimization problemswith quadratic objective func-
tions is that the problem needs to be transformed into an equivalent conic program,
which is in general harder to solve than the original problem [26,27].

In this paper, we consider a class of convex optimization problems that includes
linear programs (LPs), QPs, second-order cone programs (SOCPs), and semidefinite
programs (SDPs) as special cases. We use a particular version of ADMM, introduced
in [28], that imposes no conditions on the problem data such as strong convexity of
the objective function or full rank of the constraint matrix. We show that the method
either generates iterates for which the violation of the optimality conditions goes to
zero, or produces a certificate of primal or dual infeasibility. These results are directly
applicable to infeasibility detection in ADMM for the considered class of problems.

We introduce some definitions and notation in Sect. 2, the problem of interest in
Sect. 3, and present a particular ADMM algorithm for solving it in Sect. 4. Section 5
analyzes the asymptotic behavior of ADMM and shows that the algorithm can detect
primal and dual infeasibility of the problem. Section 6 demonstrates these results on
several small numerical examples. Finally, Sect. 7 concludes the paper.

2 Notation

All definitions introduced here are standard and can be found, for example, in [15,29].
Let N denote the set of natural numbers, R the set of real numbers, R+ the set

of nonnegative real numbers, R̃ := R ∪ {+∞} the extended real line, and Rn the
n-dimensional real space equipped with inner product ⟨·, ·⟩, induced norm ∥·∥, and
identity operator Id : x &→ x . We denote by Rm×n the set of real m-by-n matrices
and by Sn (Sn+) the set of real n-by-n symmetric (positive semidefinite) matrices.
Let vec : Sn &→ Rn2 be the operator mapping a matrix to the stack of its columns,
mat = vec−1 its inverse operator, and diag : Rn &→ Sn the operator mapping a vector
to a diagonal matrix. For a sequence {xk}k∈N, we define δxk+1 := xk+1 − xk . The
proximal operator of a convex, closed, and proper function f : Rn &→ R̃ is given by

prox f (x) := argmin
y

{
f (y)+ 1

2∥y − x∥2
}
.

For a nonempty, closed, and convex set C ⊆ Rn , we denote the indicator function
of C by

IC(x) :=
{
0, x ∈ C,
+∞, otherwise,
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the distance of x ∈ Rn to C by

distC(x) := min
y∈C

∥x − y∥,

the projection of x ∈ Rn onto C by

"C(x) := argmin
y∈C

∥x − y∥,

the support function of C by

SC(x) := sup
y∈C

⟨x, y⟩ ,

the recession cone of C by

C∞ := {y ∈ Rn : x + τ y ∈ C, x ∈ C, τ ≥ 0},

and the normal cone of C at x ∈ C by

NC(x) := {y ∈ Rn : supx ′∈C
〈
x ′ − x, y

〉
≤ 0}.

Note that "C is the proximal operator of IC . For a convex cone K ⊆ Rn , we denote
its polar cone by

K◦ := {y ∈ Rn : supx∈K ⟨x, y⟩ ≤ 0},

and for any b ∈ Rn we denote a translated cone by Kb := K + {b}.
Let D be a nonempty subset of Rn . We denote the closure of D by clD. For an

operator T : D &→ Rn , we define its fixed-point set as

Fix T := {x ∈ D : T x = x}

and denote its range by ran(T ). We say that T is nonexpansive if

∥T x − T y∥ ≤ ∥x − y∥, ∀(x, y) ∈ D × D,

and T is α-averaged with α ∈ ]0, 1[ if there exists a nonexpansive operator
R : D &→ Rn such that T = (1 − α) Id+αR.

3 ProblemDescription

Consider the following convex optimization problem:

min
x

(
1
2 x

T Px + qT x
)

s.t. Ax ∈ C, (1)
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with P ∈ Sn+, q ∈ Rn , A ∈ Rm×n , and C ⊆ Rm a nonempty, closed, and convex set.
We make the following assumption on the set C:

Assumption 3.1 The set C is the Cartesian product of a convex and compact set
B ⊆ Rm1 , and a translated closed and convex cone Kb ⊆ Rm2 , where m1 and m2
are nonnegative integers and m1 + m2 = m, i.e., C = B × Kb.

Many convex problems of practical interest, including LPs, QPs, SOCPs, and SDPs,
can be written in the form of problem (1) with C satisfying the conditions of Assump-
tion 3.1. We are interested in finding either an optimal solution to problem (1) or a
certificate of either primal or dual infeasibility.

3.1 Optimality Conditions

We will find it convenient to rewrite problem (1) in an equivalent form by introducing
a variable z ∈ Rm to obtain

min
(x,z)

(
1
2 x

T Px + qT x
)

s.t. Ax = z and z ∈ C. (2)

We can then write the optimality conditions for problem (2) as:

Ax − z = 0 (3a)

Px + q + AT y = 0 (3b)

z ∈ C, y ∈ NC(z), (3c)

where y ∈ Rm is a Lagrange multiplier associated with the constraint Ax = z. If there
exist x ∈ Rn , z ∈ Rm , and y ∈ Rm that satisfy conditions (3), then we say that (x, z)
is a primal and y is a dual solution to problem (2). For completeness, we derive the
optimality conditions in Lemma A.1 of “Appendix.”

3.2 Infeasibility Certificates

In this section, we derive conditions for primal and dual infeasibility. The dual problem
associated with problem (1) is

max
(x,y)

(
− 1

2 x
T Px − SC(y)

)
s.t. Px + AT y = −q and y ∈ (C∞)◦ (4)

and its derivation is included in Lemma A.2 of “Appendix.”
Wewill use the following pair of results to certify infeasibility of (1) in cases where

it is primal and/or dual strongly infeasible; we refer the reader to [30] for more details
on strong and weak infeasibility.
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Proposition 3.1

(i) If there exists some ȳ ∈ Rm such that

AT ȳ = 0 and SC(ȳ) < 0, (5)

then the primal problem (1) is infeasible.
(ii) If there exists some x̄ ∈ Rn such that

P x̄ = 0, Ax̄ ∈ C∞, and ⟨q, x̄⟩ < 0, (6)

then the dual problem (4) is infeasible.

Proof (i) The first condition in (5) implies

inf
x

⟨ȳ, Ax⟩ = inf
x

〈
AT ȳ, x

〉
= 0,

and the second condition is equivalent to

sup
z∈C

⟨ȳ, z⟩ < 0.

Therefore, {z ∈ Rm : ⟨ȳ, z⟩ = 0} is a hyperplane that separates the sets
{Ax : x ∈ Rn} and C strongly [31, Thm. 11.1], meaning that problem (1) is
infeasible.

(ii) Define the setQ := {Px+ AT y : (x, y) ∈ Rn × (C∞)◦}. The first two conditions
in (6) imply

sup
s∈Q

⟨x̄, s⟩ = sup
{ 〈

x̄, Px + AT y
〉
: x ∈ Rn, y ∈ (C∞)◦

}

= sup
x

⟨Px̄, x⟩ + sup
{ ⟨Ax̄, y⟩ : y ∈ (C∞)◦

}

≤ 0,

where we used the fact that the inner product between vectors in a cone and its
polar is nonpositive. Since the third condition in (6) can bewritten as ⟨x̄,−q⟩ > 0,
this means that {x ∈ Rn : ⟨x̄, x⟩ = 0} is a hyperplane that separates the sets Q
and {−q} strongly, and thus, the dual problem (4) is infeasible. ⊓2

Note that, if condition (5) in Proposition 3.1 holds, then ȳ also represents an
unbounded direction in the dual problem assuming it is feasible. Likewise, x̄ in con-
dition (6) represents an unbounded direction for the primal problem if it is feasible.
However, since we cannot exclude the possibility of simultaneous primal and dual
infeasibility, we will refer to condition (5) as primal infeasibility rather than dual
unboundedness, and vice versa for (6).

In some cases, e.g., when C is compact or polyhedral, conditions (5) and (6) in
Proposition 3.1 are also necessary for infeasibility, andwe say that (5) and (6) are strong
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alternatives for primal and dual feasibility, respectively. When C is a convex cone,
additional assumptions are required for having strong alternatives; see, for example,
[32, §5.9.4].

Remark 3.1 Due to Assumption 3.1, the support function of C takes the following
form:

SC(ȳ) = SB(ȳ1)+ SKb (ȳ2),

where ȳ = (ȳ1, ȳ2)with ȳ1 ∈ Rm1 and ȳ2 ∈ Rm2 . Since the support function ofKb is

SKb (ȳ2) =
{

⟨b, ȳ2⟩ , ȳ2 ∈ K◦,
+∞, otherwise,

condition (5) is then equivalent to

AT ȳ = 0, ȳ2 ∈ K◦, and SB(ȳ1)+ ⟨b, ȳ2⟩ < 0. (7)

4 Alternating DirectionMethod of Multipliers (ADMM)

ADMM is an operator splitting method that can be used for solving composite mini-
mization problems of the form

min
w∈Rp

( f (w)+ g(w)) , (8)

where f : Rp &→ R̃ and g : Rp &→ R̃ are convex, closed, and proper functions [13].
The iterates of ADMM in application to problem (8) can be written as

w̃k+1 ← prox f (w
k − uk) (9a)

wk+1 ← proxg
(
αw̃k+1 + (1 − α)wk + uk

)
(9b)

uk+1 ← uk + αw̃k+1 + (1 − α)wk − wk+1, (9c)

where α ∈ ]0, 2[ is the relaxation parameter.
We can write problem (2) in the general form (8) by setting

f (x, z) = 1
2 x

T Px + qT x + IAx=z(x, z), (10a)

g(x, z) = IC(z). (10b)

If we use the norm ∥(x, z)∥ =
√

σ∥x∥22 + ρ∥z∥22 with (σ, ρ) > 0 in the proximal
operators of functions f and g, then ADMM reduces to Algorithm 1, which was first
introduced in [28]. The scalars σ and ρ are called the penalty parameters. Note that
the strict positivity of both σ and ρ ensures that the equality constrained QP in step 4
of Algorithm 1 has a unique solution for any P ∈ Sn+ and A ∈ Rm×n .
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Algorithm 1 ADMM for problem (1).
1: given initial values x0, z0, y0 and parameters ρ > 0, σ > 0, α ∈ ]0, 2[
2: Set k = 0
3: repeat
4: (x̃k+1, z̃k+1) ← argmin

(x̃,z̃):Ax̃=z̃

1
2 x̃

T P x̃ + qT x̃ + σ
2 ∥x̃ − xk∥22 +

ρ
2 ∥z̃ − zk + ρ−1yk∥22

5: xk+1 ← α x̃k+1 + (1 − α)xk

6: zk+1 ← "C
(
αz̃k+1 + (1 − α)zk + ρ−1yk

)

7: yk+1 ← yk + ρ
(
αz̃k+1 + (1 − α)zk − zk+1

)

8: k ← k + 1
9: until termination condition is satisfied

Unless otherwise stated, we will use ⟨·, ·⟩ to denote the standard inner product in
the Euclidean space, and ∥·∥ to denote the induced norm. The dimension of the space
will be clear from the context.

4.1 Reformulation as the Douglas–Rachford Splitting (DRS)

It is well known that ADMMandDRS are equivalentmethods [33]. The authors in [34]
show that the ADMM algorithm can be described alternatively in terms of the fixed-
point iteration of the Douglas–Rachford operator, which is known to be averaged [35].
In particular, the algorithm given by iteration (9) can alternatively be implemented as

wk ← proxg(s
k) (11a)

w̃k ← prox f (2w
k − sk) (11b)

sk+1 ← sk + α(w̃k − wk). (11c)

Similarly, an iteration of Algorithm 1 is equivalent to

(x̃ k, z̃k) ← argmin
(x̃,z̃):Ax̃=z̃

1
2 x̃

T P x̃ + qT x̃

+ σ
2 ∥x̃ − xk∥2 + ρ

2 ∥z̃ − (2"C − Id)(vk)∥2 (12a)

xk+1 ← xk + α
(
x̃ k − xk

)
(12b)

vk+1 ← vk + α
(
z̃k − "C(v

k)
)

(12c)

where

zk = "C(v
k) (13a)

yk = ρ(Id−"C)(v
k). (13b)

We will exploit the following result in the next section to analyze the asymptotic
behavior of the algorithm.
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Fact 4.1 The iteration described in (12) amounts to

(xk+1, vk+1) ← T (xk, vk),

where T : Rn+m &→ Rn+m is an (α/2)-averaged operator.

Proof Iteration (11) is a special case of iteration (49)–(51) in [34, §IV-C] with A = Id,
B = − Id, and c = 0, which is equivalent to

sk+1 ← TDRsk,

where TDR is the Douglas–Rachford operator given by

TDR = (1 − α
2 ) Id+α

2 (2 prox f − Id) ◦ (2 proxg − Id),

which is known to be (α/2)-averaged [17,35]. The result follows from the fact that
iteration (12) is a special case of iteration (11) with f and g given by (10), and the
inner product given by ⟨(x1, z1), (x2, z2)⟩ = σ ⟨x1, x2⟩ + ρ ⟨z1, z2⟩. ⊓2

Due to [15, Prop. 6.46], the identities in (13) imply that in each iteration the pair
(zk, yk) satisfies optimality condition (3c) by construction. The solution to the equality
constrained QP in (12a) satisfies the pair of optimality conditions

0 = Ax̃k − z̃k (14a)

0 = (P + σ I )x̃ k + q − σ xk + ρAT
(
z̃k − (2"C − Id)(vk)

)
. (14b)

If we rearrange (12b) and (12c) to isolate x̃ k and z̃k , i.e., write

x̃ k = xk + α−1δxk+1 (15a)

z̃k = zk + α−1δvk+1, (15b)

and substitute them into (14), then using (13)we obtain the following relations between
the iterates:

Axk − "C(v
k) = −α−1

(
Aδxk+1 − δvk+1

)
(16a)

Pxk + q + ρAT (Id−"C)(v
k) = −α−1

(
(P + σ I )δxk+1 + ρAT δvk+1

)
. (16b)

Observe that the right-hand terms of (16) are a direct measure of how far the iterates
(xk, zk, yk) are from satisfying optimality conditions (3a) and (3b). We refer to the
left-hand terms of (16a) and (16b) as the primal and dual residuals, respectively. In
the next section, we will show that the successive differences (δxk, δvk) appearing
in the right-hand side of (16) converge and can be used to test for primal and dual
infeasibility.
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5 Asymptotic Behavior of ADMM

In order to analyze the asymptotic behavior of iteration (12), which is equivalent to
Algorithm 1, we will rely heavily on the following results:

Lemma 5.1 Let D be a nonempty, closed, and convex subset of Rn and suppose that
T : D &→ D is an averaged operator. Let s0 ∈ D, sk = T ks0, and δs be the projection
of the zero vector onto cl ran(T − Id). Then

(i) 1
k s

k → δs.
(ii) δsk → δs.
(iii) If Fix T ̸= ∅, then {sk}k∈N converges to a point in Fix T .

Proof The first result is [36, Cor. 3], the second is [37, Cor. 2.3], and the third is [15,
Thm. 5.14]. ⊓2
Note that, since ran(T − Id) is not necessarily closed or convex, the projection onto
this set may not exist, but the projection onto its closure always exists. Moreover,
since cl ran(T − Id) is convex [36, Lem. 4], the projection is unique. Due to Fact 4.1,
Lemma 5.1 ensures that ( 1k x

k, 1
k v

k) → (δx, δv) and (δxk, δvk) → (δx, δv).
The core results of this paper are contained within the following two propositions,

which establish various relationships between the limits δx and δv; we include several
supporting results required to prove these results in “Appendix.” Given these two
results, itwill thenbe straightforward to extract certificates of optimality or infeasibility
in Sect. 5.1. For both of these central results, and in the remainder of the paper, we
define

δz := "C∞(δv) (17a)

δy := ρ"(C∞)◦(δv). (17b)

Proposition 5.1 Suppose that Assumption 3.1 holds. Then the following relations hold
between the limits δx, δz, and δy:

(i) Aδx = δz.
(ii) Pδx = 0.
(iii) AT δy = 0.
(iv) 1

k z
k → δz and δzk → δz.

(v) 1
k y

k → δy and δyk → δy.

Proof Commensurate with our partitioning of the constraint set as C = B × Kb, we
partition the matrix A and the iterates into components of appropriate dimension. We
use subscript 1 for those components associatedwith the setB and subscript 2 for those
associated with the set Kb, e.g., zk = (zk1, z

k
2) where zk1 ∈ B and zk2 ∈ Kb, and the

matrix A = [A1; A2]. Note throughout that C∞ = {0} × K and (C∞)◦ = Rm1 × K◦,
and thus,

"C∞(δv) =
[

0
"K(δv2)

]
(18a)
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"(C∞)◦(δv) =
[

δv1
"K◦(δv2)

]
. (18b)

(i) Divide (16a) by k, take the limit, and apply Lemma 5.1 to get

Aδx = lim
k→∞

1
k"C(v

k).

Due to Lemma A.4 and the compactness of B, we have

[
A1δx
A2δx

]
= lim

k→∞

[
1
k"B(v

k
1)

1
k"Kb (v

k
2)

]

=
[

0
"K(δv2)

]
. (19)

Combining the equalities above with (18a) and (17a), we obtain

Aδx = lim
k→∞

1
k"C(v

k) = "C∞(δv) = δz. (20)

(ii) Divide (16b) by ρk, take the inner product of both sides with δx , and take the
limit to obtain

−ρ−1 ⟨Pδx, δx⟩ = lim
k→∞

〈
Aδx, 1

k vk − 1
k"C(v

k)
〉

=
〈
"C∞(δv), δv − "C∞(δv)

〉

=
〈
"C∞(δv),"(C∞)◦(δv)

〉

= 0,

where we used Lemma 5.1 and (20) in the second equality and the Moreau
decomposition [15, Thm. 6.29] in the third and fourth. Since P ∈ Sn+, it follows
that

Pδx = 0. (21)

(iii) Divide (16b) by k, take the limit, and use (21) to obtain

0 = lim
k→∞

1
k ρA

T (Id−"C)(v
k)

= ρAT lim
k→∞

(
1
k v

k − 1
k"C(v

k)
)

= ρAT (δv − "C∞(δv))

= AT ρ"(C∞)◦(δv)

= AT δy,

where we used Lemma 5.1 and (20) in the third equality, the Moreau decompo-
sition in the fourth, and (17b) in the fifth.
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(iv): We first show that the sequence {δzk}k∈N converges to δz. From (15), we have

−α−1
(
δxk+1 − δxk

)
= δxk − δ x̃ k, (22a)

−α−1
(
δvk+1 − δvk

)
= δzk − δz̃k . (22b)

Take the limit of (22a) to obtain

lim
k→∞

δ x̃ k = lim
k→∞

δxk = δx .

From (14a), we now have δz̃k = Aδ x̃ k → Aδx . Take the limit of (22b) and use
(20) to obtain

lim
k→∞

δzk = lim
k→∞

δz̃k = Aδx = δz.

We now show that the sequence { 1k zk}k∈N also converges to δz. Dividing (13a)
by k and taking the limit, we obtain

lim
k→∞

1
k z

k = lim
k→∞

1
k"C(v

k) = δz,

where the second equality follows from (20).
(v): We first show that the sequence {δyk}k∈N converges to δy. From (13), we have

yk = ρ
(
vk − zk

)
, and thus,

lim
k→∞

δyk = ρ lim
k→∞

(
δvk − δzk

)
= ρ (δv − "C∞(δv)) = ρ"(C∞)◦(δv) = δy,

where we used the Moreau decomposition in the third equality and (17b) in the
last.
We now show that the sequence { 1k yk}k∈N also converges to δy. Dividing (13b)
by k and taking the limit, we obtain

lim
k→∞

1
k y

k = ρ lim
k→∞

(
1
k v

k − 1
k"C(v

k)
)
= ρ(δv − "C∞(δv)) = δy. ⊓2

Proposition 5.1 shows that the limits δy and δx will always satisfy the subspace and
conic constraints in the primal and dual infeasibility conditions (5) and (6), respec-
tively. We next consider the terms appearing in the inequalities in (5) and (6).

Proposition 5.2 Suppose that Assumption 3.1 holds. Then the following identities hold
for the limits δx and δy:

(i) ⟨q, δx⟩ = −σα−1∥δx∥2 − ρα−1∥Aδx∥2.
(ii) SC(δy) = −ρ−1α−1∥δy∥2.
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Proof Take the inner product of both sides of (16b) with δx and use Proposition 5.1(ii)
to obtain

⟨q, δx⟩ + ρ
〈
Aδx, (Id−"C)(v

k)
〉
= −σα−1

〈
δx, δxk+1

〉
− ρα−1

〈
Aδx, δvk+1

〉
.

Using (19) and then taking the limit give

⟨q, δx⟩ = −σα−1∥δx∥2 − ρα−1 ⟨Aδx, δv⟩
− ρ lim

k→∞

〈
"K(δv2),"K◦(vk2 − b)

〉

= −σα−1∥δx∥2 − ρα−1 ⟨"C∞(δv), δv⟩
− ρ lim

k→∞

〈
"K(δv2),"K◦(vk2 − b)

〉

= −σα−1∥δx∥2 − ρα−1∥"C∞(δv)∥2

− ρ lim
k→∞

〈
"K(δv2),"K◦(vk2 − b)

〉
,

(23)

where we used Lemma A.3(ii) in the first equality, (20) in the second, and
Lemma A.3(iv) in the third.

Now take the inner product of both sides of (16a) with "(C∞)◦(δv) to obtain

α−1
〈
"(C∞)◦(δv), δv

k+1
〉
=
〈
AT"(C∞)◦(δv), x

k + α−1δxk+1
〉

−
〈
"(C∞)◦(δv),"C(v

k)
〉
.

According to Proposition 5.1(iii) and (17b), the first inner product on the right-hand
side is zero. Taking the limit, we obtain

lim
k→∞

〈
"(C∞)◦(δv),"C(v

k)
〉
= −α−1 〈"(C∞)◦(δv), δv

〉

= −α−1∥"(C∞)◦(δv)∥2,

where the second equality follows from Lemma A.3(iv). Using (18b), we can write
the equality above as

−α−1∥"(C∞)◦(δv)∥2 = lim
k→∞

〈
δv1,"B(v

k
1)
〉
+
〈
"K◦(δv2),"Kb (v

k
2)
〉

= SB(δv1)+ ⟨"K◦(δv2), b⟩
+ lim

k→∞

〈
"K◦(δv2),"Kb (v

k
2 − b)

〉

= SB(δv1)+ SKb ("K◦(δv2))

+ lim
k→∞

〈
"K◦(δv2),"Kb (v

k
2 − b)

〉

= SC("(C∞)◦(δv))+ lim
k→∞

〈
"K◦(δv2),"Kb (v

k
2 − b)

〉
,
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where the second equality follows from Lemmas A.3(i) and A.5, the third from
Lemma A.3(v), and the fourth from (18b). Multiplying by ρ and using (17b) and
the positive homogeneity of SC , we obtain

SC(δy) = −ρα−1∥"(C∞)◦(δv)∥2 − ρ lim
k→∞

〈
"K◦(δv2),"K(v

k
2 − b)

〉
. (24)

We will next show that the limits in (23) and (24) are equal to zero. Summing the
two equalities, we obtain

⟨q, δx⟩ + SC(δy)+ σα−1∥δx∥2 + ρα−1∥δv∥2

= −ρ lim
k→∞

〈
"K(δv2),"K◦(vk2 − b)

〉

− ρ lim
k→∞

〈
"K◦(δv2),"K(v

k
2 − b)

〉
,

(25)

where we used ∥δv∥2 = ∥"C∞(δv)∥2 + ∥"(C∞)◦(δv)∥2 [15, Thm. 6.29].
Now take the inner product of both sides of (16b) with xk to obtain
〈
Pxk, xk

〉
+
〈
q, xk

〉
+ ρ

〈
Axk, (Id−"C)(v

k)
〉
= −α−1

〈
Pδxk+1, xk

〉

− σα−1
〈
δxk+1, xk

〉

− ρα−1
〈
Axk, δvk+1

〉
.

(26)

We can rewrite the third inner product on the left-hand side of (26) as
〈
Axk, (Id−"C)(v

k)
〉
=
〈
"C(v

k)+ α−1
(
δvk+1 − Aδxk+1

)
, (Id−"C)(v

k)
〉

=
〈
"B(v

k
1), v

k
1

〉
− ∥"B(v

k
1)∥2

+
〈
"Kb (v

k
2), (Id−"Kb )(v

k
2)
〉

+ α−1
〈
δvk+1 − Aδxk+1, ρ−1yk

〉

=
〈
"B(v

k
1), v

k
1

〉
− ∥"B(v

k
1)∥2 +

〈
b,"K◦(vk2 − b)

〉

+ α−1
〈
δvk+1 − Aδxk+1, ρ−1yk

〉
,

where we used (16a) in the first equality, (13b) in the second, and Lemma A.3(iii) in
the third. Substituting this expression into (26), dividing by k, and taking the limit, we
obtain

lim
k→∞

1
k

〈
Pxk, xk

〉
+ ⟨q, δx⟩ + SC(δy)+ σα−1∥δx∥2

= −ρα−1
〈
δv − Aδx, ρ−1δy

〉

− ρα−1 ⟨Aδx, δv⟩ ,

(27)
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where we used Lemmas A.3(v), A.4, A.5, Proposition 5.1(ii), (17b), (18b), and the
compactness of B. The sum of inner products appearing on the right-hand side of (27)
can be written as
〈
δv − Aδx, ρ−1δy

〉
+ ⟨Aδx, δv⟩ =

〈
δv − "C∞(δv),"(C∞)◦(δv)

〉
+ ⟨"C∞(δv), δv⟩

= ∥"(C∞)◦(δv)∥2 + ∥"C∞(δv)∥2

= ∥δv∥2,

where we used (17b) and (20) in the first equality, and Lemma A.3(iv) and theMoreau
decomposition in the second. Substituting the equality above into (27), we obtain

⟨q, δx⟩ + SC(δy)+ σα−1∥δx∥2 + ρα−1∥δv∥2 = − lim
k→∞

1
k

〈
Pxk, xk

〉
. (28)

Comparing the identities in (25) and (28), we get the following relation:

lim
k→∞

1
k

〈
Pxk, xk

〉
= ρ lim

k→∞

〈
"K(δv2),"K◦(vk2 − b)

〉

+ ρ lim
k→∞

〈
"K◦(δv2),"K(v

k
2 − b)

〉
.

The positive semidefiniteness of P implies that the sequence on the left-hand side
is term-wise nonnegative. Since the two sequences on the right-hand side involve
inner products of elements in K and K◦, each sequence is term-wise nonpositive.
Consequently, each of these limits must be zero. Finally, using (17b) and (20), the
claims of the proposition then follow directly from (23) and (24). ⊓2

5.1 Optimality and Infeasibility Certificates

We are now in a position to prove that, in the limit, the iterates of Algorithm 1 either
satisfy the optimality conditions (3) or produce a certificate of strong infeasibility.
Recall that Fact 4.1, Lemma 5.1(ii), and Proposition 5.1(iv)–(v) ensure convergence
of the sequence {δxk, δzk, δyk}k∈N.
Proposition 5.3 (Optimality) If (δxk, δzk, δyk) → (0, 0, 0), then the optimality con-
ditions (3) are satisfied in the limit, i.e.,

∥Pxk + q + AT yk∥ → 0 and ∥Axk − zk∥ → 0.

Proof Follows from (13) and (16). ⊓2
Lemma5.1(iii) is sufficient to prove that if problem (1) is solvable, then the sequence

of iterates {xk, zk, yk}k∈N converges to its primal-dual solution. However, conver-
gence of {δxk, δzk, δyk}k∈N to zero is not itself sufficient to prove convergence of
{xk, zk, yk}k∈N; we provide a numerical example in Sect. 6.3 to show when this sce-
nario can occur. According to Proposition 5.3, in this case the violation of optimality
conditions still goes to zero in the limit.

123

Author's personal copy



Journal of Optimization Theory and Applications

We next show that if {δxk, δzk, δyk}k∈N converges to a nonzero value, then we can
construct a certificate of primal and/or dual infeasibility. Note that, due to Proposi-
tion 5.1(ii), δz can be nonzero only when δx is nonzero.

Theorem 5.1 (Infeasibility) Suppose that Assumption 3.1 holds.

(i) If δy ̸= 0, then problem (1) is infeasible and δy satisfies the primal infeasibility
condition (5).

(ii) If δx ̸= 0, then problem (4) is infeasible and δx satisfies the dual infeasibility
condition (6).

(iii) If δx ̸= 0 and δy ̸= 0, then problems (1) and (4) are simultaneously infeasible.

Proof (i) Follows from Propositions 5.1(iii) and 5.2(ii).
(ii) Follows from Propositions 5.1(iii)–(ii) and 5.2(i).

(iii): Follows from (i) and (ii).
⊓2

Remark 5.1 It is easy to show that δy and δx would still provide certificates of primal
and dual infeasibility if we instead used the norm ∥(x, z)∥ =

√
xT Sx + zT Rz in the

proximal operators in (9), with R and S being diagonal positive definite matrices.

5.2 Termination Criteria

We can define termination criteria for Algorithm 1 so that the iterations stop when
either a primal-dual solution or a certificate of primal or dual infeasibility is found
with some predefined accuracy.

A reasonable criterion for detecting optimality is that the norms of primal and dual
residuals are smaller than some tolerance levels εprim > 0 and εdual > 0, respectively,
i.e.,

∥Axk − zk∥ ≤ εprim, ∥Pxk + q + AT yk∥ ≤ εdual. (29)

Since (δxk, δyk) → (δx, δy), a meaningful criterion for detecting primal and dual
infeasibility would be to use δyk and δxk to check that conditions (7) and (6) are
almost satisfied, i.e.,

∥AT δyk∥ ≤ εpinf , distK◦(δyk2 ) ≤ εpinf , SB(δy
k
1 )+

〈
b, δyk2

〉
< εpinf , (30)

and

∥Pδxk∥ ≤ εdinf , distC∞(Aδxk) ≤ εdinf , ⟨q, δxk⟩ < εdinf , (31)

where εpinf > 0 and εdinf > 0. Infeasibility detection based on these vectors is used
in OSQP [28], an open-source operator splitting solver for quadratic programming.
Note that the tolerance levels are often chosen relative to the scaling of the algorithm’s
iterates and the problem data; see [28, Sec. 3.4] for details.
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Although the optimality or infeasibility conditions are guaranteed to be satisfied
exactly only in the limit, at least one of the termination criteria given by (29)–(31) will
be satisfied after finitely many iterations for any positive tolerance levels εprim > 0,
εdual > 0, εpinf > 0, and εdinf > 0. For weakly infeasible problems, termination
criteria for both optimality and infeasibility will be satisfied for any given accuracy.
This means that an infinitesimally small perturbation to the problem can make it
solvable or strongly infeasible. We provide an example in Sect. 6.3 illustrating such
case.

Remark 5.2 Even though (δxk, δyk) → (δx, δy), termination criteria for detecting
infeasibility should not be implementedby simply checking that successive terms in the
sequences {δxk}k∈N and {δyk}k∈N are close together. The reason is that these sequences
can take values which repeat for many iterations even though they have not reached
their limit points, and such repeated values in these sequences will not necessarily
constitute infeasibility certificates. Instead, we check the infeasibility conditions (30)
and (31) directly, with the understanding that these conditions will necessarily be
satisfied in the limit for infeasible problems.

Remark 5.3 Instead of using δyk in the primal infeasibility criterion (30), we could
instead use the vector

"(C∞)◦(δy
k) =

[
δyk1

"K◦(δyk2 )

]
.

Note that the second condition in (30) would then be satisfied by construction.

6 Numerical Examples

In this section,we demonstrate via several numerical examples the different asymptotic
behaviors of the iterates generated by Algorithm 1 for solving optimization problems
of the form (1).

6.1 Parametric QP

Consider the QP

min
(x1,x2)

( 1
2 x

2
1 + x1 − x2

)

s.t. 0 ≤ x1 + ax2 ≤ u1
1 ≤ x1 ≤ 3
1 ≤ x2 ≤ u3,

(32)
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where a ∈ R, u1 ≥ 0, and u3 ≥ 1 are parameters. Note that the problem above is an
instance of problem (1) with

P =
[
1 0
0 0

]
, q =

[
1

−1

]
, A =

⎡

⎣
1 a
1 0
0 1

⎤

⎦ , C = [l, u], l =

⎡

⎣
0
1
1

⎤

⎦ , u =

⎡

⎣
u1
3
u3

⎤

⎦ ,

where [l, u] := {z ∈ Rm : l ≤ z ≤ u}. Depending on the values of parameters u1
and u3, the constraint set in (32) can be either bounded or unbounded. The projection
onto the set [l, u] can be evaluated as

"[l,u](z) = max (min(z, u), l) ,

and the support function of the bounded set B = [l, u] as

SB(y) = ⟨l,min(y, 0)⟩ + ⟨u,max(y, 0)⟩ ,

where min and max functions should be taken element-wise.
In the sequel, we will discuss four scenarios that can occur depending on the values

of the parameters: (i) optimality, (ii) primal infeasibility, (iii) dual infeasibility, and
(iv) simultaneous primal and dual infeasibility, and will show that Algorithm 1 cor-
rectly produces certificates for all four scenarios. In all cases, we set the parameters
α = ρ = σ = 1 and set the initial iterate (x0, z0, y0) = (0, 0, 0).

6.1.1 Optimality

Consider problem (32) with parameters

a = 1, u1 = 5, u3 = 3.

Algorithm 1 converges to x⋆ = (1, 3), z⋆ = (4, 1, 3), y⋆ = (0,−2, 1), for which the
objective value equals −1.5, and we have

Ax⋆ − z⋆ = 0 and Px⋆ + q + AT y⋆ = 0,

i.e., the pair (x⋆, y⋆) is a primal-dual solution to problem (32). Figure 1 shows con-
vergence of {xk, zk, yk}k∈N to a certificate of optimality. Recall that the iterates of the
algorithm always satisfy the optimality conditions (3c).

6.1.2 Primal Infeasibility

We next set the parameters of problem (32) to

a = 1, u1 = 0, u3 = 3.
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Fig. 1 Convergence of {xk , zk , yk }k∈N to a certificate of optimality for problem (32) with a = 1, u1 = 5,
and u3 = 3
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SC(δy k )

Fig. 2 Convergence of {δyk }k∈N to a certificate of primal infeasibility for problem (32) with a = 1, u1 = 0
and u3 = 3

Note that in this case the constraint set is C = {0} × [1, 3] × [1, 3]. The sequence
{δyk}k∈N generated by Algorithm 1 converges to δy = (2/3,−2/3,−2/3), and we
have

AT δy = 0 and SC(δy) = −4/3 < 0.

According to Proposition 3.1(i), δy is a certificate of primal infeasibility for the prob-
lem. Figure 2 shows convergence of {δyk}k∈N to a certificate of primal infeasibility.
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⟨q, δx k ⟩

Fig. 3 Convergence of {δxk }k∈N to a certificate of dual infeasibility for problem (32) with a = 0, u1 = 2,
and u3 = +∞

6.1.3 Dual Infeasibility

We set the parameters to

a = 0, u1 = 2, u3 = +∞.

The constraint set has the form C = B × Kb with

B = [0, 2] × [1, 3], K = R+, b = 1,

and the constraint matrix A can be written as

A =
[
A1
A2

]
with A1 =

[
1 0
1 0

]
and A2 =

[
0 1

]
. (33)

The sequence {δxk}k∈N generated by Algorithm 1 converges to δx = (0, 1
2 ), and we

have

Pδx = 0, A1δx = 0, A2δx = 1
2 ∈ K, ⟨q, δx⟩ = − 1

2 < 0.

According to Proposition 3.1(ii), δx is a certificate of dual infeasibility of the problem.
Figure 3 shows convergence of {δxk}k∈N to a certificate of dual infeasibility, where
distC∞ denotes the Euclidean distance to the set C∞ = {0} × {0} × R+.
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Fig. 4 Convergence of {δyk }k∈N and {δxk }k∈N to certificates of primal and dual infeasibility, respectively,
for problem (32) with a = 0, u1 = 0 and u3 = +∞

6.1.4 Simultaneous Primal and Dual Infeasibility

We set

a = 0, u1 = 0, u3 = +∞.

The constraint set has the form C = B × Kb with

B = {0} × [1, 3], K = R+, b = 1,

and the constraint matrix A can be written as in (33). The sequences {δxk}k∈N and
{δyk}k∈N generated by Algorithm 1 converge to δx = (0, 1

2 ) and δy = ( 12 ,− 1
2 , 0),

respectively. If we partition δy as δy = (δy1, δy2) with δy1 = ( 12 ,− 1
2 ) and δy2 = 0,

then we have

AT δy = 0, δy2 = 0 ∈ K◦, SB(δy1)+ ⟨b, δy2⟩ = − 1
2 < 0,

and

Pδx = 0, A1δx = 0, A2δx = 1
2 ∈ K, ⟨q, δx⟩ = − 1

2 < 0.

Therefore, δx and δy are certificates that the problem is simultaneously primal and
dual infeasible. Figure 4 shows convergence of {δyk}k∈N and {δxk}k∈N to certificates
of primal and dual infeasibility, respectively.
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6.2 Infeasible SDPs from SDPLIB

We next demonstrate the asymptotic behavior of Algorithm 1 on two infeasible SDPs
from the benchmark library SDPLIB [38]. The problems are given in the following
form

min
(x,z)

qT x s.t. Ax = z and z ∈ Sm
b ,

whereSm denotes the vectorized formofSm+, i.e., z ∈ Sm is equivalent tomat(z) ∈ Sm+,
and Sm

b := Sm + {b}.
Let X ∈ Sm have the following eigenvalue decomposition

X = U diag(λ1, . . . , λm)UT .

Then the projection of X onto Sm+ is

"Sm+(X) = U diag (max(λ1, 0), . . . ,max(λm, 0))UT .

6.2.1 Primal Infeasible SDP

The primal infeasible problem infp1 from SDPLIB has decision variables x ∈ R10

and z ∈ S30. We run Algorithm 1 with parameters α = 1 and ρ = σ = 0.1 from the
initial iterate (x0, z0, y0) = (0, 0, 0). Figure 5 shows convergence of {δyk}k∈N to a
certificate of primal infeasibility, where distSm (y) denotes the spectral norm distance
of mat(y) to the positive semidefinite cone Sm+.

6.2.2 Dual Infeasible SDP

Dual infeasible problem infd1 from SDPLIB has decision variables x ∈ R10 and
z ∈ S30. We run Algorithm 1 with parameters α = 1 and ρ = σ = 0.001 from the
initial iterate (x0, z0, y0) = (0, 0, 0). Figure 6 shows convergence of {δxk}k∈N to a
certificate of dual infeasibility.

6.3 Infeasible SDPwith No Certificate

Consider the following feasibility problem [39, Ex. 5]

min
(x1,x2)

0 s.t.

⎡

⎣
x1 1 0
1 x2 0
0 0 −x1

⎤

⎦ ≽ 0, (34)
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Fig. 5 Convergence of {δyk }k∈N to a certificate of primal infeasibility for problem infp1 from SDPLIB
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Fig. 6 Convergence of {δxk }k∈N to a certificate of dual infeasibility for problem infd1 from SDPLIB

noting that it is primal infeasible by inspection. If we write the constraint set in (34)
as

⎡

⎣
1 0 0
0 0 0
0 0 −1

⎤

⎦

︸ ︷︷ ︸
A1

x1 +

⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦

︸ ︷︷ ︸
A2

x2 +

⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦

︸ ︷︷ ︸
A0

≽ 0
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and denote by A = [vec(A1) vec(A2)] and b = − vec(A0), then the constraint
can be written as Ax ∈ S3

b , where S3 denotes the vectorized form of S3+. If we define
Y := mat(y), then the primal infeasibility condition (5) for the problemabove amounts
to

Y11 − Y33 = 0, Y22 = 0, Y12 < 0, Y ≼ 0,

where Yi j denotes the element of Y ∈ S3 in the i th row and j th column. Given that
Y ≼ 0 and Y22 = 0 imply Y12 = 0, the system above is infeasible as well. Note
that Y = 0 is feasible for the dual of problem (34) and problem (34) is thus not dual
infeasible.

We next show that (δxk, δZk, δY k) → (0, 0, 0), where δZk := mat(δzk) and
δY k := mat(δyk). Set

xk =
(
(1+ ρσ−1)ε, ε−1

)
and V k := mat(vk) = diag(ε, ε−1, 0),

where ε > 0. Iteration (12) then produces the following iterates

Zk = V k, x̃ k = (ε, ε−1), Z̃ k = diag(ε, ε−1,−ε),

and thus, we have

δxk+1 = α (x̃ k − xk) = α (−ρσ−1ε, 0)

δV k+1 = α (Z̃ k − Zk) = α diag(0, 0,−ε).

By taking ε arbitrarily small, we can make (δxk+1, δV k+1) arbitrarily close to zero,
which according to Lemma 5.1 means that (δxk, δV k) → (δx, δV ) = (0, 0), and
according to Proposition 5.3 the optimality conditions (3) are satisfied in the limit.
However, the sequence {xk, Zk, Y k}k∈N has no limit point; otherwise, such a point
would be a certificate for optimality of the problem. Let T denote the fixed-point
operator mapping (xk, V k) to (xk+1, V k+1). Since (δx, δV ) ∈ cl ran(T − Id) by def-
inition, and (δx, δV ) /∈ ran(T − Id), this means that the set ran(T − Id) is not closed,
and the distance from (δx, δV ) to ran(T − Id) is zero. In other words, the set

⎧
⎨

⎩

⎡

⎣
x1 1 0
1 x2 0
0 0 −x1

⎤

⎦ : (x1, x2) ∈ R2

⎫
⎬

⎭

and the semidefinite cone S3+ do not intersect, but are not strongly separable.
We run Algorithm 1 with parameters α = ρ = σ = 1 from the initial iterate

(x0, Z0,Y 0) = (0, 0, 0). Figure 7 shows convergence of residuals ∥Axk − zk∥2 and
∥AT yk∥2 to zero.
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Fig. 7 Convergence of residuals ∥Axk − zk∥2 and ∥AT yk∥2 for problem (34)

Remark 6.1 Let ε > 0. Consider the following perturbation to problem (34):

min
(x1,x2)

0 s.t.

⎡

⎣
x1 1 0
1 x2 0
0 0 −x1

⎤

⎦ ≽ −ε I .

This problem is feasible since the constraint above is satisfied for x1 = 0 and
x2 = 1/ε − ε.

Consider now the following problem:

min
(x1,x2)

0 s.t.

⎡

⎣
x1 1 0
1 x2 0
0 0 −x1

⎤

⎦ ≽ ε I .

This problem is strongly infeasible since the vector ȳ = vec (diag(−1, 0,−1)) satisfies
the primal infeasibility condition (5).

These two examples show that an infinitesimally small perturbation to problem (34)
can make the problem feasible or strongly infeasible.

7 Conclusions

We have analyzed the asymptotic behavior of ADMM for a class of convex optimiza-
tion problems and have shown that if the problem is primal and/or dual strongly
infeasible, then the sequence of successive differences of the algorithm’s iterates
converges to a certificate of infeasibility. Based on these results, we have proposed
termination criteria for detecting primal and dual infeasibility, providing for the first
time a set of reliable and generic stopping criteria for ADMM applicable to infeasible
convex problems.We have also provided numerical examples to demonstrate different
asymptotic behaviors of the algorithm’s iterates.
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Appendix A: Supporting Results

Lemma A.1 The first-order optimality conditions for problem (2) are conditions (3).

Proof We first rewrite problem (2) in the form

min
(x,z)

(
1
2 x

T Px + qT x + IC(z)
)

s.t. Ax = z

and then form its Lagrangian

L(x, z, y) := 1
2 x

T Px + qT x + IC(z)+ yT (Ax − z). (35)

Provided that the problem satisfies certain constraint qualification [15, Cor. 26.3], its
solution can be characterized via a saddle point of (35). Therefore, the first-order
optimality conditions can be written as [29, Ex. 11.52]

z ∈ C
0 = −∇xL(x, z, y) = −(Px + q + AT y)

NC(z) ∋ −∇zL(x, z, y) = y

0 = ∇yL(x, z, y) = Ax − z. ⊓2

Lemma A.2 The dual of problem (1) is given by problem (4).

Proof The dual function can be derived from the Lagrangian (35) as follows:

g(y) := inf
(x,z)

L(x, z, y)

= inf
x
{ 12 xT Px + (AT y + q)T x} + inf

z∈C
{−yT z}

= inf
x
{ 12 xT Px + (AT y + q)T x} − sup

z∈C
{yT z}.

Note that the minimum of the Lagrangian over x is attained when Px+ AT y+q = 0,
and the second term in the last line is SC(y). The dual problem, defined as the problem
of maximizing the dual function, can then be written in the form (4), where the conic
constraint on y is just the restriction of y to the domain of SC [31, p.112 and Cor.
14.2.1]. ⊓2
Lemma A.3 For any vectors v ∈ Rn, b ∈ Rn and a nonempty, closed, and convex cone
K ⊆ Rn,
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(i) "Kb (v) = b + "K(v − b).
(ii) (Id−"Kb )(v) = "K◦(v − b).
(iii)

〈
"Kb (v), (Id−"Kb )(v)

〉
= ⟨b,"K◦(v − b)⟩.

(iv) ⟨"K(v), v⟩ = ∥"K(v)∥2.
(v) SKb ("K◦(v)) = ⟨b,"K◦(v)⟩.
Proof Part (i) is from [15, Prop. 28.1(i)].

(ii) From part (i), we have

(Id−"Kb )(v) = v − b − "K(v − b) = "K◦(v − b),

where the second equality follows from the Moreau decomposition [15, Thm.
6.29].

(iii) Follows directly from parts (i) and (ii), and the Moreau decomposition.
(iv) From the Moreau decomposition, we have

⟨"K(v), v⟩ = ⟨"K(v),"K(v)+ "K◦(v)⟩ = ∥"K(v)∥2. ⊓2

(v) Since the support function of K evaluated at any point in K◦ is zero, we have

SKb ("K◦(v)) = ⟨b,"K◦(v)⟩ + SK("K◦(v)) = ⟨b,"K◦(v)⟩ .

Lemma A.4 Suppose that K ⊆ Rn is a nonempty, closed, and convex cone and for
some sequence {vk}k∈N, where vk ∈ Rn, we denote by δv := limk→∞ 1

k v
k , assuming

that the limit exists. Then for any b ∈ Rn,

lim
k→∞

1
k"Kb (v

k) = lim
k→∞

1
k"K(v

k − b) = "K(δv).

Proof Write the limit as

lim
k→∞

1
k"Kb (v

k) = lim
k→∞

1
k

(
b + "K(v

k − b)
)

= lim
k→∞

"K
(
1
k (v

k − b)
)

= "K

(
lim
k→∞

1
k v

k
)
,

where the first equality uses Lemma A.3(i) and the second and third follow from
the positive homogeneity [15, Prop. 28.22] and continuity [15, Prop. 4.8] of "K,
respectively. ⊓2
Lemma A.5 Suppose that B ⊆ Rn is a nonempty, convex, and compact set, and for
some sequence {vk}k∈N, where vk ∈ Rn, we denote by δv := limk→∞ 1

k v
k , assuming

that the limit exists. Then

lim
k→∞

1
k

〈
vk,"B(v

k)
〉
= lim

k→∞

〈
δv,"B(v

k)
〉
= SB(δv).

123

Author's personal copy



Journal of Optimization Theory and Applications

Proof Let zk := "B(vk). We have the following inclusion [15, Prop. 6.46]

vk − zk ∈ NB(z
k),

which, due to [15, Thm. 16.23], and the facts that SB is the Fenchel conjugate of IB
and NB is the subdifferential of IB, is equivalent to

〈
1
k (v

k − zk), zk
〉
= SB

(
1
k (v

k − zk)
)
.

Taking the limit of the identity above, we obtain

lim
k→∞

〈
1
k (v

k − zk), zk
〉
= lim

k→∞
SB
(
1
k (v

k − zk)
)

= SB
(
lim
k→∞

1
k (v

k − zk)
)
= SB(δv), (36)

where the second equality follows from the continuity of SB [15, Ex. 11.2] and the
third from the compactness of B. Since {zk}k∈N remains in the compact set B, we can
derive the following relation from (36):

∣∣∣∣SB(δv) − lim
k→∞

〈
δv, zk

〉∣∣∣∣ =
∣∣∣∣ limk→∞

〈
1
k (v

k − zk), zk
〉
−
〈
δv, zk

〉∣∣∣∣

=
∣∣∣∣ limk→∞

〈
1
k v

k − δv, zk
〉
− 1

k

〈
zk, zk

〉∣∣∣∣

≤ lim
k→∞

∥ 1
k v

k − δv∥
︸ ︷︷ ︸

→0

∥zk∥ + 1
k ∥zk∥2

= 0,

where the third row follows from the triangle and Cauchy-Schwarz inequalities and
the fourth from the compactness of B. Finally, we can derive the following identity
from (36):

SB(δv) = lim
k→∞

〈
1
k (v

k − zk), zk
〉
= lim

k→∞

〈
1
k v

k, zk
〉
− 1

k ∥zk∥2︸ ︷︷ ︸
→0

.

This concludes the proof. ⊓2
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