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Arbitrary-scale distributed statistical estimation

e large-scale statistics, machine learning, and optimization problems

— Al, internet applications, bioinformatics, signal processing, . . .
e datasets can be extremely large (10M, 100M, 1B+ training examples)

e distributed storage and processing of data

— cloud computing, Hadoop/MapReduce, . . .

e this talk: a way to do this
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Outline

® precursors

— dual decomposition
— method of multipliers

e alternating direction method of multipliers
e applications/examples

e conclusions/big picture
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Dual problem

e convex equality constrained optimization problem

minimize  f(x)
subject to Az =1b

e Lagrangian: L(z,y) = f(z) + y' (Az — b)
e dual function: ¢(y) = inf, L(x,y)
e dual problem:  maximize g(y)

e recover r* = argmin,, L(% Z/*)
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Dual ascent

e gradient method for dual problem: y**1 = ¢* + o*Vg(y*)
° Vg(yk) = AZ — b, where ¥ = argmin,, L(z, yk)

e dual ascent method is

gl = argmin, L(z,y*) // x-minimization

Yyl = yF + aF(Ax*Tt —b)  // dual update

e works, with lots of strong assumptions
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Dual decomposition

e suppose f is separable:

f(@) = fi(x) +-+ fn(en), o= (x1,...,2N)

e then L is separable in z: L(z,y) = Li(z1,y) +---+ Ly(zn,y) — y'b,
Li(ziy) = filzi) +y" Az

e x-minimization in dual ascent splits into /N separate minimizations

k+1 . - k
T, = argmin L;(x;,y")

Ly

which can be carried out in parallel
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Dual decomposition

e dual decomposition (Everett, Dantzig, Wolfe, Benders 1960-65)

k41
Ly

N
gttt = P af (L, AT - b)

= argminxil)i(xi,yk), i=1,...,N

k+1

)

e scatter yk; update x; in parallel; gather A;x

e solve a large problem

— by iteratively solving subproblems (in parallel)
— dual variable update provides coordination

e works, with lots of assumptions; often slow
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Method of multipliers
e a method to robustify dual ascent

e use augmented Lagrangian (Hestenes, Powell 1969), p > 0

Ly(z,y) = f(z) +y" (Az = b) + (p/2)[| Az — b]3

e method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

./L'k—i_l = argmin Lp(aja yk)

x

yk—i—l — yk + p(Aﬂfk+1 L b)

(note specific dual update step length p)
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Method of multipliers

e good news: converges under much more relaxed conditions
(f can be nondifferentiable, take on value +o0, . . .)

e bad news: quadratic penalty destroys splitting of the x-update, so can't
do decomposition
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Alternating direction method of multipliers

e a method

— with good robustness of method of multipliers
— which can support decomposition

“robust dual decomposition” or “decomposable method of multipliers”

e proposed by Gabay, Mercier, Glowinski, Marrocco in 1976
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Alternating direction method of multipliers

e ADMM problem form (with f, g convex)

minimize  f(z) + g(2)
subjectto Ax+ Bz =c

— two sets of variables, with separable objective
o Ly(z,z,y) = f(x) +g(2) +y" (Ax + Bz — ¢) + (p/2)| Az + Bz — c||3
e ADMM:

Tl = argmin, L,(z, 2%, y¥) // x-minimization
L= argmin, L,(z*T1 2, y) // z-minimization
yF Tl = R+ p(Ax* T + B2RT — ) // dual update
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Alternating direction method of multipliers

e if we minimized over x and z jointly, reduces to method of multipliers
e instead, we do one pass of a Gauss-Seidel method

e we get splitting since we minimize over x with z fixed, and vice versa
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ADMM with scaled dual variables

e combine linear and quadratic terms in augmented Lagrangian

Lo(z,2,y) = f(2)+9(z) +y (A + Bz —c) + (p/2)l| Az + Bz — cl|3
= f(x)+g(2) + (p/2)|Ax + Bz — ¢ + u|3 + const.

with u® = (1/p)y*

e ADMM (scaled dual form):

pH = argmin (f(z) + (p/2)[|Ax + B2* — ¢+ u¥|[3)
2= argmin (g(2) + (p/2)[| 42" + Bz — ¢+ u"|[3)
uk_|_1 - uk + (ACIZk+1 + sz—i—l o C)
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Convergence

e assume (very little!)

— f, g convex, closed, proper
— Lo has a saddle point

e then ADMM converges:

— iterates approach feasibility: Az* + Bz —c — 0
— objective approaches optimal value: f(z*) + g(z*) — p
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Related algorithms

e operator splitting methods
(Douglas, Peaceman, Rachford, Lions, Mercier, . . . 1950s, 1979)

e proximal point algorithm (Rockafellar 1976)

e Dykstra's alternating projections algorithm (1983)

e Spingarn’s method of partial inverses (1985)

e Rockafellar-Wets progressive hedging (1991)

e proximal methods (Rockafellar, many others, 1976—present)
e Bregman iterative methods (2008—present)

e most of these are special cases of the proximal point algorithm
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The prox operator

e consider x-update when A =1

ot = argmin (£(z) + (p/2)||z — v]}) = prox,,,(v)

x

e some special cases:
f = 0¢ (indicator func. of set C)
S =2l (41 norm)

(Sa(v) = (v —a)y = (v —a)y)

e similar for z-update when B =1
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Quadratic objective

o f(x)=(1/2)x Pz + ¢tz +r
o 27 := (P + pATA)"1(pATv — q)
e use matrix inversion lemma when computationally advantageous

(P4 pAT Ayt =Pt — pP1AT (T + pAP 1A 1 AP!

e (direct method) cache factorization of P + pALT A (or I + pAP~1AT)

e (iterative method) warm start, early stopping, reducing tolerances
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e |asso problem:

e ADMM form:
e ADMM:
T
z
Y

Lasso

minimize (1/2)||Ax — b||3 + A1

minimize  (1/2)[|Az — b||3 + \||2||1
subjectto =z —2 =10

= (ATA+ pD)THATD 4 p2* - yY)
= Syp(@™T 4yt p)
o R
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Lasso example

e example with dense A € R®00*2000

(1500 measurements; 5000 regressors)

e computation times

factorization (same as ridge regression)  1.3s

subsequent ADMM iterations 0.03s
lasso solve (about 50 ADMM iterations) 2.9s
full regularization path (30 \'s) 4.4s

e not bad for a very short script
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Sparse inverse covariance selection

e S: empirical covariance of samples from A(0,X), with ¥~ sparse
(i.e., Gaussian Markov random field)

e estimate X! via ¢; regularized maximum likelihood

minimize Tr(SX) — logdet X + || X||1

e methods: COVSEL (Banerjee et al 2008), graphical lasso (FHT 2008)
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Sparse inverse covariance selection via ADMM

e ADMM form:

minimize Tr(SX) — logdet X + A||Z]|4
subjectto X —Z =0

e ADMM
XF = argmin (Tr(SX) —logdet X + (p/2)[| X — Z* + Uk”%)
X
Zk—l—l _ S}\/p(Xk—l—l + Uk)
Uk:—}—l — Uk + (Xk:—l—l L Zk—l—l)
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Analytical solution for X-update

e compute eigendecomposition p(Z* — U*) — § = QAQT

o form diagonal matrix X with

o let Xkt .= QXQT
e cost of X-update is an eigendecomposition

e (but, probably faster to update X using a smooth solver)
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Sparse inverse covariance selection example

e Y 1is 1000 x 1000 with 10* nonzeros

— graphical lasso (Fortran): 20 seconds — 3 minutes
— ADMM (Matlab): 3 — 10 minutes
— (depends on choice of \)

e very rough experiment, but with no special tuning, ADMM is in ballpark
of recent specialized methods

e (for comparison, COVSEL takes 25+ min when X1 is a 400 x 400
tridiagonal matrix)
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Consensus optimization

e want to solve problem with N objective terms

minimize qu,il fi(z)
— e.q., f; is the loss function for ¢th block of training data

e ADMM form: N
minimize Zizl fi(x;)
subjectto z; — 2z =20

— x; are local variables

— z is the global variable

— x; — z = 0 are consistency or consensus constraints
— can add regularization using a g(z) term
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Consensus optimization via ADMM

° Lp(x, 2,Y) = Zi\il (fz(ﬂiz) + y;}r(ﬂ?z —2) + (p/2)||x; — ZH%)

e ADMM:
xf“ — argmin (fz(a:@) + yfT(:L‘Z — zk) + (p/2)||z; — zkH%)
k41 I T k’—|—1 1
yrtt = yf + p( e

e with regularization, averaging in z update is followed by prox, ,

Stanford Statistics Seminar, September 2010 24



Consensus optimization via ADMM

e using Zf\;l y¥ = 0, algorithm simplifies to

v = argmin (fi(w) + i (2 = T°) + (p/2) ]2 — T3)
R L CTARE

where Z° = (1/N) Zf\; }

e in each iteration

— gather z¥ and average to get T~

— scatter the average Z" to processors

— update y¥ locally (in each processor, in parallel)
— update z; locally
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Statistical interpretation

fi is negative log-likelihood for parameter = given ith data block

2"t is MAP estimate under prior N (Z* + (1/p)y¥, pI)

1

prior mean is previous iteration’'s consensus shifted by ‘price’ of
processor ¢ disagreeing with previous consensus
processors only need to support a Gaussian MAP method

— type or number of data in each block not relevant
— consensus protocol yields global maximum-likelihood estimate
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Consensus classification

e data (examples) (a;,b;),i=1,...,N, a; € R", b; € {—1,+1}
e linear classifier sign(aTw + v), with weight w, offset v
e margin for ith example is b;(al w + v); want margin to be positive
e loss for ith example is I(b;(al w + v))
— [ is loss function (hinge, logistic, probit, exponential, . . . )
e choose w, v to minimize & SV I(bi(aTw + v)) + r(w)
— r(w) is regularization term ({5, {1, . . .)

e split data and use ADMM consensus to solve
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Consensus SVM example

e hinge loss I(u) = (1 — u)y with {5 regularization
e baby problem with n =2, N = 400 to illustrate

e examples split into 20 groups, in worst possible way:
each group contains only positive or negative examples
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Iteration 1

29
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Iteration 5
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Iteration 40
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/1 regularized logistic regression example

e logistic loss, I(u) =log (1 + e~ "), with ¢; regularization

e n=10% N = 109, sparse with ~ 10 nonzero regressors in each example

e split data into 100 blocks with N = 10* examples each

e 1, updates involve /5 regularized logistic loss, done with stock L-BFGS,

default parameters

e time for all z; updates is maximum over z; update times
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Big picture/conclusions

e scaling: scale algorithms to datasets of arbitrary size
e cloud computing: run algorithms in the cloud

— each node handles a modest convex problem
— decentralized data storage

e coordination. ADMM is meta-algorithm that coordinates existing
solvers to solve problems of arbitrary size

(c.f. designing specialized large-scale algorithms for specific problems)

e updates can be done using analytical solution, Newton's method, CG,
L-BFGS, first-order method, custom method

e rough draft at Boyd website
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What we don’t know

e we don't have definitive answers on how to choose p, or scale equality
constraints

e don't yet have MapReduce or cloud implementation

e we don't know if/how Nesterov style accelerations can be applied
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Answers

e yes, Trevor, this works with fat data matrices

e yes, Jonathan, you can split by features rather than examples
(but it's more complicated; see the paper)

e yes, Emmanuel, the worst case complexity of ADMM is bad (O(1/¢€?))
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