
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust. Nonlinear Control 0000; 00:1–25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rnc

Approximate Dynamic Programming via
Iterated Bellman Inequalities

Yang Wang∗, Brendan O’Donoghue, Stephen Boyd1

1Packard Electrical Engineering, 350 Serra Mall, Stanford, CA, 94305

SUMMARY

In this paper we introduce new methods for finding functions that lower bound the value function of a
stochastic control problem, using an iterated form of the Bellman inequality. Our method is based on solving
linear or semidefinite programs, and produces both a bound on the optimal objective, as well as a suboptimal
policy that appears to work very well. These results extend and improve bounds obtained in a previous paper
using a single Bellman inequality condition. We describe the methods in a general setting, and show how
they can be applied in specific cases including the finite state case, constrained linear quadratic control,
switched affine control, and multi-period portfolio investment. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Convex Optimization; Dynamic Programming; Stochastic Control

1. INTRODUCTION

In this paper we consider stochastic control problems with arbitrary dynamics, objective, and

constraints. In some special cases, these problems can be solved analytically. One famous example is

when the dynamics are linear, and the objective function is quadratic (with no constraints), in which

case the optimal control is linear state feedback [1, 2, 3]. Another example where the optimal policy

can be computed exactly is when the state and action spaces are finite, in which case methods such

as value iteration or policy iteration can be used [2, 3]. When the state and action spaces are infinite,

but low dimensional, the optimal control problem can be solved by gridding or other discretization

methods.

In general however, the optimal control policy cannot be tractably computed. In such situations,

there are many methods for finding good suboptimal controllers that can often achieve a

small objective value. One particular method we will discuss in detail is approximate dynamic

programming (ADP) [2, 3, 4, 5], which relies on an expression for the optimal policy in terms of the

value function for the problem. In ADP, the true value function is replaced with an approximation.

These control policies often achieve surprisingly good performance, even when the approximation

of the value function is not particularly good. For problems with linear dynamics and convex

objective and constraints, we can evaluate such policies in tens of microseconds, which makes them

entirely practical for fast real-time applications [6, 7, 8].

In this paper, we present a method for finding an approximate value function that globally

underestimates (and approximates) the true value function. This yields both a numerical lower

bound on the optimal objective value, as well as an ADP policy based on our underestimator.

∗Correspondence to: Yang Wang. Email: yang1024@gmail.com

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using rncauth.cls [Version: 2010/03/27 v2.00]

2

Our underestimator/bound is non-generic, in the sense that it does not simply depend on problem

dimensions and some basic assumptions about the problem data. Instead, they are computed

(numerically) for each specific problem instance. We will see that for many different problem

families, our method is based on solving a convex optimization problem, thus avoiding the ‘curses

of dimensionality’ usually associated with dynamic programming [5].

The bound we compute can be compared to the objective achieved by any suboptimal policy,

which can be found via Monte-Carlo simulation. If the gap between the two is small, we can

conclude that the suboptimal policy is nearly optimal, and our bound is nearly tight. If the gap is

large, then one or both of the bound and the policy is poor. Under certain assumptions, we can also

provide generic guarantees on the tightness of our bound. Our results extend and improve similar

guarantees found in [9].

In previous works, the authors have considered bounds and underestimators based on the Bellman

inequality [10, 11]. In this paper we present a more general condition based on an iterated form of

the Bellman inequality, which significantly improves our results. Indeed, in numerical examples

we find that the bound we compute is often extremely close to the objective achieved by the ADP

policy.

1.1. Prior and related work

One work closely related to ours is by De Farias and Van Roy [9], who consider a similar stochastic

control problem with a finite number of states and inputs. In their paper, the authors obtain a value

function underestimator by relaxing the Bellman equation to an inequality. This results in a set of

linear constraints, so the underestimators can be found by solving a linear programming problem

(LP). The authors show that as long as the basis functions are ‘well chosen’, the underestimator

will be a good approximation. (We will use similar methods to derive tightness guarantees for our

iterated Bellman condition.) In [10, 11], Wang and Boyd extended these ideas to problems with

an infinite number of states and inputs, obtaining a tractable sufficient condition for the Bellman

inequality via the S-procedure [12, §2.6.3]. Similar ideas and methods can also be found in papers

by Savorgnan, Lasserre and Diehl [13], Bertsimas and Caramanis [14], and Lincoln and Rantzer

[15, 16].

We should point out that this approach is popular and widely used in approximate dynamic

programming. The original characterization of the true value function via linear programming is

due to Manne [17]. The LP approach to ADP was introduced by Schweitzer and Seidmann [18] and

De Farias and Van Roy [9]. There are many applications of this method, for example in optimal

scheduling problems, revenue and portfolio management, inventory management, stochastic games,

decentralized control and many others [19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

While these methods typically work well, i.e., the bound we get is often close to the objective

achieved by the suboptimal policy, there are also situations in which the gap is large. This is partly

due to the fact that the Bellman inequality is a sufficient, but not necessary condition for a lower

bound on the value function. As a result the condition can often be overly conservative, as was

pointed out in [9, 29]. In [29] Desai, Farias and Moallemi address this problem by adding slack

variables to relax the Bellman inequality condition. This produces much better approximate value

functions, but these may not be underestimators in general. In this paper we present a method that

both relaxes the Bellman inequality, and also retains the lower bound property. We will see that this

produces much better results compared with a single Bellman inequality condition.

There is a vast literature on computing lower bounds for stochastic control. In [30] Cogill and

Lall derive a method for average cost-per-stage problems for finding both an upper bound on the

cost incurred by a given policy, as well as a lower bound on the optimal objective value. One

advantage of this method is that it does not require a restrictive lower bound condition, such as the

Bellman inequality (but it still requires searching for good candidate functions, as in approximate

dynamic programming). Using this method they analytically derive suboptimality gaps for queueing

problems [30] as well as event-based sampling [31].

In [32], Brown, Smith and Sun take a different approach, where they relax the nonanticipativity

constraint that decisions can only depend on information available at the current time. Instead, a

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

3

penalty is imposed that punishes violations of the constraint. In one extreme case, the penalty is

infinitely hard, which corresponds to the original stochastic control problem. The other extreme is

full prescience, i.e., there is no penalty on knowing the future, which clearly gives a lower bound on

the original problem. Their framework comes with corresponding weak duality, strong duality, and

complementary slackness results.

For specific problem families it is often possible to derive generic bounds that depend on some

basic assumptions about the problem data. For example, Kumar and Kumar [19] derive bounds

for queueing networks and scheduling policies. Bertsimas, Gamarnik and Tsitsiklis [33] consider a

similar class of problems, but uses a different method based on piecewise linear Lyapunov functions.

In a different application, Castañón [34] derives bounds for controlling a sensor network to minimize

estimation error, subject to a resource constraint. To get a lower bound, the resource constraint

is ‘dualized’ by adding the constraint into the objective weighted by a nonnegative Lagrange

multiplier. The lower bound is then optimized over the dual variable. In fact, in certain special

cases, the Bellman inequality approach can also be interpreted as a simple application of Lagrange

duality [35].

Performance bounds have also been studied for more traditional control applications. For

example, in [36], Peters, Salgado and Silva-Vera derive bounds for linear control with frequency

domain constraints. Vuthandam, Genceli and Nikolau [37] derive bounds on robust model predictive

control with terminal constraints.

Throughout this paper we assume that the set of basis functions used to parameterize the

approximate value function has already been selected. We do not address the question of how

to select such a set. This is large topic and an active area of research; we direct the interested

reader to [38, 39, 40, 41, 42, 43, 44, 45] and the references therein. There are also many works

that outline general methods for solving stochastic control problems and dealing with the ‘curses

of dimensionality’ [5, 4, 46, 47, 48, 15]. Many of the ideas we will use appear in these and will be

pointed out.

1.2. Outline

The structure of the paper is as follows. In §2 we define the stochastic control problem and give the

dynamic programming characterization of the solution. In §3 we describe the main ideas behind

our bounds in a general, abstract setting. In §4 we derive tightness guarantees for our bound.

Then, in §5–§8 we outline how to compute these bounds for several problem families. For each

problem family, we present numerical examples where we compute our bounds and compare them

to the performance achieved by suboptimal control policies. Finally, in §9 we briefly outline several

straightforward extensions/variations of our method.

2. STOCHASTIC CONTROL

We consider a discrete-time time-invariant dynamical system, with dynamics

xt+1 = f(xt, ut, wt), t = 0, 1, . . . , (1)

where xt ∈ X is the state, ut ∈ U is the input, wt ∈ W is the process noise, all at time (or epoch) t,
and f : X × U ×W → X is the dynamics function. We assume that x0, w0, w1, . . ., are independent

random variables, with w0, w1, . . . identically distributed.

We consider causal state feedback control policies, where the input ut is determined from the

current and previous states x0, . . . , xt. For the problem we consider it can be shown that there is a

time-invariant optimal policy that depends only on the current state, i.e.,

ut = ψ(xt), t = 0, 1, . . . , (2)

where ψ : X → U is the state feedback function or policy. With fixed state feedback function (2)

and dynamics (1), the state and input trajectories are stochastic processes.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

4

We will consider an infinite horizon discounted objective with the form

J = E

∞
∑

t=0

γtℓ(xt, ut), (3)

where ℓ : X × U → R ∪ {+∞} is the stage cost function, and γ ∈ (0, 1) is a discount factor. We use

infinite values of ℓ to encode constraints on the state and input. For example, unless

(xt, ut) ∈ C = {(x, u) | ℓ(x, u) <∞} a.s.,

we have J = ∞. We assume that for each z ∈ X , there is a v ∈ U with ℓ(z, v) <∞; in other words,

for each state there is at least one feasible input. We assume that the expectations and sum in (3)

exist; this is the case if ℓ is bounded below, for example, nonnegative.

The stochastic control problem is to find a state feedback function ψ that minimizes the objective

J . We let J⋆ denote the optimal value of J (which we assume is finite), and ψ⋆ denote an optimal

state feedback function. The problem data are the dynamics function f , the stage cost function ℓ, the

discount factor γ, the distribution of the initial state x0, and the distribution of the noise w0 (which

is the same as the distribution of wt).
For more on the formulation of the stochastic control problem, including technical details, see,

e.g., [2, 3, 4, 49].

2.1. Dynamic programming

In this section we give the well known characterization of a solution of the stochastic control

problem using dynamic programming. These results (and the notation) will be used later in the

development of our performance bounds.

Let V ⋆ : X → R be the value function, i.e., the optimal value of the objective, conditioned on

starting from state x0 = z:

V ⋆(z) = inf
ψ

E

(

∞
∑

t=0

γtℓ(xt, ut)

)

,

subject to the dynamics (1), with policy (2), and x0 = z; the infimum here is over all policies ψ. We

have J⋆ = EV ⋆(x0) (with the expectation over x0); we assume that V ⋆(x0) <∞ a.s.

The function V ⋆ is the unique solution of the Bellman equation,

V ⋆(z) = inf
v∈U

{ℓ(z, v) + γEV ⋆(f(z, v, wt)} ∀z ∈ X , (4)

which we can write in abstract form as

V ⋆ = T V ⋆,

where T is the Bellman operator, defined as

(T h)(z) = inf
v∈U

{ℓ(z, v) + γEh(f(z, v, wt))} (5)

for any h : X → R. We can express an optimal policy in terms of V ⋆ as

ψ⋆(z) = argmin
v∈U

{ℓ(z, v) + γEV ⋆(f(z, v, wt)}. (6)

Computing the optimal policy. The value function and associated optimal policy can be

effectively computed in several special cases. When X , U , and W are finite, it can be solved by

several methods, including value iteration (described below; [2, 3]). (This is practical when the

product of the cardinality of these sets is not too large, say, under 108.) Another famous special case

is when X = Rn, U = Rm, and ℓ is a convex quadratic function [1]. In this case, the value function

is convex quadratic, and the optimal policy is affine, with coefficients that are readily computed

from the problem data. In many cases, however, it is not practical to compute the value function V ⋆,

the optimal value of the stochastic control problem J⋆, or an optimal policy ψ⋆.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

5

2.2. Properties of the Bellman operator

The Bellman operator T has several interesting properties which we will use later in developing

our bounds. Here, we state these properties without justification; for details and proofs, see e.g.,

[2, 3, 4, 49, 47].

Monotonicity. For functions f, g : X → R,

f ≤ g =⇒ T f ≤ T g, (7)

where the inequality between functions means elementwise, i.e., f(x) ≤ g(x) for all x ∈ X .

Value iteration convergence. For any function f : X → R,

V ⋆(x) = lim
k→∞

(T kf)(x), (8)

for any x ∈ X . In other words, iteratively applying the Bellman operator to any initial function

results in pointwise convergence to the value function. (Much stronger statements can be made

about the convergence; but we will only need pointwise convergence.) Computing V ⋆ by iterative

application of the Bellman operator is called value iteration.

2.3. Suboptimal policies and performance bounds

Many methods for finding a suboptimal or approximate policy have been proposed; we describe two

of these below. For more details see [50, 51, 52, 53, 4, 5, 6].

Approximate dynamic programming policy. Following the basic idea in approximate dynamic

programming, we define the approximate dynamic programming policy (or ADP policy) as

ψadp(z) = argmin
v∈U

{ℓ(z, v) + γEV adp(f(z, v, wt)}, (9)

where the function V adp is called the approximate value function, or control-Lyapunov function.

The ADP policy is the same as the optimal policy (6), with V adp substituted for V ⋆. This policy

goes by several other names, including control-Lyapunov policy, and one-step receding-horizon

control. With V adp = V ⋆, the ADP policy is optimal. Far more interesting and important is the

observation that the ADP policy often yields very good performance, even when V adp is a not a

particularly good approximation of V ⋆.

Greedy policy. For many problems we will consider, the stage cost ℓ is state-input separable, i.e.,

ℓ(z, v) = ℓx(z) + ℓu(v), where ℓx : X → R ∪ {+∞} and ℓu : U → R ∪ {+∞} are the stage costs

for the states and inputs respectively. In this case, one of the simplest suboptimal policies is the

one-step-ahead greedy policy, given by

ψgreedy(z) = argmin
v∈U

{ℓx(z) + ℓu(v) + γE ℓx(f(z, v, wt)}. (10)

Comparing the greedy policy with the optimal policy (6), we see that the greedy policy simply

minimizes the sum of the current stage cost and the expected stage cost at the next time period,

ignoring the effect of the current action on the long-term future. (This is also just the ADP policy

with V adp = ℓx.) The greedy policy often performs very poorly; when X is infinite, we can even

have J = ∞.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

6

Performance bounds. For any policy we can evaluate the associated cost J (approximately) via

Monte Carlo simulation, so we have an idea of how well the policy will perform. A question that

arises immediately is, how suboptimal is the policy? In other words, how much larger is J than J⋆?

To address this question we need a lower bound on J⋆, that is, a bound on the control performance

that can be attained by any policy. One of the main purposes of this paper is to describe new tractable

methods for obtaining performance bounds, in cases when computing the optimal value is not

practical. As a side benefit of the lower bound computation, our method also provides approximate

value functions for suboptimal ADP policies that appear to work very well, that is, yield cost J that

is near the associated lower bound.

3. PERFORMANCE BOUNDS

In this section we work out the main ideas in the paper, in an abstract setting. In subsequent sections

we address questions such as how the methods can be carried out for various specific cases.

3.1. Value function underestimators

All of our performance bounds will be based on the following observation: if the function V̂ : X →
R satisfies

V̂ ≤ V ⋆, (11)

then, by monotonicity of expectation,

E V̂ (x0) ≤ EV ⋆(x0) = J⋆. (12)

Thus, we obtain the performance bound (i.e., lower bound on J⋆) E V̂ (x0). The challenge, of course,

is to find an underestimator V̂ of V ⋆. Indeed, depending on the specific case, it can be difficult to

verify that V̂ ≤ V ⋆ given a fixed V̂ , let alone find such a function.

3.2. Bound optimization

Our approach, which is the same as the basic approach in approximate dynamic programming

(ADP), is to restrict our attention to a finite-dimensional subspace of candidate value function

underestimators,

V̂ =

K
∑

i=1

αiV
(i), (13)

where αi are coefficients, and V (i) are basis functions for our candidate functions. We then optimize

our lower bound over the coefficients, subject to a constraint that guarantees V̂ ≤ V ⋆:

maximize E V̂ (x0) = α1 EV
(1)(x0) + · · ·+ αK EV (K)(x0)

subject to [condition that implies (11)],
(14)

with variables α ∈ RK . In the sequel we derive a condition that is convex in α and implies (11); this,

along with the fact that the objective is linear, ensures that (14) is a convex optimization problem

[54, 55]. By solving the problem (14), we obtain the best lower bound on J⋆ that can be obtained

using the condition selected, and restricting V̂ to the given subspace.

The associated optimal V̂ for (14) can be interpreted (roughly) as an approximation of V ⋆ (which

always underestimates V ⋆). Thus, V̂ is a natural choice for V adp in the ADP policy.

3.3. Bellman inequality

Let V̂ : X → R be a function that satisfies the Bellman inequality [2, 3],

V̂ ≤ T V̂ . (15)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

7

By monotonicity of the Bellman operator, this implies V̂ ≤ T V̂ ≤ T (T V̂); iterating, we see that

V̂ ≤ T kV̂ for any k ≥ 1. Thus we get

V̂ (x) ≤ lim
k→∞

(T kV̂)(x) = V ⋆(x), ∀x ∈ X .

Thus, the Bellman inequality is a sufficient condition for V̂ ≤ V ⋆.

If we restrict V̂ to a finite dimensional subspace, the Bellman inequality is a convex constraint on

the coefficients, since it can be stated as

V̂ (z) ≤ inf
v∈U

{

ℓ(z, v) + γE V̂ (f(z, v, wt))
}

, ∀z ∈ X .

For each z ∈ X , the lefthand side is linear in α; the righthand side is a concave function of α, since

it is the infimum over a family of affine functions [54, §3.2.3].

In the case of finite state and input spaces, using the Bellman inequality (15) as the condition

in (14), we obtain a linear program. This was first introduced by De Farias and Van Roy [9], who

showed that if the true value function is close to the subspace spanned by the basis functions, then V̂
is guaranteed to be close to V ⋆. In a different context, for problems with linear dynamics, quadratic

costs and quadratic constraints (with infinite numbers of states and inputs), Wang and Boyd derived a

sufficient condition for (15) that involves a linear matrix inequality (LMI) [10, 11]. The optimization

problem (14) becomes a semidefinite program (SDP), which can be efficiently solved using convex

optimization methods [54, 56, 55, 57].

3.4. Iterated Bellman inequality

Suppose that V̂ satisfies the iterated Bellman inequality,

V̂ ≤ T M V̂ , (16)

where M ≥ 1 is an integer. By the same argument as for the Bellman inequality, this implies

V̂ ≤ T kM V̂ for any integer k ≥ 1, which implies

V̂ (x) ≤ lim
k→∞

(T kM V̂)(x) = V ⋆(x), ∀x ∈ X ,

so the iterated Bellman inequality also implies V̂ ≤ V ⋆. If V̂ satisfies the Bellman inequality (15),

then it must satisfy the iterated Bellman inequality (16). The converse is not always true, so the

iterated bound is a more general sufficient condition for V̂ ≤ V ⋆.

In general, the iterated Bellman inequality (16) is not a convex constraint on the coefficients V̂ ,

when we restrict V̂ to a finite-dimensional subspace. However, we can derive a sufficient condition

for (16) that is convex in the coefficients. The iterated Bellman inequality (16) is equivalent to the

existence of functions V̂1, . . . , V̂M−1 satisfying

V̂ ≤ T V̂1, V̂1 ≤ T V̂2, . . . V̂M−1 ≤ T V̂ . (17)

(Indeed, we can take V̂M−1 = T V̂ , and V̂i = T V̂i+1 for i =M − 2, . . . , 1.) Defining V̂0 = V̂M = V̂ ,

we can write this more compactly as

V̂i−1 ≤ T V̂i, i = 1, . . . ,M. (18)

Now suppose we restrict each V̂i to a finite-dimensional subspace:

V̂i =

K
∑

j=1

αijV
(j), i = 0, . . . ,M − 1.

(Here we use the same basis for each V̂i for simplicity.) On this subspace, the iterated Bellman

inequality (18) is a set of convex constraints on the coefficients αij . To see this, we note that for

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

8

each x ∈ X , the lefthand side of each inequality is linear in the coefficients, while the righthand sides

(i.e., T V̂i) are concave functions of the coefficients, since each is an infimum of affine functions.

Using (18) as the condition in the bound optimization problem (14), we get a convex optimization

problem. For M = 1, this reduces to the finite-dimensional restriction of the single Bellman

inequality. For M > 1, the performance bound obtained can only be better than (or equal to) the

bound obtained for M = 1. To see this, we argue as follows. If V̂ satisfies V̂ ≤ T V̂ , then V̂i = V̂ ,

i = 0, . . . ,M , must satisfy the finite-dimensional restriction of the iterated Bellman inequality (18).

Thus, the condition (18) defines a larger set of underestimators compared with the single Bellman

inequality. A similar argument shows that if M2 divides M1, then the bound we get with M =M1

must be better than (or equal to) the bound with M =M2.

The computational complexity of the convex optimization problem grows linearly with M . This

is because each V̂i appears in constraints only with the previous and the subsequent functions in

the sequence, which yields a problem with a block-banded Hessian. This special structure can be

exploited by most convex optimization algorithms, such as interior point methods [54, §9.7.2], [58].

3.5. Pointwise supremum underestimator

Suppose {V̂α | α ∈ A} is a family of functions parametrized by α ∈ A, all satisfying V̂α ≤ V ⋆.

For example, the set of underestimators obtained from the feasible coefficient vectors α from the

Bellman inequality (15) or the iterated Bellman inequality (18) is such a family. Then the pointwise

supremum is also an underestimator of V :

V̄ (z) = sup
α∈A

V̂α(z) ≤ V ⋆(z), ∀z ∈ X .

It follows that E V̄ (x0) ≤ J⋆. Moreover, this performance bound is as good as any of the individual

performance bounds: for any α ∈ A,

E V̄ (x0) ≥ E V̂α(x0).

This means that we can switch the order of expectation and maximization in (14), to obtain a better

bound: E V̄ (x0), which is the expected value of the optimal value of the (random) problem

maximize V̂ (x0) = α1V
(1)(x0) + · · ·+ αKV

(K)(x0)
subject to [condition that implies (11)],

(19)

over the distribution of x0. This pointwise supremum bound is guaranteed to be a better lower bound

on J⋆ than the basic bound obtained from problem (14).

This bound can be computed using a Monte Carlo procedure: We draw samples z1, z2, . . . , zN
from the distribution of x0, solve the optimization problem (19) for each sample value, which gives

us V̄ (zi). We then form the (Monte Carlo estimate) lower bound (1/N)
∑N

i=1 V̄ (zi). This evidently

involves substantial, and in many cases prohibitive, computation.

3.6. Pointwise maximum underestimator

An alternative to the pointwise supremum underestimator is to choose a modest number of

representative functions V̂α1
, . . . , V̂αL

from the family and form the function

V̂ (z) = max
i=1,...,L

V̂αi
(z),

which evidently is an underestimator of V . (We call this the pointwise maximum underestimator.)

This requires solving L optimization problems to find α1, . . . , αL. Now, Monte Carlo simulation,

i.e., evaluation of V̂ (zi), involves computing the maximum ofL numbers; in particular, it involves no

optimization. For this reason we can easily generate a large number of samples to evaluate E V̂ (x0),
which is a lower bound on J⋆. Another advantage of using V̂ instead of V̄ is that V̂ can be used as

an approximate value function in a approximate policy, as described in §2.3. The use of pointwise

maximum approximate value functions has also been explored in a slightly different context in [48].

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

9

One generic method for finding good representative functions is to find extremal points in our

family of underestimators. To do this, we let y be a random variable that takes values in X with

some distribution. Then we solve the (convex) optimization problem

maximize E V̂α(y)
subject to α ∈ A,

with variable α. When X is finite the distribution of y can be interpreted as state-relevance weights:

If the state relevance weights for a particular subset of X are large, then our goal in the problem

above is to make Ṽα(z) as large as possible for z in this subset, and hence as close as possible to

V ⋆. To get a different extremal point in the family, we pick a different distribution for y, where the

probability density is concentrated around a different subset of X (see, e.g., [59]).

4. TIGHTNESS

4.1. Notation and Assumptions

In this section we use similar methods as [9] to derive a simple tightness guarantee for our

iterated Bellman bound. For simplicity, we will assume that all our functions are continuous, i.e.,

f ∈ C(X × U ×W), ℓ ∈ C(X × U), the spaces X and U are compact, and x0 has finite mean and

covariance. This implies that the optimal value function V ⋆ is continuous on X , and the Bellman

operator T is a sup-norm γ-contraction:

‖T h1 − T h2‖∞ ≤ γ‖h1 − h2‖∞,

where h1, h2 ∈ C(X), ‖h1 − h2‖∞ = supx∈X |h1(x)− h2(x)|, and γ is the discount factor of the

problem. As before, we assume that V̂ has the representation (13), where each V (i) ∈ C(X). We let

H =

{

V̂

∣

∣

∣

∣

∣

V̂ =

K
∑

i=1

αiV
(i), α ∈ RK

}

denote the subspace spanned by the basis functions. In addition, we denote by 1 ∈ C(X) the

constant function that assigns the value 1 ∈ R to every x ∈ X .

4.2. Main result

We will derive the following result: If 1 ∈ H, then

E |V ⋆(x0)− V̂ ⋆(x0)| ≤
2

1− γM
‖V ⋆ − V p‖∞, (20)

where V̂ ⋆ denotes the solution to the bound optimization problem

maximize E V̂ (x0)

subject to V̂ ≤ T M V̂ ,
(21)

with variable α ∈ RK , and V p is an L∞ projection of V ⋆ onto the subspace H, i.e., it minimizes

‖V ⋆ − V̂ ‖∞ over H.

This result can be interpreted as follows: If V ⋆ is close to the subspace spanned by the basis

functions, (i.e., ‖V ⋆ − V p‖∞ is small), our underestimator will be close to the true value function.

For the single Bellman inequality condition (M = 1), our result is the same as the one in [9]. In this

case, the constant factor is equal to 2/(1− γ), which is large if γ is close to one. In the other extreme,

asM → ∞ the constant factor converges to 2, so we get much tighter suboptimality guarantees with

the iterated Bellman inequality. In practice, however, we will see that even a factor of 2 is overly

conservative—the suboptimality gaps we observe in practice are typically much smaller.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

10

4.3. Proof

In order to prove this result, we need to be able to relate V̂ ⋆ to the projection V p. First we notice

that

‖V ⋆ − T MV p‖∞ = ‖T MV ⋆ − T MV p‖∞ ≤ γM‖V ⋆ − V p‖∞,

where the inequality follows from the fact that T is a γ-contraction. This implies

−γM‖V ⋆ − V p‖∞ ≤ V ⋆ − T MV p ≤ γM‖V ⋆ − V p‖∞,

so we get

T MV p ≥ V ⋆ − γM‖V ⋆ − V p‖∞

≥ V p − ‖V ⋆ − V p‖∞ − γM‖V ⋆ − V p‖∞

= V p − (1 + γM)‖V ⋆ − V p‖∞.

(Here the notation h+ α, where h is a function and α is a scalar, means h+ α1.) The second

inequality follows because V p − V ⋆ ≤ ‖V ⋆ − V p‖∞. Now we will see that if we shift V p

downwards by a constant amount, it will satisfy the iterated Bellman inequality. Let

Ṽ = V p −
1 + γM

1− γM
‖V ⋆ − V p‖∞.

We know Ṽ ∈ H, since V p ∈ H (by definition) and 1 ∈ H (by assumption). Thus we can write

T M Ṽ ≥ T MV p − γM
1 + γM

1− γM
‖V ⋆ − V p‖∞

≥ V p − (1 + γM)‖V ⋆ − V p‖∞ − γM
1 + γM

1− γM
‖V ⋆ − V p‖∞

= V p −
1 + γM

1− γM
‖V ⋆ − V p‖∞ = Ṽ ,

so Ṽ satisfies the iterated Bellman inequality. This means that Ṽ must be feasible for the problem

minimize E(V ⋆(x0)− V̂ (x0))

subject to V̂ ≤ T M V̂ .
(22)

Since V̂ ⋆ solves (21) it must also solve (22), which implies

E |V ⋆(x0)− V̂ ⋆(x0)| ≤ E |V ⋆(x0)− Ṽ (x0)|

≤ ‖V ⋆ − Ṽ ‖∞

≤ ‖V ⋆ − V p‖∞ + ‖V p − Ṽ ‖∞

=
2

1− γM
‖V ⋆ − V p‖∞.

This proves our result.

5. FINITE STATE AND INPUT SPACES

In this section we describe how to compute our bounds when the number of states, inputs and

disturbances is finite. We take

X = {1, . . . , Nx}, U = {1, . . . , Nu}, W = {1, . . . , Nw}.

We define pi = Prob{wt = i} for i = 1, . . . , Nw.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

11

5.1. Value iteration

In principle, since the number of states and inputs is finite, we can carry out value iteration explicitly.

We will consider here a naive implementation that does not exploit any sparsity or other structure in

the problem. Given a function V : X → R, we evaluate V + = T V as follows. For each (z, v), we

evaluate

ℓ(z, v) +EV (f(x, z, wt) = ℓ(z, v) +

Nw
∑

i=1

piV (f(x, z, i)),

which requires around NxNuNw arithmetic operations. We can then take the minimum over v for

each z to obtain V +(z). So one step of value iteration costs around NxNuNw arithmetic operations.

When NxNuNw is not too large, say more than 108 or so, it is entirely practical to compute the

value function using value iteration. In such cases, of course, there is no need to compute a lower

bound on performance. Thus, we are mainly interested in problems with NxNuNw larger than, say,

108, or where exact calculation of the value function is not practical. In these cases we hope that a

reasonable performance bound can be found using a modest number of basis functions.

5.2. Iterated Bellman inequality

The iterated Bellman inequality (18), with K basis functions for V̂i, leads to the linear inequalities

V̂i−1(z) ≤ ℓ(z, v) + γ

Nw
∑

j=1

pj V̂i(f(z, v, wj)), i = 1, . . . ,M, (23)

for all z ∈ X , v ∈ U . For each (z, v), (23) is a set of M linear inequalities in the MK variables αij .
Thus, the iterated Bellman inequality (18) involves MK variables and MNxNu inequalities. Each

inequality involves 2K variables.

Even when M is small and K is modest (say, a few tens), the number of constraints can be very

large. Computing the performance bound (14), or an extremal underestimator for the iterated bound

then requires the solution of an LP with a modest number of variables and a very large number

of constraints. This can be done, for example, via constraint sampling [60], or using semi-infinite

programming methods (see, e.g., [61]).

6. CONSTRAINED LINEAR QUADRATIC CONTROL

In this and the following sections, we will restrict our candidate functions to the subspace of

quadratic functions. We will use several key properties of quadratic functions which are presented

in the appendix, in particular a technique known as the S-procedure.

We consider here systems with X = Rn, U = Rm, and W = Rn, with linear dynamics

xt+1 = f(xt, ut, wt) = Axt +But + wt, t = 0, 1,

We will assume that Ewt = 0, and let W denote the disturbance covariance, W = Ewtw
T
t . The

stage cost is a convex state-input separable quadratic, restricted to a unit box input constraint set,

ℓ(z, v) =

{

zTQz + vTRv ‖v‖∞ ≤ 1
+∞ ‖v‖∞ > 1,

where Q ∈ S
n
+, R ∈ S

m
+ . (Sn+ is the set of n× n symmetric positive semidefinite matrices.)

The same approach described here can be applied to the more general case with nonzero

disturbance mean, linear terms and state-input coupling terms in the stage cost, and constraint sets

described by a set of quadratic equalities and inequalities. The formulas for the more general case

are readily derived, but much more complex than for the special case considered here.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

12

6.1. Iterated Bellman inequality

We will use quadratic candidate functions

V̂i(z) = zTPiz + si =





v
z
1





T 



0 0 0
0 Pi 0
0 0 si









v
z
1



 , i = 0, . . . ,M,

where Pi ∈ Sn, si ∈ R, i = 0, . . . ,M , with V̂ = V̂0 = V̂M . (Due to our assumptions, we do not need

linear terms in V̂i.)
The iterated Bellman inequality (18) can be written as

V̂i−1(z) ≤ ℓ(z, v) + γE V̂i(Az +Bv + wt), ∀‖v‖∞ ≤ 1, i = 1, . . . ,M. (24)

Expanding E V̂i(Az +Bv + wt) we get

E V̂i(Az +Bv + wt) = (Az +Bv)TPi(Az +Bv) + 2(Az +Bv)TPiEwt +EwTt Piwt + si

= (Az +Bv)TPi(Az +Bv) +Tr(PiW) + si

=





v
z
1





T 



BTPiB BTPiA 0
ATPiB ATPiA 0

0 0 Tr(PiW) + si









v
z
1



 .

Thus (24) becomes:





v
z
1





T 



R+ γBTPiB γBTPiA 0
γATPiB Q+ γATPiA− Pi−1 0

0 0 γ(Tr(PiW) + si)− si−1









v
z
1



 ≥ 0,

(25)

for all ‖v‖∞ ≤ 1, i = 1, . . . ,M . We can express ‖v‖∞ ≤ 1 as a set of quadratic inequalities,

1− v2i =





v
z
1





T 



−eieTi 0 0
0 0 0
0 0 1









v
z
1



 ≥ 0, i = 1, . . . ,m. (26)

An arbitrary nonnegative linear combination of these quadratic functions can be expressed as





v
z
1





T 



−D 0 0
0 0 0
0 0 TrD









v
z
1



 , (27)

where D ∈ S
m
+ is diagonal.

Now we use the S-procedure to derive a sufficient condition: there exists diagonal nonnegative

D(i) ∈ RN , i = 1, . . . ,M , such that





R+ γBTPiB +D(i) γBTPiA 0
γATPiB Q+ γATPiA− Pi−1 0

0 0 γ(Tr(PiW) + si)− si−1 −TrD(i)



 � 0.

(28)

for i = 1, . . . ,M . The condition (28) is an LMI in the variables Pi, si, and D(i), so the bound

optimization problem is convex (and tractable); in fact, an SDP.

These 3× 3 block LMIs can be split into 2× 2 block LMIs,

[

R+ γBTPiB +D(i) γBTPiA
γATPiB Q+ γATPiA− Pi−1

]

� 0, i = 1, . . . ,M, (29)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

13

Performance Bound Value

Optimal value, J⋆ 37.8

Pointwise maximum bound 37.5

Iterated bound (M = 200) 28.2

Basic Bellman bound (M = 1) 16.1

Unconstrained bound 15.5

Table I: Comparison of J⋆ with various bounds for the one dimensional example

and linear scalar inequalities,

γ(Tr(PiW) + si)− si−1 −TrD(i) ≥ 0, i = 1, . . . ,M. (30)

Using this sufficient condition for the iterated Bellman inequalities, the bound optimization

problem (14) becomes the SDP

maximize E V̂0(x0) = TrP0(Ex0x
T
0) + s0

subject to (29), (30),
D(i) � 0, i = 1, . . . ,M,

(31)

with the variables listed above. A monotonicity argument tells us that we will have

si−1 = γ(Tr(PiW) + si)−TrD(i), i = 1, . . . ,M,

at the optimum of (31).

Removing the variable D from (31) is equivalent to removing the constraint on the input. In

that case the true value function is convex quadratic and the performance bound is tight for any

M ≥ 1. The solution to this modified problem is the unconstrainted linear-quadratic regulator

(LQR) solution for an infinite horizon discrete-time system and provides another lower bound for

comparison [1, 2, 3].

6.2. One dimensional example

In this section we illustrate our underestimators and bounds on an example problem with one state

(n = 1) and one input (m = 1). The problem data are:

A = 1, B = −0.5, Q = 1, R = 0.1, γ = 0.95,

and we assume wt ∼ N (0, 0.1) and x0 ∼ N (0, 10). Since the problem dimensions are small, we

can compute the exact value function V ⋆ by discretizing the state and input, and using traditional

dynamic programming methods, such as value iteration (see §5.1) or policy iteration. We can also

compute J⋆ = EV ⋆(x0), via Monte-Carlo simulation.

We compare various bounds in Table I. The unconstrained bound refers to the optimal cost of the

same problem without the input constraint. We can see that the iterated Bellman bound is a much

better bound compared with the basic Bellman bound and unconstrained bounds, which give similar

values for this particular problem instance. The pointwise maximum bound (with 10 representative

functions) significantly improves on the iterated bound, and is very close to J⋆.

Figure 1 shows a comparison of the underestimators. The left figure compares V ⋆ (black) with

the value function of the unconstrained problem V ⋆lq (green), the basic Bellman underestimator V̂be

(blue), and the iterated Bellman underestimator V̂it (red). We see that the iterated underestimator is

a much better overall underestimator, but deviates from V ⋆ for small z. The right figure compares

V ⋆ (black) with Vpwq (red), which is the pointwise maximum underestimator with 10 representative

functions. It is clear that the two are almost indistinguishable.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

14

-5 0 5
-10

0

10

20

30

40

50

60

70

80

90

100

z
-5 0 5

-10

0

10

20

30

40

50

60

70

80

90

100

z

Figure 1: Left: Comparison of V ⋆ (black) with V
⋆
lq (green), V̂be (blue) and V̂it (red). Right: Comparison

of V ⋆ (black) with V̂pwq (red).

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

u1

u2

u3

Figure 2: Mechanical control example.

6.3. Mechanical control example

Now we evaluate our bounds against the performance of various suboptimal policies for a discretized

mechanical control system, consisting of 4 masses, connected by springs, with 3 input forces that

can be applied between pairs of masses. This is shown in figure 2. For this problem, there are n = 8
states and m = 3 controls. The first four states are the positions of the masses, and the last four are

their velocities. The stage costs are quadratic with R = 0.01I , Q = 0.1I and γ = 0.95. The process

noise wt has distribution N (0,W), where W = 0.1diag(0, 0, 0, 0, 1, 1, 1, 1) (i.e., the disturbances

are random forces). The initial state x0 has distribution N (0, 10I).
The results are shown in table II. The pointwise supremum bound is computed via Monte

Carlo simulation, using an iterated Bellman inequality condition with M = 100. The unconstrained

bound refers to the optimal objective of the problem without the input constraint (which we can

compute analytically). We can clearly see that the gap between the ADP policy and the pointwise

supremum bound is very small, which shows both are nearly optimal. This confirms our empirical

observation from the one dimensional case that the pointwise maximum underestimator is almost

indistinguishable from the true value function. We also observe that the greedy policy, which uses a

naive approximate value function, performs much worse compared with our ADP policy, obtained

from our bound optimization procedure.

7. AFFINE SWITCHING CONTROL

Here we take X = Rn, W = Rn, and U = {1, . . . , N}. The dynamics is affine in xt and wt, for each

choice of ut:
xt+1 = f(xt, ut, wt) = Aut

xt + but
+ wt, t = 0, 1, . . . ,

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

15

Policy Objective

Greedy 106.6

ADP, V adp = V̂ (from iterated bound) 87.9

Performance bound Value

Pointwise supremum bound 84.9

Iterated bound (M = 100) 69.4

Basic Bellman bound (M = 1) 51.6

Unconstrained bound 26.3

Table II: Performance of suboptimal policies (top half) and performance bounds (bottom half) for
mechanical control example.

where Aj ∈ Rn×n and bj ∈ Rn, j = 1, . . . , N give the dynamics matrices for inputs ut = 1, . . . , N ,

respectively. Roughly speaking, the control input ut allows us to switch between a finite set of affine

dynamical systems. We assume Ewt = 0, and define W = Ewtw
T
t .

The stage cost ℓ has the form

ℓ(z, v) = zTQz + 2qT z + lv,

where Q ∈ S
n
+, q ∈ Rn, and l ∈ Rm. If ut = j, the input cost lut

can be interpreted as the cost of

choosing system j, at time t.
In this formulation we consider only systems whose dynamics switch depending on the input.

We can also derive similar lower bound conditions for more general cases with state-dependent

switching, state constraints, as well as input-state coupling costs. Switching systems arise frequently

in practical control problems; one example is the control of switch mode power converters, such as

buck/boost converters [62, 63].

7.1. Iterated Bellman inequality

We use quadratic candidate functions V̂0, . . . , V̂M :

V̂i(z) = zTPiz + 2pTi z + si, i = 0, . . . ,M,

where Pi ∈ S
n, pi ∈ Rn, si ∈ R, i = 0, . . . ,M , with V̂ = V̂0 = V̂M . We can write the iterated

Bellman inequality (18) as

V̂i−1(z) ≤ ℓ(z, j) + γE V̂i(Ajz + bj + wt), ∀z ∈ Rn, i = 1, . . . ,M, j = 1, . . . , N. (32)

The expectation can be evaluated using

E V̂i(y + wt) = yTPiy + 2yTPiEwt +EwTt Piwt + 2pTi (y +Ewt) + si

= yTPiy + 2pTi y + si +Tr(PiW).

Using this to expand E V̂i(Ajz + bj + wt) we get

E V̂i(Ajz + bj + wt) = (Ajz + bj)
TPi(Ajz + bj) + 2pTi (Ajz + bj) + si +Tr(PiW)

=

[

z
1

]T [

H(ij) g(ij)

g(ij)T c(ij)

] [

z
1

]

,

where

H(ij) = ATj PiAj , g(ij) = ATj Pibj +ATj pi, c(ij) = bTj Pibj + 2bTj pi + si +Tr(PiW).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

16

Policy Objective

Greedy 120.9

ADP, V adp = V̂ (from iterated bound) 107.7

Performance bound Value

Pointwise supremum bound 100.1

Iterated bound (M = 50) 89.9

Basic Bellman bound (M = 1) 72.8

Table III: Performance of suboptimal policies (top half) and performance bounds (bottom half) for affine
switching control example.

Thus we can write (32) as

[

z
1

]T [

Q+ γH(ij) − Pi−1 q + γg(ij) − pi−1

qT + γg(ij)T − pTi−1 lj + γc(ij) − si−1

] [

z
1

]

≥ 0, ∀z ∈ Rn,

and for i = 1, . . . ,M , j = 1, . . . , N . This is equivalent to the LMIs

[

Q+ γH(ij) − Pi−1 q + γg(ij) − pi−1

qT + γg(ij)T − pTi−1 lj + γc(ij) − si−1

]

� 0, i = 1, . . . ,M, j = 1, . . . , N. (33)

Clearly, (33) is convex in the variables Pi, pi, si, and hence is tractable. The bound optimization

problem is therefore a convex optimization problem and can be efficiently solved.

7.2. Numerical examples

We compute our bounds for a randomly generated example, and compare them to the performance

achieved by the greedy and ADP policies. Our example is a problem with n = 3 and N = 6. The

matrices A1, . . . , AN , and b1, . . . , bN are randomly generated, with entries drawn from a standard

normal distribution. Each Ai is then scaled so that its singular values are between 0.9 and 1. The

stage cost matrices are Q = I , q = 0, l = 0, and we take γ = 0.9. We assume that the disturbance

wt has distribution N (0, 0.05I), and the initial state x0 has distribution N (0, 10I).
The results are shown in table III. The pointwise supremum bound is computed via Monte Carlo

simulation, using an iterated Bellman inequality condition with M = 50. Again we see that our best

bound, the pointwise supremum bound, is very close to the performance of the ADP policy (within

10%).

8. MULTI-PERIOD PORTFOLIO OPTIMIZATION

The state (portfolio) xt ∈ Rn
+ is a vector of holdings in n assets at the beginning of period t, in

dollars (not shares), so 1Txt is the total portfolio value at time t. In this example we will assume

that the portfolio is long only, i.e., xt ∈ Rn
+, and that the initial portfolio x0 is given. The input ut is a

vector of trades executed at the beginning of period t, also denominated in dollars: (ut)i > 0 means

we purchase asset i, and (ut)i < 0 means we sell asset i. We will assume that 1Tut = 0, which

means that the total cash obtained from sales equals the total cash required for the purchases, i.e.,

the trades are self-financing. The trading incurs a quadratic transaction cost uTt Rut, where R � 0,

which we will take into account directly in our objective function described below.

The portfolio propagates (over an investment period) as

xt+1 = At(xt + ut), t = 0, 1, . . . ,

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

17

where At = diag(rt), and rt is a vector of random positive (total) returns, with r0, r1, . . . IID with

known distribution on Rn
++. We let µ = E rt be the mean of rt, and Σ = E rtr

T
t its second moment.

Our investment earnings in period t (i.e., increase in total portfolio value), conditioned on xt = z
and ut = v, is 1TAt(z + v)− 1T z, which has mean and variance

(µ− 1)T (z + v), (z + v)T (Σ− µµT)(z + v),

respectively. We will use a traditional risk adjusted mean earnings utility function (which is to be

maximized),

U(z + v) = (µ− 1)T (z + v)− λ(z + v)T (Σ− µµT)(z + v),

where λ > 0 is the risk aversion parameter. The stage utility is a concave quadratic function.

The stage cost (to be minimized) is

ℓ(z, v) =

{

−U(z + v) + vTRv (z, v) ∈ C
+∞ (z, v) /∈ C,

where

C = {(z, v) | z + v ≥ 0, 1T v = 0}.

Thus our stage cost (to be minimized) is the negative utility, adjusted to account for transaction cost.

It is convex quadratic, on a set defined by some linear equality and inequality constraints. We will

write the quadratic part of the stage cost as

−U(z + v) + vTRv =





v
z
1





T

F





v
z
1



 ,

where

F =





Q+R Q (1− µ)/2
Q Q (1− µ)/2

(1− µ)T /2 (1− µ)T /2 0



 ,

with Q = λ(Σ− µµT).

8.1. Iterated Bellman inequality

We will look for quadratic candidate functions V̂0, . . . , V̂M :

V̂i(z) = zTPiz + 2pTi z + si, i = 0, . . . ,M,

where Pi ∈ S
n, pi ∈ Rn, si ∈ R, i = 0, . . . ,M , and V̂ = V̂0 = V̂M . We write this as

V̂i(z) =





v
z
1





T

Si





v
z
1



 , Si =





0 0 0
0 Pi pi
0 pTi si



 ,

for i = 0, . . . ,M .

The iterated Bellman inequality (18) is:

V̂i−1(z) ≤ ℓ(z, v) + γE V̂i(At(z + v)), i = 1, . . . ,M, (34)

for all z + v ≥ 0, 1T v = 0. The expectations above can be evaluated as

E V̂i(Aty) = E
(

yTATt PiAty + 2pTi Aty + si
)

= yT (EATt PiAt)y + 2pTi (EAty) + si

= yT (Σ ◦ Pi) y + 2(µ ◦ pi)
T y + si,

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

18

where ◦ denotes the Hadamard or elementwise product. Therefore we have

E V̂i(At(z + v)) =





v
z
1





T

Gi





v
z
1



 ,

where

Gi =





Σ ◦ Pi Σ ◦ Pi µ ◦ pi
Σ ◦ Pi Σ ◦ Pi µ ◦ pi

(µ ◦ pi)
T (µ ◦ pi)

T si



 .

Putting these together, we can write the iterated Bellman inequality as





v
z
1





T

(γGi + F − Si−1)





v
z
1



 ≥ 0

whenever z + v ≥ 0 and 1T v = 0. We express these last conditions as





v
z
1





T 



0 0 ei
0 0 ei
eTi eTi 0









v
z
1



 ≥ 0, i = 1, . . . , n,

and




v
z
1





T 



0 0 1

0 0 0
1T 0 0









v
z
1



 = 0.

Finally, we can use the S-procedure to find a sufficient condition for the Bellman inequalities:

There exist νi ∈ R, and λ(i) ∈ Rn
+, i = 1, . . . ,M such that for i = 1, . . . ,M ,

γGi + F − Si−1 −





0 0 λ(i) + νi1
0 0 λ(i)

(λ(i) + νi1)
T λ(i)T 0



 � 0. (35)

Since Gi and Si are linear functions of Pi, pi, and si, (35) is a set of LMIs in the variables Pi, pi,
si, λ

(i) and νi.
Thus, the bound optimization problem (14) becomes the SDP

maximize V̂0(x0) = Tr(P0x0x
T
0) + pT0 x0 + s0

subject to (35), λ(i) � 0, i = 1, . . . ,M,
(36)

with the variables listed above.

8.2. Numerical example

We consider a problem with n = 3 assets, with the last asset corresponding to a cash account. We

take the total returns rt to be log-normal, log rt ∼ N (µ̃, Σ̃), where µ̃ and Σ̃ are the mean and variance

of the log returns, which we take to be

µ̃ =





0.10
0.05
0



 , Σ̃ =





(0.10)2 (0.1)(0.05)(0.3) 0
(0.1)(0.05)(0.3) (0.05)2 0

0 0 0



 .

The first asset has a mean log return and standard deviation of 0.10, the second asset has a mean log

return and standard deviation of 0.05, and the cash account earns no interest. The first two asset log

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

19

Policy Objective

ADP, V adp = V unc -1.68

ADP, V adp = V̂ (M = 150 iterated bound) -1.96

Performance bound Value

Iterated bound (M = 150) -2.16

Basic Bellman inequality bound (M = 1) -2.82

Without long-only constraint -4.19

Table IV: Performance of suboptimal policies (top half) and performance bounds (bottom half) for
portfolio optimization example.

returns are 30% correlated. The associated mean and second moment returns are

µi = E(rt)i = exp(µ̃i + Σ̃ii/2),

and

Σij = E(rt)i(rt)j = E exp(wi + wj)

= exp(µ̃i + µ̃j + (Σ̃ii + Σ̃jj + 2Σ̃ij)/2)

= µiµj exp Σ̃ij .

We take x0 = (0, 0, 1), i.e., an all cash initial portfolio. We take transaction cost parameter R =
diag(1, 0.5, 0), risk aversion parameter λ = 0.1, and discount factor γ = 0.9.

Numerical results. We compute several performance bounds for this problem. The simplest

bound is obtained by ignoring the long-only constraint z + v ≥ 0. The resulting problem is then

linear quadratic, so the optimal value function is quadratic, the optimal policy is affine, and we

can evaluate its cost exactly (i.e., without resorting to Monte Carlo simulation). The next bound is

the basic Bellman inequality bound, i.e., the iterated bound with M = 1. Our most sophisticated

bound is the iterated bound, with M = 150. (We increased M until no significant improvement in

the bound was observed.) Using Monte Carlo simulation, we evaluated the objective for the greedy

policy and the ADP policy, using V adp = V̂ , obtained from the iterated Bellman bound.

We compare these performance bounds with the performance obtained by two ADP policies. The

first ADP policy is a ‘naive’ policy, where we take V adp to be the optimal value function of the same

problem without the long-only constraint, V unc. In the second ADP policy we take V adp = V̂ from

our iterated bellman bound.

The results are shown in table IV. We can see that the basic Bellman inequality bound outperforms

the bound we obtain by ignoring the long-only constraint, while the iterated bound with M = 150
is better than both. The ADP policy with V adp = V unc performs worse compared with the ADP

policy with V adp = V̂ , which performs very well. The gap between the cost achieved by the ADP

policy with V adp = V̂ and the iterated Bellman inequality bound is small, which tells us that the

ADP policy is nearly optimal.

Figure 3 shows a histogram of costs achieved by the two ADP policies over 10000 runs, where

each run simulates the system with the ADP policy over 100 time steps.

9. CONCLUSIONS AND COMMENTS

9.1. Extensions and variations

In this paper we focussed mainly on cases where the dynamical system is linear, and the cost

functions are quadratic. The same methods we used directly extends to problems with polynomial

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

20

−4 −3 −2 −1 0 1

−4 −3 −2 −1 0 1

0

500

1000

1500

0

500

1000

1500

Figure 3: Histogram of costs over 10000 runs. Top: ADP policy with V
adp

= V̂ . Bottom: ADP policy

with V
adp

= V
unc. Vertical lines indicate means of each distribution.

dynamics functions, stage costs and constraints. In this case, we look for polynomial V̂0, . . . , V̂M .

The development of the bound is exactly the same as for the linear quadratic case, except that to get a

sufficient condition for (18), we use the sum-of-squares (SOS) procedure instead of the S-procedure.

See [64, 65] for more on SOS, and [66, 67, 13] for other work on value function approximation with

polynomial data. The resulting set of inequalities is still convex, with a tractable number of variables

and constraints when the degree of the polynomials is not too large.

There are many other simple extensions. For instance, we can easily extend the affine switching

example to include both state and input dependent switching (and also combine this with polynomial

dynamics and costs). For arbitrary dynamics, costs and constraints, the iterated Bellman condition

is a semi-infinite constraint, and is difficult to handle in general. In this case, we can use similar

constraint sampling methods as in [9] to obtain good approximate value functions, but these are not

guaranteed to be value function underestimators.

9.2. Implementation

For problems described in §6 and §8, evaluating the ADP policy reduces to solving a small convex

quadratic program (QP), where the number of variables is equal to the number of inputs m. Recent

advances allow such problems to be solved at stunning speeds. One popular approach is to solve the

QP explicitly as a function of the problem parameters [68, 69], in which case evaluating the control

policy reduces to searching through a look-up table. This works very well for problems where the

numbers of states and inputs are small (around n = 5, m = 5 or less). The method is less practical

for larger problems, since the number of entries in the look-up table can be very large. However,

there are many ways to reduce the complexity of the explicit solution in these cases [69, 70, 71, 72].

Another method is to solve the QP on-line, in real-time, exploiting the structure in the problem,

which results in extremely fast solve times [6]. To give an idea of the speeds, for a problem with

100 states and 10 inputs, the quadratic ADP policy can be evaluated in around 67µs on a 2GHz

AMD processor. Recent advances in optimization modeling and code generation make it possible

to automatically generate solvers that exploit problem specific sparsity structure, further reducing

computation times [7].

The ability to solve these optimization problems at very high speeds means that the techniques

described in this paper can be used for stochastic control problems with fast sample times, measured

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

21

in kHz (thousands of samples per second). Even in applications where such speeds are not needed,

the high solution speed is very useful for simulation, which requires the solution of a very large

number of QPs.

9.3. Summary

In this paper we have outlined a method for finding both a lower bound on the optimal objective

value of a stochastic control problem, as well as a policy that often comes close in performance.

We have demonstrated this on several examples, where we showed that the bound is close to

the performance of the ADP policy. Our method is based on solving linear and semidefinite

programming problems, hence is tractable even for problems with high state and input dimension.

ACKNOWLEDGMENTS

The authors thank Mark Mueller, Ben Van Roy, Sanjay Lall, Ciamac Moallemi, Vivek Farias, David

Brown, Carlo Savorgnan, and Moritz Diehl for helpful discussions.

A. QUADRATIC FUNCTIONS AND THE S-PROCEDURE

In this appendix we outline a basic result called the S-procedure [54, §B.2][12, §2.6.3], which we can

use to derive tractable convex conditions on the coefficients, expressed as linear matrix inequalities,

that guarantee the iterated Bellman inequality holds. Using these conditions, the bound optimization

problems will become semdefinite programs.

A.1. Quadratic functions and linear matrix inequalities

Quadratic functions. We represent a general quadratic function g in the variable z ∈ Rn as a

quadratic form of (z, 1) ∈ Rn+1, as

g(z) = zTPz + 2pT z + s,

where P ∈ S
n (the set of symmetric n× n matrices), p ∈ Rn and s ∈ R. Thus g is a linear

combination of the quadratic functions, xixj , i, j = 1, . . . , n, i ≤ j, the linear functions xi, i =
1, . . . , n and the constant 1, where the coefficients are given by the matrices P , p and s.

Global nonnegativity. For a quadratic function we can express global nonnegativity in a simple

way:

g ≥ 0 ⇐⇒

[

P p
pT s

]

� 0, (37)

where the inequality on the left is pointwise (i.e., for all z ∈ Rn), and the righthand inequality �
denotes matrix inequality. Since we can easily check if a matrix is positive semidefinite, global

nonnegativity of a quadratic function is easy to check. (It is precisely this simple property that will

give us tractable nonheuristic conditions that imply that the Bellman inequality, or iterated Bellman

inequality, holds on state spaces such as X = R30, where sampling or exhaustive search would be

entirely intractable.)

Linear matrix inequalities. A linear matrix inequality (LMI) in the variable x ∈ Rn has the form

F (x) = F0 + x1F1 + · · ·+ xnFn � 0,

for matrices F0, . . . , Fn ∈ S
m. LMIs define convex sets; and we can easily solve LMIs, or more

generally convex optimization problems that include LMIs, using standard convex optimization

techniques; see, e.g., [12, 54, 73, 74].

As a simple example, the condition that g ≥ 0 (pointwise) is equivalent to the matrix inequality

in (37), which is an LMI in the variables P , p, and s.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

22

A.2. S-procedure

Let g be a quadratic function in the variable z ∈ Rn, with associated coefficients (P, p, s). We seek

a sufficient condition for g to be nonnegative on a set Q defined by a set of quadratic equalities and

inequalities, i.e.,

g(z) ≥ 0, ∀z ∈ Q, (38)

where

Q = {z | g1(z) ≥ 0, . . . , gr(z) ≥ 0, gr+1(z) = · · · = gN (z) = 0},

and

gi(z) = zTPiz + 2pTi z + si, i = 1, . . . , N.

One simple condition that implies this is the existence of nonnegative λ1, . . . , λr ∈ R, and

arbitrary λr+1, . . . , λN ∈ R, for which

g(z) ≥
N
∑

i=1

λigi(z), ∀z ∈ Rn. (39)

(The argument is simple: for z ∈ Q, gi(z) ≥ 0 for i = 1, . . . , r, and gi(z) = 0 for i = r + 1, . . . , N ,

so the righthand side is nonnegative.) But (39) is equivalent to

[

P p
pT s

]

−
N
∑

i=1

λi

[

Pi pi
pTi si

]

� 0, (40)

which is an LMI in the variables P , p, s and λ1, . . . , λN (with Pi, pi, and si, for i = 1, . . . , N
considered data). (We also have nonnegativity conditions on λ1, . . . , λr.) The numbers λi are called

multipliers.

This so-called S-procedure gives a sufficient condition for the (generally) infinite number of

inequalities in (38) (one for each z ∈ Q) as a single LMI that involves a finite number of variables.

In some special cases, the S-procedure condition is actually equivalent to the inequalities; but for

our purposes here we only need that it is a sufficient condition, which is obvious. The S-procedure

generalizes the (global) nonnegativity condition (37), which is obtained by taking λi = 0.

Example. As an example, let us derive an LMI condition on P, p, s (and some multipliers)

that guarantees g(z) ≥ 0 on Q = Rn
+. (When g is a quadratic form, this condition is the same

as copositivity of the matrix, which is not easy to determine [75].) We first take the quadratic

inequalities defining Q to be the linear inequalities 2zi ≥ 0, i = 1, . . . , n, which correspond to the

coefficient matrices
[

0 ei
eTi 0

]

, i = 1, . . . , n,

where ei is the ith standard unit vector. The S-procedure condition for g(z) ≥ 0 on Rn
+ is then

[

P p− λ
(p− λ)T s

]

� 0,

for some λ ∈ Rn
+.

We can derive a stronger S-procedure condition by using a larger set of (redundant!) inequalities

to define Q:

2zi ≥ 0, i = 1, . . . , n, 2zizj ≥ 0, i, j = 1, . . . , n, i < j,

which correspond to the coefficient matrices

[

0 ei
eTi 0

]

, i = 1, . . . , n,

[

eie
T
j + eje

T
i 0

0 0

]

, i, j = 1, . . . , n, i < j.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

23

The S-procedure condition for g(z) ≥ 0 on Rn
+ is then

[

P − Λ p− λ
(p− λ)T s

]

� 0, (41)

for some Λ ∈ S
n with all entries nonnegative and zero diagonal entries, and some λ ∈ Rn

+. The

condition (41) is an LMI in P, p, s,Λ, λ.

For fixed P, p, s, the sufficient condition (41) for copositivity is interesting. While it is not

in general a necessary condition for copositivity, it is a sophisticated, and tractably computable,

sufficient condition. Even more interesting is that we can tractably solve (convex) optimization

problems over P, p, s using the LMI sufficient condition (41) (which implies copositivity).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

24

REFERENCES

1. Kalman R. When is a linear control system optimal? Journal of Basic Engineering 1964; 86(1):1–10.
2. Bertsekas D. Dynamic Programming and Optimal Control: Volume 1. Athena Scientific, 2005.
3. Bertsekas D. Dynamic Programming and Optimal Control: Volume 2. Athena Scientific, 2007.
4. Bertsekas D, Shreve S. Stochastic optimal control: The discrete-time case. Athena Scientific, 1996.
5. Powell W. Approximate dynamic programming: solving the curses of dimensionality. John Wiley & Sons, Inc.,

2007.
6. Wang Y, Boyd S. Fast evaluation of control-Lyapunov policy 2009. Manuscript.
7. Mattingley J, Boyd S. Automatic code generation for real-time convex optimization. Convex optimization in signal

processing and communications, 2009. To appear.
8. Wegbreit B, Boyd S. Fast computation of optimal contact forces. IEEE Transactions on Robotics Dec 2007;

23(6):1117–1132.
9. De Farias D, Van Roy B. The linear programming approach to approximate dynamic programming. Operations

Research 2003; 51(6):850–865.
10. Wang Y, Boyd S. Performance bounds for linear stochastic control. System and Control Letters 2009; 58(3):178–

182.
11. Wang Y, Boyd S. Performance bounds and suboptimal policies for linear stochastic control via LMIs 2009.

Manuscript, available at www.stanford.edu/˜boyd/papers/gen_ctrl_bnds.html.
12. Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in Systems and Control Theory. SIAM

books: Philadelphia, 1994.
13. Savorgnan C, Lasserre J, Diehl M. Discrete-time stochastic optimal control via occupation measures and moment

relaxations. Proceedings of the 48th IEEE Conference on Decision and Control, 2009; 4939–4944.
14. Bertsimas D, Caramanis C. Bounds on linear PDEs via semidefinite optimization. Mathematical Programming,

Series A 2006; 108(1):135–158.
15. Lincoln B, Rantzer A. Relaxing dynamic programming. IEEE Transactions on Automatic Control 2006;

51(8):1249–1260.
16. Rantzer A. Relaxed dynamic programming in switching systems. IEE Proceedings — Control Theory and

Applications 2006; 153(5):567–574.
17. Manne A. Linear programming and sequential decisions. Management Science 1960; 60(3):259–267.
18. Schweitzer P, Seidmann A. Generalized polynomial approximations in Markovian decision processes. Journal of

Mathematical Analysis and Applications 1985; 110(2):568–582.
19. Kumar S, Kumar P. Performance bounds for queueing networks and scheduling policies. IEEE Transactions on

Automatic Control 1994; 39(8):1600–1611.
20. Morrison J, Kumar P. New linear program performance bounds for queueing networks. Journal of Optimization

Theory and Applications 1999; 100(3):575–597.
21. Moallemi C, Kumar S, Van Roy B. Approximate and data-driven dynamic programming for queueing networks

2008. Manuscript.
22. Adelman D. Dynamic bid prices in revenue management. Operations Research 2007; 55(4):647–661.
23. Adelman D. A price-directed approach to stochastic inventory/routing. Operations Research 2004; 52(4):449–514.
24. Farias V, Van Roy B. An approximate dynamic programming approach to network revenue management 2007.

Manuscript.
25. Farias V, Saure D, Weintraub G. An approximate dynamic programming approach to solving dynamic oligopoly

models 2010. Manuscript.
26. Han J. Dynamic portfolio management—an approximate linear programming approach. PhD Thesis, Stanford

University 2005.
27. Cogill R, Rotkowitz M, Van Roy B, Lall S. An approximate dynamics programming approach to decentralized

control of stochastic systems. Control of uncertain systems: Modelling, Approximation and Design, 2006; 243–
256.

28. Bertsimas D, Iancu D, Parrilo P. Optimality of affine policies in multi-stage robust optimization 2009. Manuscript.
29. Desai V, Farias V, Moallemi C. A smoothed approximate linear program. Advances in Neural Information

Processing Systems 2009; 22:459–467.
30. Cogill R, Lall S. Suboptimality bounds in stochastic control: A queueing example. Proceedings of the 2006

American Control Conference, 2006; 1642–1647.
31. Cogill R, Lall S, Hespanha J. A constant factor approximation algorithm for event-based sampling. Proceedings of

the 2007 American Control Conference, 2007; 305–311.
32. Brown D, Smith J, Sun P. Information relaxations and duality in stochastic dynamic programs. Operations Research

2010; To appear.
33. Bertsimas D, Gamarnik D, Tsitsiklis J. Performance of multiclass Markovian queueing networks via piecewise

linear Lyapunov functions. Annals of Applied Probability 2001; 11(4):1384–1428.
34. Castañón D. Stochastic control bounds on sensor network performance. Proceedings of the 44th IEEE Conference

on Decision and Control, 2005; 4939–4944.
35. Altman E. Constrained Markov Decision Processes. Chapman & Hall, 1999.
36. Peters A, Salgado M, Silva-Vera E. Performance bounds in MIMO linear control with pole location constraints.

Proceedings of the 2007 Mediterranean Conference on Control and Automation, 2007; 1–6.
37. Vuthandam P, Genceli H, Nikolaou M. Performance bounds for robust quadratic dynamic matrix control with end

condition. AIChE Journal 2004; 41(9):2083–2097.
38. Bertsekas D, Castañón D. Adaptive aggregation methods for infinite horizon dynamic programming. IEEE

Transactions on Automatic Control 1989; 34(6):589–598.
39. Sutton R, Barto A. Reinforcement learning: An introduction. Cambridge Univ Press, 1998.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

25

40. Ziv O, Shimkin N. Multigrid algorithms for temporal difference reinforcement learning. Proc. ICML workshop on
rich representations for RL, 2005.

41. Menache I, Mannor S, Shimkin N. Basis function adaptation in temporal difference reinforcement learning. Annals
of Operations Research 2005; 134(1):215–238.

42. Smart W. Explicit manifold representations for value-function approximation in reinforcement learning. Proc. of
the 8th international symposium on AI and mathematics, 2004.

43. Mahadevan S. Samuel meets Amarel: Automating value function approximation using global state space analysis.
Proc. of the 20th National Conference on Artificial Intelligence, vol. 5, 2005; 1000–1005.

44. Keller P, Mannor S, Precup D. Automatic basis function construction for approximate dynamic programming and
reinforcement learning. Proc. of the 23rd international conference on Machine learning, ACM, 2006; 449–456.

45. Huizhen Y, Bertsekas D. Basis function adaptation methods for cost approximation in MDP. 2009 IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement Learning, 2009; 74–81.

46. Witsenhausen H. On performance bounds for uncertain systems. SIAM Journal on Control 1970; 8(1):55–89.
47. Rieder U, Zagst R. Monotonicity and bounds for convex stochastic control models. Mathematical Methods of

Operations Research 1994; 39(2):1432–5217.
48. McEneaney W. A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM Journal

on Control and Optimization 2007; 46(4):1239–1276.
49. Whittle P. Optimization over Time. John Wiley & Sons, Inc., 1982.
50. Sontag E. A Lyapunov-like characterization of asymptotic controllability. SIAM Journal on Control and

Optimization 1983; 21(3):462–471.
51. Freeman R, Primbs J. Control Lyapunov functions, new ideas from an old source. Proceedings of the 35th IEEE

Conference on Decision and Control, vol. 4, 1996; 3926–3931.
52. Corless M, Leitmann G. Controller design for uncertain systems via Lyapunov functions. Proceedings of the

American Control Conference, vol. 3, 1988; 2019–2025.
53. Sznaier M, Suarez R, Cloutier J. Suboptimal control of constrained nonlinear systems via receding horizon

constrained control Lyapunov functions. International Journal on Robust and Nonlinear Control 2003; 13(3-
4):247–259.

54. Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press, 2004.
55. Nocedal J, Wright S. Numerical Optimization. Springer, 1999.
56. Vandenberghe L, Boyd S. Semidefinite programming. SIAM Review 1996; 38(1):49–95.
57. Potra F, Wright S. Interior-point methods. Journal of Computational and Applied Mathematics 2000; 124(1-2):281–

302.
58. Wang Y, Boyd S. Fast model predictive control using online optimization. Proceedings of the 17th IFAC world

congress, 2008; 6974–6997.
59. Skaf J, Boyd S. Techniques for exploring the suboptimal set. Optimization and Engineering 2010; :1–19.
60. De Farias D, Van Roy B. On constraint sampling in the linear programming approach to approximate dynamic

programming. Mathematics of Operations Research 2004; 29(3):462–478.
61. Mutapcic A, Boyd S. Cutting-set methods for robust convex optimization with pessimizing oracles. Optimization

Methods and Software 2009; 24(3):381–406.
62. Geyer T, Papafotiou G, Morari M. On the optimal control of switch-model DC-DC converters. Hybrid Systems:

Computation and Control, 2004.
63. Prodic A, Maksimovic D, Erickson R. Design and implementation of a digital PWM controller for a high-frequency

switching DC-DC power converter. Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics
Society, 2001; 893–898.

64. Parrilo P. Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming Series B
2003; 96(2):293–320.

65. Parrilo P, Lall S. Semidefinite programming relaxations and algebraic optimization in control. European Journal of
Control 2003; 9(2-3):307–321.

66. Henrion D, Lasserre J, Savorgnan C. Nonlinear optimal control synthesis via occupation measures. Proceedings of
the 47th IEEE Conference on Decision and Control, 2008; 4749–4754.

67. Lasserre J, Henrion D, Prieur C, Trelat E. Nonlinear optimal control via occupation measures and LMI-relaxations.
SIAM Journal on Control and Optimization June 2008; 47(4):1643–1666.

68. Bemporad A, Morari M, Dua V, Pistikopoulos E. The explicit linear quadratic regulator for constrained systems.
Automatica Jan 2002; 38(1):3–20.

69. Zeilinger M, Jones C, Morari M. Real-time suboptimal model predictive control using a combination of explicit
MPC and online computation. IEEE Conference on Decision and Control, 2008; 4718–4723.

70. Christophersen C, Zeilinger M, Jones C, Morari M. Controller complexity reduction for piecewise affine systems
through safe region elimination. IEEE Conference on Decision and Control, 2007; 4773–4778.

71. Jones C, Grieder P, Rakovic S. A logarithmic-time solution to the point location problem. Automatica Dec 2006;
42(12):2215–2218.

72. Bemporad A, Filippi C. Suboptimal explicit receding horizon control via approximate multiparametric quadratic
programming. Journal of Optimization Theory and Applications Nov 2004; 117(1):9–38.

73. Vandenberghe L, Balakrishnan V. Algorithms and software tools for LMI problems in control. IEEE Control
Systems Magazine, 1997; 89–95.

74. Wolkowicz H, Saigal R, Vandenberghe L. Handbook of Semidefinite Programming. Kluwer Academic Publishers,
2000.

75. Johnson C, Reams R. Spectral theory of copositive matrices. Linear algebra and its applications 2005; 395:275–
281.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc

