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In this paper we carefully study the analysis involved with Volterra series. We
address system-theoretic issues ranging from bounds on the gain and incremental
gain of Volterra series operators to the existence of Volterra series operator
inverses, and mathematical topics such as the relation between Volterra series
operators and Taylor series. The proofs are complete, and use only the basic facts
of analysis.

We prove a general Steady-state theorem for Volterra series operators, and
then establish a general formula for the spectrum of the output of a Volterra
series operator in terms of the spectrum of a periodic input.

This paper is meant to complement recent work on Volterra series expansions
for dynamical systems.

1. Introduction

A VOLTERRA SERIES OPERATOR with kernels hn is one of the form

(l.la)

(1.1b)

and is a generalization of the convolution description of linear time-invariant
(LTI) operators to time-invariant (TI) nonlinear operators. These operators are
important because many TI nonlinear operators occurring in engineering either
have this form or can be approximated, in some sense, by operators of this form
(Boyd & Chua, 1984). Volterra series have been the object of much recent study.
The focus has primarily been on proofs that the input/output (I/O) operators of
dynamical systems, and various generalizations, have a Volterra series representa-
tion, and the relationship between the Volterra kernels and the geometry of the
dynamical system. Brockett (1976) established the existence of a Volterra series
representation for many dynamical systems, and Sandberg (1983a) has recently
extended this to include a very wide class of systems, e.g. delay-differential
systems. Fliess, Lamnabhi, & Lamnabhi-Lagarrique have found a simple and
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elegant formula for the kernels of a dynamical system in terms of various Lie
derivatives.

In contrast our focus is on the analysis involved with Volterra series. We first
carefully address the basic issues of the formal Volterra series (1.1) above: what
are the kernels (functions, distributions,...?) and when do the integrals and sums
in (1.1) make sense? In the remainder of Section 2 we examine the elementary
properties of Volterra series operators, both system-theoretic (e.g. bounds on
their gain and incremental gain) and mathematical (e.g. their relation to Taylor
series).

In Section 3 we use the methods of Section 2 to prove some well-known
formulas for the kernels of various 'system interconnections'. We give an elemen-
tary and complete proof of the Inversion theorem for Volterra series, and work
through an illustrative example.

In Section 4 we explore some frequency domain topics. We start by proving the
Steady-state theorem for Volterra series operators. We then establish the validity
of a general formula for the spectrum of the output in terms of the spectrum of a
periodic input.

In the appendix we present more advanced (and esoteric) material: Volterra-
like series, the incremental gain theorem for Lp, Taylor series which are not
Volterra series, conditions under which the frequency domain formula of Section
4 holds, and almost periodic inputs.

The results we present range from 'well-known' (e.g. the Uniqueness theorem)
to new (e.g. the material in Section 4 and the appendix). Some of the material
overlaps or extends the work of other researchers, notably Sandberg's (1983b,
1984) work on Volterra-like series and almost periodic inputs respectively.

In order to keep the paper interesting and accessible to a wide audience, we
have used only the basic tools of real analysis, in a few places developing some
necessary background material. We do not present the results in their full
generality: we have limited the scope of the paper to single-input-, single-output-
(SISO-) stable TI Volterra series in order to do a more thorough job on this
important case. Extensions to other cases will be presented in a future paper.

The references we give are not meant to be complete but only representative.
More complete bibliographies can be found in our references, for example
Sandberg (1983a) or Fliess et al. (1983). Rugh (1981) contains a very complete
annotated bibliography up to 1980.

2. Formulation

2.1 What are the Kemelsl

In most treatments the kernels hn(Tlt..., rn) in equation (1.1) are interpreted
as functions from U" to U. Unfortunately this interpretation rules out some
operators common in engineering. We start with two examples:

EXAMPLE 1 X = - X + K

y=x 2
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and x(0) = 0. Then for f3=0

y(0 = ( e~Tu(f-T)dTJ = lH(T1)lH(T2)e"(T'+T2)«(f-T1)u(( —T2)dri dr2

where

! (t).= ( l ( f&°).
H ; ' 10 (r<0),

is Heaviside's unit function. Hence this operator has a Vol terra series description
with just one nonzero kernel,

This kernel h2 is an ordinary function M2 —> U.

EXAMPLE 2

x = - x + u2, y=x, andx(0) = 0.
Here

y(t)=f e"Tu(t-r)2dr

1)lH(T2)e~T ' 8(TX —T2)M(f —T!)u(t —T 2 ) dxj d r 2= J J
where 8 is Dirac's 'derivative' of 1H if you will condone the notation. So here the
kernel h2 is not a function as it was in Example 1 but a measure supported on the
line Tj = T2 , informally given by

M T I , T2) = 1H(TI)1H(T2) 8(TX - T2)e-T-

These examples are typical: in general the Vol terra series of dynamical systems
with the vector field affine in the input u (e.g. in bilinear systems) have kernels
which are ordinary functions whereas in other cases more general measures may
be necessary (Brockett, 1976; d'Alessandro, Isideri & Ruberti, 1974; Lesiak &
Krener, 1978; Sandberg, 1983b). In the latter case Sandberg has called the series
'Volterra-like': Appendix Al contains an in-depth discussion of Volterra-like
series.

A less exotic but widely occurring nonlinear operator whose description re-
quires kernels which are measures is the memoryless operator

where /:IR—>U is analytic near 0.
We will allow our kernels to be measures. We will see that the analysis is no

harder, and the resulting theory then includes all the examples above.

2.2 When the Series Converges

Recall that the ordinary power series g(x) = X"=o On*" converges absolutely for
|x|<p, where the radius of convergence is given by p = (limsupri_«n|an|

1/")~1.
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Similarly a radius of convergence p can be associated with a formal Volterra
series

Nu{t) = y(f)= 2* " ' ' I ̂ n(Ti> • • •. Tn)u(t — Tj) • • • u(t — Tn) dxj • • • drn (2.1)

such that the series will converge for input signals with |u(f)|<p.
More precisely, let 98 " be the bounded measures on (Ri0 ,t with \\fx\\ = J d|/x|. For

convenience we will write elements of 38" as if they were absolutely continuous
("Physicists' style"), e.g. h2(.Tl,T2) = 8(T!-T2)e~Ti. For signals ||- • -|| will denote the
oo-norm, i.e. UulHML-t

DEFINITION By a Volterra series operator we will henceforth mean an operator
given by equation (2.1) above and satisfying assumptions

(Al) fine33" and

(A2) limsup||hn||
1/rl<oo, that is, [||M1/rtE=i is bounded.

Our first task is to determine for which u equation (2.1) makes sense.

DEFINITION K N i s a Volterra series operator with kernels hn, we define the gain
bound function of N to be, for JCSSO, /(x): = ET=i IIM*" (with extended values,
that is, f(x) may be °°). The radius of convergence of N is defined by p =
rad N: = (lim supn_ Uhjpr ' •

Assumption (A2) implies that p > 0 and that the gain bound function / is
analytic at 0, with normal radius of convergence p. Since all the terms in the series
for / are positive p is also given by p = inf {x : /(%) = °°}, a formula which will be
useful in Section 3. We can now say when (2.1) makes sense.

THEOREM 2.2.1 (Gain Bound Theorem) Suppose N is a Volterra series operator
with kernels hn, gain bound function f, and radius of convergence p. Then

(i) the integrals and sum in equation (2.1) above converge absolutely for inputs
with \\u\\<p, that is, in Bp, the zero-centred ball of radius p in L°°.

(ii) N satisfies | |NM| | ^ / ( | |U | | ) and consequently N maps Bp into L°°.

(ii) is partial justification for naming / the gain bound function, we will soon see
more. Theorem 2.2.1 is well known in various forms (Rugh, 1981; Barrett 1963;
Brockett 1976, 1977; Christensen, 1968; Lesiak & Krener, 1978; Rao, 1970;
Sandberg, 1983).

Proof.

j j , • • • , TB)«(f-Tl) • • " U(t-Tn)\ dT, • • • dTn aSHflJ • |M|".

t We thus consider only causal operators, but in fact all of the following holds for kernels which are
bounded measures on R".

t An excellent reference on bounded measures and these norms (and analysis in general) is Rudin's
(1974) book.
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In particular, the integrals make sense. If ||u||<p, then

I | j • • • j M T I , • • • , T J K O - T O • • • u ( f - r n ) dTl • • • drn

« I I ••• | l M T i , . . . , T n M f - T i ) - - u ( r - T j | d T 1 - - d T n
t l = l J J

which establishes absolute convergence of the series and the gain bound in
(ii). •

For convenience we adopt the notational convention that throughout this paper
N will denote a Volterra series operator with kernels hn, gain bound function /,
and radius of convergence p.

The Gain Bound theorem has many simple applications. For example, the tail
of the gain bound function gives a bound on the truncation error for a Volterra
series.

| COROLLARY 2.2.2 (Error bound for truncated Volterra series) The truncated
Volterra series operator defined by

n - 1

satisfies

n k + l

which is o(\\u\\k).

2.3 Elementary Properties: Continuity

We will now show that N is continuous on Bp and Lipschitz continuous on any
Br,r<p.

LEMMA 2.3.1 Suppose ||u|| + ||t>||<p. Then

Proof. Assume ||u|| + ||u||<p. Then ||u + u||<p so N(u + v) makes sense and

\N(u + v)(t)-N(u)(t)\ (2.2a)

j (2.2c)
)=0

= I IKII[(ll«ll+Ht;||)"-||u||n] (2.2d)
n = l

= /(ll"ll+ll»ll)-/(||u||). (2.2e)



2 4 8 STEPHEN BOYD, L. O. CHUA AND C. A. DESOER

This technique will recur so careful explanation is worthwhile. In (2.2b) the first
product, when expanded, has 2" terms; the second product is precisely the first
term in the expansion. Replacing the remaining 2" - 1 terms by their norms and
integrating yields (2.2c).

The final inequality in Lemma 2.3.1 follows from the mean-value theorem,
since

where UMII^^^IIUII + HUII and / ' is increasing. Thus / ' can be interpreted as an
incremental gain bound function for N. •

THEOREM 2.3.2 (Incremental Gain theorem) Let Br be the zero-centred ball of
radius r in L°°, and suppose r<p. Then

(i) N:Br—>Bf(r) is Lipschitz continuous,

(ii) N: Bp —* L°° is continuous.

Proof. Suppose u and v are in Br. From the Gain Bound theorem

||Nu-Nw||*/(||u||) + /(||t>||). (2.3)

We claim that I

||N« - Nv\\^f(\\u -v\\ + \\v\\) - /(Hull) (2.4)
For | |u-u|| + ||i>||<p (2.4) is simply Lemma 2.3.1; for | |u-u| | + ||u||s=p (2.4) is true
since its right-hand side is °°. From (2.3) and (2.4) we deduce

where K is the supremum of the expression min{---} for 0^||u — u||^2r and is
finite. (K is in fact 2/(r)/{/~1[3/(r)]-r}: see Fig. 1). This establishes (i); since (i) is
true for any r<p (ii) follows. D

We will soon see that N is much more than merely continuous; for example, N
has Frechet derivatives of all orders on Bp. But before moving on, we present an
extension of the last theorem which will be important in Section 4.

Recall that for linear systems y = hx * u we have the result ||y||p =s||hi|| • ||M||P, for
lsSpsgoo (Desoer & Vidyasagar, 1975). It turns out that when properly reformu-
lated the Gain Bound theorem and the Incremental Gain theorem are also true
with general p-norms. First some warnings for p<<»: a Volterra series operator
need not be denned on any open subset of Lp, e.g. Nu(t) = u(t)/[l -u(t)] , and
even when it is, it need not map Lp back into L", e.g. Nu(t) = u(t)2. For more
details and discussion we refer the reader to Appendix A2.

THEOREM 2.3.3 (Gain Bound theorem for Lp) For l=Sp=£oo

HNuMIN|P

(unmarked norms are co-norms).
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fir)

K- = 2f(r)
/-'[3/W]-/-

f(r)

FIG. 1.

Even though our next theorem is stronger, we give the proof here to demon-
strate the basic argument.

Proof.

, • • • , TB)M(t-Tl) • • • u( t -TB ) |dT l • • • dTB

,. • •, TB)| dr2 • • • drB] |u ( t - T l ) | dTl. (2.5)

Now the bracketed expression in (2.5) is a measure in T1 with norm ||hn||, hence
using the result for linear systems cited above we have (Desoer & Vidyasagar,
1975)

Thus
oo

which establishes Theorem 2.3.3. D

LEMMA 2.3.4

/(ll«ll)

The proof combines the proof above with the proof of the Incremental Gain
theorem and is in Appendix A2.
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THEOREM 2.3.5 (Incremental Gain theorem for Lp) Let Br be the zero-centred
ball of radius r in L", with r<p. Then there is a K such that

\\Nu-Nvt*K\\u-vl

The proof is identical to that of Theorem 2.3.2 and so is omitted.

2.4 Multilinear and Polynomial Mappings

This section contains mostly background material for Section 2.5 and may be
omitted by those familiar with the topic. There are many good references on this
material, both in mathematics (Balakrishnan, 1976; Dieudonne, 1969) and en-
gineering (Halme, Orava, & Blomberg, 1971; Sontag, 1979).

Note that the nth term yn in a Volterra series is homogeneous of degree n in
the input u. Indeed much more is true; it is a polynomial mapping in u.

DEFINITION Let V and W be vector spaces over R. Then M: V" —» W is said to
be multilinear or n-linear if it is linear in each argument separately, i.e. if

M(t)t , . . . , Vj+aw,..., vn) = M(v1,..., u,-,..., un) + aM(t i i , . . . , w , . . . , vn).

EXAMPLE 1 V = W and M(ux, t>2) = vjAv2 where A e RnXn.

EXAMPLE 2 V= W = LT, he®2, and

t u2) = J J h(T!, T2)u1(f-T1)u2(r-T2) dTt dr2.

DEFINITION Let M: V" —*• W be n-linear. Then a map P: V-» W of the form

is said to be an n-order polynomial mapping.

EXAMPLE 3 V= W = L", heS82, and

P(U)=J Jh(T1,T2)u(t-T1)M(f-T2)dT1dT2,

and in general the nth term of a Volterra series operator is an n-order polynomial
mapping in the input u.

THEOREM 2.4.1 An n-order polynomial mapping is homogeneous of degree n, but
the converse is not true.

Proof. P(av) = M(av, ...,av) = anM(v, . . . , « ) = a"P(v).
To see that the converse is not in general true, let V = U2, W = U, and consider

F is homogeneous of degree two but is not a polynomial mapping, since a second
order polynomial mapping satisfies P(x1 + x2) + P(x1-x2) = 2P(x1) + 2P(x2); F
does not.

This distinction between a homogeneous mapping and a polynomial mapping is



ANALYTICAL FOUNDATIONS OF VOLTERRA SERIES 251

like the difference between a general norm and a norm which comes from an
inner product. To bring the discussion home to engineering consider the nonlinear
TI operator N given by

N is homogeneous of degree two. We will see later that the response of a second
order Volterra series operator to the input u(t) = cos t has, at most, two compo-
nents: one at D.C. and one at 2radsec~\ N(cos r), however, has infinitely many
harmonics. •

We need just a few more definitions.

DEFINITION An n-linear map M is said to be symmetric if for any permutation
o-eS"

Thus the bilinear map of Example 1 is symmetric iff A = AT, and the bilinear map
of Example 2 is symmetric iff hij^, T2) = h(r2, Tt).
DEFINITION sym M is the multilinear mapping defined by

symM(u!, . . . ,un) : = — £ M(val,... ,vm)

and similarly if ^ is a function or measure, we define

1 ~
symfin(T1,...,Tn): = — 2- M ^ i , . . . , rm).

sym M derives its importance from the following theorem.

THEOREM 2.4.2 Suppose the polynomial maps P1 and P2 are induced by mul-
tilinear maps Mj and M2, respectively. Then Px = P2 iff sym M^ = sym M2.

Thus two bilinear maps of the form of Example 1 induce the same polynomial
map if and only if A1 + Al = A2 + Aj.

Proof. First note that symM and M always induce the same polynomial map,
since

1 „
sym M(u, . . . , v) = — 2* M(u>.. . , v) = M(v,..., v).

The 'if' part follows. In the next section we will prove more than the 'only if' part,
so here we will give just an informal sketch of how the 'only if' proof goes. The
key is the formula

n! Ldctt-- •dania=0 \ = 1

so that Px = P2 implies sym M t = sym M2. To 'establish' the formula, note that

I a,,
•„ = !
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The only terms which contribute to

1[1
are the n! terms where [»,•]"= i is a permutation of [1 ,2 , . . . , n], and the resulting
sum is sym M(u j , . . . , vn). Of course we do not know yet that these derivatives
exist, but we will see later that if the multilinear operators are bounded, then
these derivatives can be interpreted as honest Frechet derivatives.

This process of determining sym M from the polynomial map P induced by M
is known as polarization. In fact, we could replace the formula (2.6) above
involving partial derivatives with a purely algebraic one; for example for n = 2 we
have the polarization formula

We gave the formula (2.6) because it generalizes to whole Volterra Series; the
algebraic identities do not.

Let us now assume that V and W are Banach spaces. Then an n-linear map
M:V n -> Wis bounded if

sup | |M(u l , . . . ,n , ) | |<« (2.7)

in which case we call the left-hand side of (2.7) the norm of M as a multilinear
operator and denote it ||MlL]. The bilinear operator of Example 1 is bounded,
with llMllnj = dr(A).t The bilinear operator in Example 2 is bounded with norm at
most ||h2||.t

We now quickly review derivatives in Banach space (Dieudonne, 1969; Balak-
rishnan, 1976). Recall that J£(V, W) denotes the Banach space of bounded linear
maps from V into W, with the operator norm ||A||: = sup {||Av||: ||t>|| =s 1}. A map
N:G^*W, where G is an open subset of V, is said to have a Frechet or strong
derivative DN(wo)ei?(V, W) at uosG if

If the map u0 »=» DN(u0) has a Frechet derivative, we say N has a second Frechet
derivative D(2)N(u0) and it is an element of %[V,£e(V, W)]. Fortunately this
space can be identified with i?2(V, W), the space of bounded bilinear maps
: V2 -> W, with the norm ||- • -^ denned above. Similarly the nth Frechet deriva-
tive, if it exists, can be thought of as a bounded n -linear map : Vn —* W. It can be
shown that D<n)N(w0) is symmetric, e.g. if D("+1)N(u0) exists.

2.5 Relation to Taylor Series; Uniqueness of Volterra Series

We will now see that Volterra series operators are Taylor series of operators
from some open ball in L°° into L°°.

t<x(A) means the largest singular value of A; here we assume the Euclidean norm on R".
t The actual norm, rather than this upper bound, is hard to compute; see Appendix 3.
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THEOREM 2.5.1 (Frechet derivatives of Volterra series operators) On Bp, N has
Frechet derivatives of all orders with

D(k)N(Uo)(M1,...,ufc)(t)= (2.8a)

C C
) ••• sym

(2.8b)

Thus | |D ( ION(UO)H/ ( IO(| |UO||) and (niyW^Nifl) is the n-linear mapping as-
sociated with the nth term of the Volterra series and given by:

-T>MN(0)(u1,...,un)(t) =
m

j J rO • • • u»(r-Tn) dTl • • • drn. (2.8c)

Remark. (2.8c) of Theorem 2.5.1 tells us that the Volterra series we have
considered so far are in fact Taylor series of operators :L°° —* L°°. The reader may
wonder whether the Volterra series constitute all of the Taylor series of TI
nonlinear maps :L°° —> L°°. In Appendix 3 we show that this is not true, but that
the Taylor series left out are not important in engineering.

Proof. Let Mk denote the multilinear map given in (2.8b) above. We will show
that

M«o+u)- I ^Mk(u,...,u) = o(||u|r1)

which will prove Mk = D(k)N(u0) as claimed. First note that

IIA4N I n(n -1) • • • (n - k +1) ||nj| • ||Uo||-k = /(k)(||Mo||).
n=k

Now using the symmetry of sym hn

N(uo+u)= t [•••[symhB(Ti,...,TB) I (") I I u(r-T|)dT, f[ M0(r-T,)dTl.
n = l J J k=0 *K' i = l i = k + l

(2.9)

For ||u|| small enough (||u|| + ||uoll<P will do) the entire right-hand side of equation
(2.9) is absolutely convergent so we may rewrite it as:

I A I n ( n - l ) - - - ( « - k + l ) f - - -
r 1

j = £ — M k ( u , . . . , u).
k=0K!
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Thus we have

| U ) £ ^ M ( ) | U t llA4lHIf

K
k=n+\

k=0 *•

which is indeed o(||u||"). D

THEOREM 2.5.2 (Uniqueness theorem for Volterra series) Suppose N and M are
Volterra series operators with kernels hn and gn, respectively. Then N=M iff
sym hn = sym gn for all n.

Note that N = M asserts equality of maps from some ball in L°° into L", whereas
the conclusion asserts equality of a sequence of measures.

Proof. The 'if' part is clear, (see Theorem 2.4.2). To show the 'only if' part we will
show that the measures sym h^ are determined by the operator N. A measure
/xeS8" is determined by its integral over all n-rectangles in Un, i.e. by the
integrals

J • • • J /X(T, , . . . , Tn)«1(-T1) • • • M - T J dTl • • • drn (2.10)

where each u, is the characteristic function of an interval. Now by Theorem 2.5.1
we have

-Jssym K(r,,..., T J U ^ - T ^ • • • ^ ( - r j d n • • • dTn =^DMN(Ul,..., uJ(0)

so that N determines the integrals in (2.10) and hence the measure sym hn. A
more explicit formula for these integrals is:

J • • • J s• • • J sym M T J , • - •, Tn)u1(-r,) • • • u«(-Tn) drj • • • drn

-—1 MiwHo)

which is the formula mentioned in the previous section. •

The Uniqueness theorem tells us that we may as well choose our kernels h^ to
be symmetric, and from now on we will assume that all kernels are symmetric. Of
course other canonical forms are possible and in some cases more convenient. For
example the triangular kernels satisfy

ktrin(Ti,...,Tn) = O unless O ^ T ^ • • • SST,,
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and the Volterra series is then

°° f fT" fTz

Nu(t)= Z I | • • • [ h t r in(T1,...,Tn)M(f-T1)"-M(r-Tn)dT1---dTn.

One point worth mentioning: the triangle inequality implies

Thus using the symmetric (or triangular) kernels can only decrease the gain bound
function / and hence increase the radius of convergence p. In the sequel we will
refer to the gain bound function and radius of convergence computed from the
symmetric kernels as the gain bound function and radius of convergence of N.

2.6 Final Comments on the Formulation

The formulation we have given is by no means the only possible. For example,
we could interpret the norms on input signals and kernels as L2 norms, leaving the
norm on output signals (i.e. y = Nu) an L°° norm. Input signals and kernels would
thus be L2 functions with

Then with the exception of the Lp material of Section 2.3 all the preceding results
hold. This is essentially the Fock space framework proposed by De Figueiredo
(1983).t

3. Applications to systems theory

In this section we apply the ideas of the previous section to give simple
rigorous proofs of some well-known theorems. We show that the sum, pointwise
product, and composition of two Volterra series operators have Volterra series
and we bound their gain functions. We proceed to find the condition under which
a Volterra series operator has an inverse and compute its kernels. This is applied
to show that the I/O operator of a simple dynamical system is given by a Volterra
series.

This program of working out the Volterra series of various 'system interconnec-
tions' was first carried out at MIT in the late 1950s (Barrett, 1963; Brilliant,
1958), but none of this work is rigorous. This constructive approach is not really
a fully modern approach, where one powerful general theorem would prove all
these theorems (and more) (Sandberg, 1983a). Unfortunately this one powerful
theorem may be so general and abstract that the underlying simplicity of the
formulas may be lost. In this section we want to demonstrate two things: first, that
supplying the analytical details in the MIT work is relatively straightforward; and

tOur Volterra series with radii exceeding r would be almost all of the Fock space with weights
N\rn.
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second, that the resulting formulas, though complicated, are just simple exten-
sions of the same formulas for ordinary power series. This of course should be
expected in view of Theorem 2.5.1.

The notation for this section is as follows: A and B will denote Volterra series
operators with kernels an and bn, gain bound functions fA and fB, and radii of
convergence pA and pg, respectively.

3.1 Sum and Product Operators

The pointwise product of A and B is denned by

[A-B]u(t)=[Au](r)[Bu](r).

DEFINITION U ae58n, beS9k then the symmetric tensor product avbeS8"+k is
denned by:

[a v b](Ti, . . . , Tn+Ic): = sym [a(Tj , . . . , rn)b{jn+l,..., Tn+k)].

By the product we mean the normal product measure. (Thus h(T-)g(r) does not
necessarily make sense, but h(Tj)g(T2) does.) Note that

||avb|| =

, v , Z I ' ' ' l l a ( T o - i » - - - ,

THEOREM 3.1.1 (Product operator) A- Bis a Volterra series operator with kerneb

n - l

k = l

and characteristic gain function fA.B ^ /A/B- In particular pA-B^niin{PA> PB)-

Remark. If we write a Volterra series as a formal sum

then we can write the formal symmetric tensor product of a t + • • • and bt + • • • as

(a t +- • •)v(bl+- • •) = (aiv

so the Volterra series of A • B is the formal symmetric tensor product of the
Volterra series of A and B. Note the similarity with the formula for the
coefficients of the product of two power series.

Proof. Let ||u||<min{pA, pg}. Then Au and Bu make sense and

A-Bu(t) =
(3.1a)

t j-|bn(T1 , . . . ,Tn)ri"(f-T i)dT i)
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(3.1b)

= 1 1 • •• U m ( T 1 , . . . , T m ) b n ( T m + 1 , . . . , T m + n ) P I u ( r -T i
m = l n = l J J i = l

= I f • • j Q. atvfcn.k)«(t-Tl) • • • u(t-TB) dTl • • • drn. (3.1c)

All of the changes in the order of summation and integration in equations (3.1)
are justified by the Fubini theorem, since

oo oo * * m+n

I I ••• |am(T1,...,Tm)M'Tm+l,...,Tm+n)| [ I |u(t-T,)|dT,
m = l n = l J J i = l

I I lkll-ll^ll-ll«llm+B=/A(NI)/B(IMI)«».
m = l n = l

Since equation (3.1) holds for any u with ||u||<min{pA, pe}, the Uniqueness
theorem tells us that Zt=i ak vbn_k are the kernels of A • B. Now

/A-B(X)= I ||Mxn= I I ||akvbn_fc||x"
oo n — 1

I
n = l I

n = l

The final conclusion pA.B3»min{pA, PB) follows from / A - B ^ / A / B
 a n d PAB =

inf{x:/A.B = oo}. D

THEOREM 3.1.2 (Sum operator) A + B is a Volterra series operator with kernels

and gain bound function fA+B =£/A +fB. Thus pA+B^min{pA , pe}.

The proof is left to the reader.

3.2 Composition Operator

The composition of A and B, which we denote by the juxtaposition AB, is
defined by

To motivate the formula for the kernels of AB, recall that the nth coefficient of
the composition of the ordinary power series YT=i aix' an<3 ZT=i fy*' IS given by

1\ I "LvA- 0.2)
fc-l 'i ' k » l



258 STEPHEN BOYD, L. O. CHUA AND C. A. DESOER

THEOREM 3.2.1 (Composition theorem) AB is a Volterra series operator with
kernels

?.yjf
• • dTk .

(3.3)

Moreover fAB(x)^fA[fB(x)]. Thus PAB ̂ minipB./i^PA)}-

Proof. Let h,, be defined by the formula (3.3) above. First note that

I kN l l " I llklHIM IKII 0.4)
k = l ii ik=*l

|_i,+ -+ik=nj

and the right-hand side of (3.4) is the nth coefficient of fA[fB(---)] so fH(*)^
/A[/B(x)]. This computation justifies the changes of order of integration and
summation in the following. Suppose /A[/B(II"II)]<00- Then Bu makes sense and
||Bu||=£/B(||u||) so ABu makes sense and:

ABu(t)= I [•••|ak(T1,...,T fc)Bu(r-T1)---Bu(t-T fc)dT1---dTk

= Z "•• Uk( T l , - - ,T k ) -
k = l J J

n ( I [••• \bm(tl,...,tm)u(t-Ti-t1)---u(t-ri-tm)dtl---dtn)dri

= Z ••• U k ( T i , . . . , T k ) z k l ( t 1 , - - - , < i , - T i ) " -
k = l J J Li, i t a l J

• • • bik(ti.+~+ik-,» • • • ' t , 1 +. . .+ i l >(f -T 1 - t 1 ) • • • U(t -Tx-t j , ) • • •

• • • w( t -T k - t i i + . . . + i t _ i + 1 ) • • • u ( f - T k - f i l + . . . + i t ) d t 1 • • • dt i i + . . .+ i t dTi • • • dTk.

We now collect terms by degree in u to get:

ABu(t)= Z [ • • • [ [ Z f Z ]ak(r,,..., rk)-
\ Li,+ -+ik = nJ

• • • "(t-Tic-tn-^+i) • • • u(r-Tk-tn)J dfj • • • dtn dxj • • • dTk.

Finally, we change the tj variables:

A B u ( r ) = I f . - f Z f Z I f -z f - f z [
|_i
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fy/'i~Ti,...,«j,-T^• • • bit(rn- i l+i-Tk,...,tn-Tk)dr1---dTk u(t-Tj)-• •

•••u(t-Tn)dtl---dtn

= Z • • • U n ( T 1 , . . . , T n ) u ( t - T 1 ) - - - M ( t - T n ) d T 1 - - - d T n
n = l J J

and the uniqueness theorem tells us f̂  are the kernels of AB. Equation (3.4)
establishes the bound / A B ^ / A / B . and the lower bound on the radius of con-
vergence of AB follows. •

3.3 Inverses of Volterra Series Operators

We now ask the question: when does a Volterra series operator have a local
inverse near 0 given by a Volterra series operator and what are its kernels? Whole
papers have been written on this important topic (Halme, 1971; Halme & Orava
1972). Just like ordinary power series, the condition is just that the first term be
invertible.

THEOREM 3.3.1 (Inversion theorem for Volterra series) A has a local inverse at 0
if and only if its first kernel ax is invertible inifa1, i.e. there exists a measure b1e^1

with ^ it bl = b.t

Remark. Since the Frechet derivative of A at 0 is given by convolution with a t

(Theorem 2.5.1), the Inversion theorem can be thought of as a generalized
Inverse-function theorem. We will not pursue this idea further: instead we take a
constructive approach.

Proof. To see the 'only if' part, suppose A has a local inverse B, that is

AB=BA = I (3.5)

where I is the identity operator (71 = 8, In = 0 for H > 1 ) . Using the composition
theorem to compute the first kernel of the operators in equation (3.5) yields

a 1 * b 1 = b 1 * a 1 = 8. (3.6)

Thus aj is invertible in S31.
The proof of the 'if' part will proceed as follows: we first construct a right

inverse for A under the assumption that the first kernel is just 8. Using this we
show that A has a right inverse in the general case, a t invertible in 39\ We finish
the proof by showing that the right inverse constructed is in fact also a left inverse
for A.

Special case. Assume for now that a t = 8. To motivate what follows, consider
an ordinary power series a(x):-Y^=1anx" with al = \. Since a'(0) = l, a(-) has
an analytic inverse b{x): = YZ=\ bnx

n near 0. Using formula (3.3) for the coeffi-
cients of the composition a[b(x)] = x yields bx = l and the following recursive

t Since the convolution of measures in 98' is commutative, a, + 6, = 8 implies 6, • a, = 8.
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formula for bn:

fc=2

Note that since the index k starts at two, the right-hand side of (3.7) refers only to
b i , . . . , bn_i. Incidentally this process of recursively computing the coefficients of
the inverse of an analytic function is known as reversion of a power series
(Bromwich, 1908).

We now use the same construction for Volterra series. Let bx = 8 and for n > 1
define measures bn E SBn recursively by

t\ I I f •fak(T1,...,Tk).
|_i,+-+ik = nj (3.8)

bi 1 (*i-Ti , . . . , t i l -T 1 ) - - • b i k(rn_ i t + 1-Tk , . . . ,£ t l-Tk)dT1- • -drk .

As in (3.7) above this comes directly from the composition formula and (AB)n =
0, n > 1. We now have to show that the bn, as defined in (3.8) above, are actually
the kernels of a Volterra series operator: we must verify that assumptions (Al)
and (A2) hold.

We establish (Al) by induction. First note that i>1 = 8eS81. Assuming that
bj e 33' for j = 1 , . . . , n - 1 (3.8) implies that bn e58", with

IkU • H&J ||fcj. (3.9)

We now establish (A2). Let g(x): = 2x-/A(x) . Since g'(0) = l (recall that
«i = S) g has an analytic inverse h(x): = £"=i anx" near 0. We claim that /B(x)=^
h(x) and thus PeS=radh(-). The coefficients an are given by formula (3.7):
<*!= 1 and for n > 1

« n = l [ I l lKI |a i l - - -a i t . (3.10)
+i k=nj

fc=2

By induction we now show

(3.11)

for all n. (3.11) is true for n = 1; suppose (3.11) has been established for n<m.
Then (3.9), (3.10), and the inductive hypothesis establish (3.11) for n = m and
hence for all n. Consequently

which proves our claim above that the measures bn do satisfy assumption (A2)
and hence are the kernels of a Volterra series operator which we naturally enough
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call B. From the formula (3.8) for bn we conclude

AB = I

B is thus a right inverse for A. This concludes the proof for the special case.

General case. Suppose now that ax is invertible in 38 \ We will use the proof of
the special case presented above to prove the general case. Let b1e231 satisfy
ar -k b1 = b. Let A ^ be the Volterra series operator with first kernel ax and other
kernels zero. A^ is invertible, with inverse A^ (which has first kernel t^ and
other kernels zero). Consider the operator A^A whose kernels we could easily
compute with the composition theorem. Its first kernel is 8, so using the construc-
tion above find a local right inverse C to A^A. Then B = CA^ is the local right
inverse of A, since

AB = AhnA^ACA^=AiinA^ = I. (3.12)

Our final task is to show that the right inverse B is also a left inverse for A.
Since the first kernel of B is invertible (indeed it has inverse ax) we can find a
right inverse D for B. Then we have

A=AI = A(BD) = (AB)D = ID = D. (3.13)

(3.13) and BD = I shows

BA = I

which with (3.12) proves that B really is the local inverse of A at 0 and completes
the proof of Theorem 3.4.1. •

Remark 1. If a^&M, the subalgebra of 381 of those measures lacking singular
continuous part, then we have the criterion (Desoer & Vidyasagar, 1975)

A is invertible iff inf |ai(s)|>0
RessO

where a^s) denotes the Laplace transform of a t.

Remark 2. It is interesting to note that the special case considered above has the
interpretation of unify feedback around a strictly nonlinear operator, which is an
important system-theoretic topic in its own right.

3.4 Dynamical System Example

To illustrate the theorems of this section we now work an example.

EXAMPLE Consider the one-dimensional dynamical system:

x = /(x) + g(u), (3.14a)

x(0) = 0, (3.14b)
and

y=q(x). (3.14c)

Suppose /, g, and q are analytic near 0, /(0) = g(0) = q(0) = 0, and f (0)<0. Then
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the system is exponentially stable at 0, and for ||u|| small there is a unique state
trajectory x satisfying (3.14). We will now show that the I/O map :u>-»y is a
Volterra series operator.

Proof. We first use a loop transformation to reexpress equations (3.14a) and
(3.14b) in terms of Volterra series operators. (3.14a) and (3.14b) are equivalent to

where /sni(x) : = f(x)-/'(0)x, the strictly nonlinear part of / : see Fig. 2. Let H ^
be the Volterra series operator with first kernel lH(T)e/(0)T and other kernels 0.
Let Fsnl, G, and Q be the memoryless Volterra series operators associated
with the functions /snl, g, and q, respectively, e.g. Q n(T 1 ; . . . , rn) =
n !~1q(fl)(0)8(r1) • • • 8 ( T J . Then the system equations (3.14) are equivalent to

= HUn[FsnI(x
and

(3.15a)

(3.15b)

«(•••)

(a)

Us

/•(•••)

*(•••) + +

(b)

Us

/'(0)

/'(0)

(c)

«(•••)
+r
+ •

/snl(-)

f

FIG. 2.
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Since H^ is linear

(I-HUnFsndx = HlinGu. (3.16)

By the sum and composition theorems I—H^F^ is a Volterra series operator
with first kernel 8. By the inversion theorem 7-H l inFsnl has a Vol terra series local
inverse (I-H^F^1 near 0. Since as mentioned above (3.16) has only one
solution x when ||M|| is small, it must be

x = (7-FsnIHlin)-1Gu. (3.17)

Thus for ||u|| small, the output y is given by a Volterra series operator in u:

y = Q(I-FsnlH]inr
1Gu. (3.18)

A few comments are in order. (3.14) may have multiple equilibria when u=0 ,
for example if /(x) = —sinx; or even a finite escape time for some inputs u, for
example if f(x) = -x + x2. We have shown that as long as ||u|| is small enough, say
less than K, then the state x and the output y are given by a Volterra series in u.
In particular ||u||<K must keep the state x from leaving the domain of attraction
of 0, for otherwise the Steady-state theorem (see Section 4.1) or the Gain Bound
theorem would be violated.

4. Frequency-domain topics

In this section we consider frequency-domain topics, concentrating on the
simplest case: periodic inputs. Even in this case the analysis is not simple.
Nevertheless we show that an intuitive formula for the output spectrum in terms
of the input spectrum holds in essentially all engineering contexts.

Before starting our topic proper, we prove the following theorem.

4.1 The Steady-state Theorem

THEOREM 4.1.1 (Steady-state theorem): Let u and us be any signals with:
ll"ll» ll"sll < p = rad N, and suppose that u(t) -> us(f) as t -» °°. Then Nu(t) -» Nus(t)
as t-* oo.

This is a very different concept from that of the continuity of N as a map from
L°° to L°°, which tells us e.g. that if Un —> u uniformly as n^<», then M^ —»Nu
(uniformly), t

Proof. Suppose: ||u||, ||us||<p and u(t)—*us(t) as t—»«>. Let u = u s - u so v(t)—*0
as t—*oo. The proof is a modification of the proof of the incremental gain
theorem; we simply break the estimate into two parts, one due to the recent past
only. For T > 0

(Nus- Nu)(t) = [N(u + v) - Nujt) = hit, T) + I2(t, T)

t Indeed the Steady-state theorem is false for some pathological LTT bounded (and therefore
continuous) operators from L™ into L°°: see Appendix 3.
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where

J,0, T):= i f • • • f fcn(Ti, - - -, TB)(n «.(t-T,)- f l «(t-Ti)) dTl • • • drn
n=l -TO, Tf J \ = 1 i = l '

and

:=t f
We now estimate It and Z2 separately.

IlO,T)=I f •

= 1 [ • • •k(Tl , . . . ,T n ) I WnuCt-T.JdT, ft H(r-T,)dTf

using the symmetry of hn. Thus

where ||U||[,_T,O means SUP{|«(T)|: f-T^T=st} and / is the gain bound function of
N. Note that (4.1b) may be °o for some t, T. But as t-T-*°°, ||u||[,-T.t]-»'O so
(4.1b) eventually becomes and stays finite and in fact converges to zero. Thus we
conclude:

Ii(f,T)-*0 as t-T^> oo. (4.2)

Now we estimate I2:

1*2(1, T)l * I l|h|Lr\B).7T (H"slln + ||u||") (4.3)
n = l

where

IIMLrMarr = [ • • • f IMTI , . . . , O | drx • • • drn. (4.4)

For each n (4.4) decreases to zero as T increases to oo, since each ^ is a bounded
measure. Hence each term in the sum in (4.3) decreases to zero as T increases to
oo. The right-hand side of (4.3) is always less than /(||MS | |)+/(||U||), SO the domi-
nated convergence theorem tells us that the right-hand side of (4.3), and hence
hit* T), converges to zero as T —» oo.

If we now set T = t/2 then as t —* oo both T and t - T increase to oo. Hence as
t -» oo, M,s(r) -Nu(t) = 1,(1, t/2) + I2(t, </2) -> 0. •

Remark. Unlike linear systems, the rate of convergence can depend on the
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amplitude of the input. For example, consider N given by
oo

Nu= £ u(t-k)k.
k = l

N has radius of convergence one. Now consider step inputs of amplitude a,
0 < a < 1 . As a increases to one, the time to convergence to within, say, one per
cent of the steady state grows like (1 —a)"1. For linear systems the time to
convergence is independent of the amplitude of the input.

Although in the Steady-state theorem us can be any signal with ||us||<p, usually
us has the interpretation of a steady-state input, for example in the following
theorem.

THEOREM 4.1.2 (Periodic Steady-state theorem) / / the input u is periodic with
period T for ts^O then the output Nu approaches a steady state, also periodic with
period T.

Proof. Let us be u extended periodically to r = —°°. Clearly u(r)—> us(f) as t—»oo
(indeed u(t) = us(t) for (3*0) so by the Steady-state theorem Nu(t) —*• Nus(f) as
t -* oo. Nus is periodic with period T since

[Nus(-)](t + T) = N[us(- + T)](f) = Nus(f)

where the first equality is due to the time-invariance of N and the second equality
is due to the T-periodicity of us. •

Note in particular that Volterra series operators cannot generate subharmonics.
The following theorem is a related application of the Steady-state theorem.

THEOREM 4.1.3 (Almost periodic Steady-state theorem) If the input u is almost
periodic for ts=O then the output approaches an almost periodic steady state.

Proof. The hypothesis simply means that there is some us which is almost periodic
and agrees with u for rs^O. By the Steady-state theorem we know y(t)—*
ys(t): = Nus(t) so we need only show that Volterra series operators take almost
periodic inputs into almost periodic outputs. The proof of this, as well as the
formula for the spectral amplitudes of the output, are in Appendix A5. This last
topic has been studied by Sandberg (1984).

4.2 Frequency-domain Volterra Kernels

As with linear systems, it is often convenient to use the Laplace transforms of
the kernels, defined by

Hn(s,,..., sn) = j - • • J M T I , . • •, rn)e-^'+-+^ dTl • • • drn.

We call Hn the nth frequency-domain kernel or (just) kernel of the operator N.
Since hne9&", Hn is defined at least in C" : = {se<C" : Vfc Re sk >0}. Hn is symmet-
ric, bounded, and uniformly continuous there; it is analytic in C". We should
mention that the Unidty theorem for Laplace transform tells us that two measures
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in 98" are equal («„ = gn) if and only if their Laplace transforms are equal

The formulas of Section 3 are somewhat simpler in the frequency domain. The
following theorem uses the notational convention that Cn denotes the nth
frequency-domain kernel of a Volterra series operator C.

THEOREM 4.2.1 Suppose A and B are Volterra series operators. Then the
frequency-domain kernels of A + B, A • B (pointwise product), and AB (composi-
tion) are given by:

slt..., sn),
n - l n - 1

(A • B)n = X Ak vBn_k : = sym £ ^ki^,..., sfc)Bn_k(sfc+1,..., sn),
k = l k = l

and

(AB)n (Si , . . . , sn) = sym X X Afc(s!+• • •+s i l , . . . , s n_ f k + 1+• • •+s n ) -
fc = l -i i k » l

|_ii+—+ik = n j

B ^ C S i , . . . , sh) • • • B i t ( s n _ i k + 1 , . . . , s n )

respectively.

These^well-known formulas follow easily from the formulas of Section 3.

4.3 Multitone Inputs; the Fundamental Frequency-domain Formula

We start with a simple calculation. Suppose that u(t) is a trigonometric polyno-
mial, that is (

" ( 0 = Z Oke1-*
k=-i

where a_k =a* . t Suppose also that ||u||<p =radN. Then

y(0 = Nu(f) = Z f• • • k ( T t , . . . , TB) f l I «ke
j-(-T.> dTi (4.5a)

= Z ( Z )«k l • • • cc^H^cok,,..., ja,k,,)el(-k»+-+*k")l (4.5b)

The term afc] • • • ̂ ^ ( j w k j , . . . , jwkn)eiMc'+ •+lolc")' is often called an nth-order
((oki,..., <akn) intermodulation product. Since it is proportional to
Hn(jwkl,..., jwkn) this suggests the interpretation of Hnijwkx,..., jwk,,) as a
measure of the (cuki,..., w O intermodulation distortion of N.

Now we have already seen that the first sum in (4.5b) is an €x sum, i.e.
absolutely convergent. In fact for each f,

Z |( Z W • • â HnGcofcx, • •., j

t Thus u is real. Complex signals are easily handled but less useful in the study of Volterra series
operators than of linear operators.



ANALYTICAL FOUNDATIONS OF VOLTERRA SERIES 2 6 7

where / is the gain bound function of N. Consequently we may evaluate the mth
Fourier coefficient of y

y(m): = —

inside the first sum in (4.5b) as:
°° , . ("2-trco-1 /

y("O=Iff ( I
fc'+-+o'fc""e-J"m' dr.

Each integral is easily evaluated (the integrands are trigonometric polynomials)
yielding

9(m)=i( I )wi)--u(kn)Hn(}<ok1,...,)a>kn) (4.6)

since ii(k) = ak for |k |« l and 0 for |k |>i (and thus the inner sum in (4.6) is
finite). We call (4.6) the fundamental frequency-domain formula since it expresses
the output spectrum in terms of the input spectrum. Of course we have only
established it for inputs which are trigonometric polynomials, but we will see that
it is true for more general periodic inputs, and an analogous formula holds for
almost periodic inputs as well (see Appendix A5).

Remark. Suppose a trigonometric polynomial signal u is passed through a unit
nth power law device so that y(f) = u(t)n. Then

where u*" means the n-fold convolution u k u -k • • • k u (the sum in the convolu-
tion is finite here!). The first equality makes sense: it is just the dual of the
correspondence between convolution in the time domain and multiplication in the
frequency domain. The second equality makes the fundamental formula (4.6)
seem quite natural; the nth of (4.6) can be thought of as an n-fold convolution
power of M, weighted by Hn (j<aku ..., jwfcj.

Before establishing the fundamental formula for more general periodic inputs,
we have to examine carefully the question of whether it even makes sense for
more general periodic inputs. Despite its resemblance to the composition formula
and the fact that every sum and integral encountered so far has converged
absolutely, we have a surprise!

4.4 The Fundamental Formula does not Converge Absolutely

Remarkably the fundamental formula is not absolutely convergent even for u
as simple as a two-tone input signal! That is

I [ I l|u(fc1)--a(fcn)Hn(j"fci,...,i"
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can equal °° even in the case considered above: u a trigonometric polynomial (but
our calculation was correct).

Remark. Practically, this means that we cannot arbitrarily rearrange the terms in
the sum above. We must first perform the inner (bracketed) sum (which in this
case is a finite sum), and then perform the outer sum over n.

EXAMPLE Let u = |(cos (+sin2f). Then ||u|| can be shown to be

5

which is about 0-978 < 1. Let N be the memoryless operator with Hn = 1 for all n,
that is y(f) = u(t)/[l —w(f)]. Then p = l so y(f) makes sense and satisfies ||y||^
||u||/(l-||u||) (which is about 45). According to the fundamental formula (4.6) of
the last subsection, the D.C. term of y is given by:

y ( o ) = l ( Z W ) • • • SCO. (4.7)

Now we claim that (4.7) does not converge absolutely. To see this,

Z ( Z )\Mi)---a(K)> Z ( Z )Ifi(ki)• • • MK)\
n = l Mci+"-+fcn=O' neven V,+—+1^=0'

= Z ( Z )m1)---Hkn)
neven V,H hkn=0'

where u(f): = |(cos r+cos 2f) so that |u(fc)| = u(k) for all k

= Z ^-Tvitr
since v(t)^l for -0-25 =£ts£0-25. Thus the fundamental formula is not abso-
lutely convergent in this simple case.

It is surprising that the trouble in (4.6) occurs when the input is a simple
trigonometric polynomial signal; we might expect it to give us trouble only when,
say, u does not have an absolutely convergent Fourier series.

There is one obvious but rare case in which (4.6) does converge absolutely.
Suppose uef1, i.e. u has an absolutely convergent Fourier series, and in addition
/(II"II1)<

00- Then l u l ^ 1 and I H I * " ^ 1 with IHfil^lli^llfill?, thus we have the
estimate

Z ( Z ) Ifi(ki) • • • u(fen)Hn0cok1,. . . , joifcJI« £ Ml" IIM = /(llfllli).

In conclusion, then, we must proceed with extreme care in establishing the
fundamental formula for more general periodic input signals.
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4.5 Proof of Fundamental Formula for General Inputs

We start with some calculations. Suppose u is any periodic input with ||u||<p.
Recall that the Ith Cesaro sum of the Fourier series of u is denned by

".(0= I

u, is u convolved with an approximate identity and thus satisfies ||u,||=£||u|| and
ll"i - "Hi -* 0 as I -»• °° (Helson, 1983). From the first fact we conclude that Nu,
makes sense since | |M ( | |^ | |M||<P = rad N. Using the Incremental Gain theorem for
L1 (Theorem 2.3.5), we conclude that | |Nu-Nu,||i->0 as i ^ ° ° . Hence y,
(y: = Nu) converges uniformly to y as I —*• °°. u, is a trigonometric polynomial so
we know the fundamental formula holds for Nu,; putting all this together we have
shown

y(m) = lim £ ( I WfcO • •.• ul(kn)HnQ<ok1,..., jcokj (4.8)

= I lim ( Z )u(k1) • • • iiiK) f l Qi^H^wk,,..., jcokj. (4.9)

The dominated convergence theorem justifies the interchange of limit and sum in
(4.8) since as we have mentioned before the first sum in (4.8) and (4.9) is always
absolutely convergent and |Cd«l . Since lim,^ooC,(k) = 1 for each k, if we knew
that the inner sum also converged absolutely we could apply dominated con-
vergence once again to conclude

= I ( I W i ) • • • <i(fcJHn(jwfci, • • •, j"kn)
n = l ^,+—+1^ = 111'

which would establish the fundamental formula in the general case.
Unfortunately the inner sum

(4.10)

(4.11)

is not always absolutely convergent (and thus does not always make sense). In
such a case formula (4.9) is as close as we can get to the fundamental formula. But
in fact the inner sum is absolutely convergent in almost all situations arising in
engineering. We now present two conditions which suffice:

LEMMA 4.5.1 Suppose u has bounded variation over one period. Then

( I )|u(k1)---u(kj|<oo.

In particular, the inner sum (4.11) in the fundamental formula converges abso-
lutely. The proof is given in Appendix A4.



2 7 0 STEPHEN BOYD, L. O. CHUA AND C. A. DESOER

LEMMA 4.5.2 Suppose that

Then the inner sum (4.11) is absolutely convergent.

Remark. This condition can be interpreted as: N is strictly proper. For example
the kernels of the input/output operator of a dynamical system with vector field
affine in the input have this property.

The proof is in Appendix A4. We summarize the results of this section in

THEOREM 4.5.3 (Fundamental frequency-domain formula) Suppose ||«||<p and
that either

(i) the input u has bounded variation over one period, or
(ii) the operator N is strictly proper, that is,

,,..., jo)kn)=

Then the fundamental frequency-domain formula is valid, that is:

9(m) = I ( I )u(kd • • • u O c J H , , ^ ! , • •

Proof. Theorem 4.5.3 follows from the discussion at the beginning of this section
and the lemmas above. •
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Appendices

Al. Volterra-like series

In the study of (linear) convolution operators in engineering it is common to
consider only a subalgebra of the bounded measures, for example the subalgebra
of measures lacking singular continuous part (Desoer & Vidyasager, 1975). This
algebra is large enough to capture all of the commonly occurring distributed
systems such as distributed transmission lines, transport delays in control systems,
etc. Similarly in the study of Volterra series operators only certain types of
measures occur in practice; the singular kernel lH(T1)lH0r2)e~Tl8(T1-T2) of Exam-
ple 2 of Section 2.1 is typical. Sandberg (1983b) calls series with kernels of this
form Volterra-like; an early occurrence of this idea was in Zadeh's (1953) paper.

In a Volterra-like series we index the series not by the order n but by a
multi-index n = (nl,... ,nk) (n, > 0). k is called the length of n; the degree of n is
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defined by dn = nl + • • • + nk. We write

where

yn(t) = J • • • j K ( j l t . . •, ikMr—r,)"' • • • uO-Tj^dT! • • • drfc

in which the kernels 1%, are now ordinary L1 functions instead of bounded
measures. Each Volterra-like kernel ha can be turned into an equivalent Volterra
kernel h[n] by:

h [ n ] ( T i , . . • , T n ) : = s y m h n ( T l , rni+1,.... T n _ n k + I ) 8 ( r 1 - T 2 ) • • •

)

We call hM the associated Volterra kernel of the Volterra-like kernel hn.
Collecting the associated Volterra kernels by degree,

K-=l hM (Al.l)
dn = n

yields a Volterra series equivalent to the Volterra-like series. Via this associated
Volterra series, Volterra-like series inherit the concepts of gain bound function
and radius of convergence.

Note that hM is supported on the k -dimensional set given byt

Cn : = {(T1; . . . , rn)T: «j of the T are x x ; . . . ; nk of the T are xfc}. '

Thus the associated kernel is singular (with respect to Lebesgue measure) unless

We extend the notion of sym to Volterra-like series by:

symhn(T1,...,Tk) = — X M v u - . - . u )
K ' <reSk

where cm = (n^i, • • •, «o*); we say h,, is symmetric if sym h,, = h^. This agrees with
our earlier notation if we think of the old order n as the n-long multi-index
(1 1), since a ( l , . . . , 1) = ( 1 , . . . , 1). Note that sym hn involves not just the
Volterra-like kernel hn but all Volterra-like kernels of the form m = an. We say
m and n have the same type in this case. A Volterra-like series thus has P(n)
different types of kernels of degree n, where P(n) is the number of partitions of
n.$ If the Volterra-like series is symmetric then the kernels of the same type have
identical associated kernels and are simply related by:

hm(Ti,. ••,Tk)=han(Ti,.. . ,Tk)=hn(To.1,...,TCTfc).

This extension of sym will also be useful in the study of multi-input Volterra
series.

t We appeal to the reader's intuitive notion of dimension, but it can be shown that the Hausdorff-
Besicovitch dimension of Cn is indeed fc.

t There is no nice formula for P(n). For those interested it is asymptotic to (4>/3n)~1 exp iiV(2n/3).
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THEOREM Al . l (Uniqueness theorem for Volterra-like series) Suppose N and M
are Volterra-like series operators with kernels h,, and g,,, respectively. Then N = M
iff sym hn = sym &, for all n.

Proof. The 'if' part is clear. By the Uniqueness theorem (Theorem 2.5.2) we know
K, = g*, where h,, and gn are the kernels of the associated Volterra series (given in
(Al.l) above). We will finish the proof by showing that ^ determines the
Volterra-like kernels sym hn.

THEOREM A1.2 (Decomposition theorem for Volterra-like series) Suppose hn are
the kernels of the Volterra series associated with a Volterra-like series with kernels
hn. Then h^ uniquely determines the Volterra-like kernels

Thus if a Volterra series comes from a Volterra-like series, then each kernel
can be uniquely decomposed into the 2""1 symmetric Volterra-like kernels with
which it is associated. Another way to think of the Decomposition theorem is: the
(linear) map of the symmetric Volterra-like kernels into the associated Volterra
kernels (given by formula Al.l) is injective.

Before starting the proof, let us consider a simple example which illustrates the
idea. The second kernel of the associated Volterra series is:

M T I , T2) = h[(1>1)] + hK2)] = h(l,l)(T1, T2) + |h (2)(T1)8(T1 - T2) + |h (2)(T2)8(T1 - T2).

Decomposing h2 is easy: the terms h[(2)] and h[(i,D] are mutually singular measures
(The first is supported on the line TX = T2 and the second is absolutely continuous.)
To be quite explicit we have the formulas:

, T2) fOr Tj f T2

and

1 fr+ef-r+e
—- j J h2(Tt, T2) dTt dT2.h(2)(r) lim

The proof of the Decomposition theorem uses the same idea: the associated
kernels of J^ and hm are mutually singular unless n and m are of the same type.
To prove this, note that the associated kernel of hn has all its mass in the set

C* = {(T1,...,Tn)T:n1of the T are X!;... ; nk of the ra re xk;

This is no more than the assertion that

J ' • • J • • •, Tk)u(r-T1)"« • • • uit-Tj'1* dTl • • •

• • • dTk = J• • • J MTX, • • •, Tk)u(t-r1)
n' • • • u(t-Tk)"« drj • • • drk

(remember that fî  is an L1 function).
The sets C* and C* are disjoint if n and m are different type, and equal if the

types are the same. This establishes the claim that the associated kernels are
mutually singular unless the multi-indices are of the same type. The L1 function
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h n(T 1 ; . . . , Tk) is determined by the integrals

• • uk(Tk) dTl • • • drk (Ai.2)

where the 14 (j = 1 , . . . , k) are in L™. According to the discussion above we have

J • • • J K(ri, •••, TJUICT!) • • • u1(Tni)«2(Tni+1) • • • uk(Tn) dTx • • •

• • • drn = Kj • •• j K(j\, • ••. Tk)u1(T1) • • • ufc(Tfc) dTt • • • drk

where K is the number of Volterra-like kernels with the same type as n. Thus the
integrals (A1.2), and hence the function h,,, are determined by h,,. This proves the
Decomposition theorem.

Remark. The Decomposition theorem is not so obvious as it might seem. For
example consider the consequence that (nonzero) operators of the form

y (0 = J J h(2,2)(Tl, T2)u(t - T1)
2M(r - T2)

2 di"! dT2

can never be put in the form

y(0=JJh(1,3)(T1,T2)u(t-T1)M(t-T2)3dT1dT2.

This is so even though the associated kernels are both supported on two-
dimensional sets. The frequency-domain version of the example above is as
follows. Suppose H(2_r>(si, s2) and Ha^isx, s2) are the Laplace transforms of
symmetric functions in L1(R?=0). The Decomposition theorem says we can extract
H(2>2) and H (13 ) from the fourth-order frequency-domain kernel

Htist ,...,s4) = sym [H(2,2)(si + s2,s3 + s4) + H(1,3)(s1, s2+s3 + s4)]

(which has nine terms!). There are explicit formulas which effect this decomposi-
tion, but we will not give them here.

COROLLARY A1.3 / / the h,, are symmetric, then

\K\\= I IIM.

Thus the gain bound function, which we originally defined via the associated
Volterra series, is simply given by:

A2. Incremental Gain theorem for V

To demonstrate the difficulty of a theory of Volterra series operators for Lp

(p<oo) which is unadulterated by reference to ||u|U, consider just the memoryless
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operator Nu(t) = f[u(t)]. If N is to be defined on any open subset of Lp then we
must have rad N = p = <x>. It is not hard to show that N maps Lp back into Lp if
and only if / is sector bounded, i.e. |/(x)|*£K|x|. Sandberg (1984) has recently
shown that if JV has a Frechet derivative at 0 (as an operator from Lp into Lp)
then / is in fact linear!

LEMMA 2.3.4

(Remember that unmarked norms are co-norms.)

Proof. The conclusion is, if anything, sharpened if we assume the kernels are
syrnmetric (see Section 2.5) so we will assume they are. Then

[N(u+v)-NuJt)

= I (• • • f Kiri, • • •, TB)(ll (u+uXt-T, ) - f l u(t-T,)) dTl • • • drn
I t = l J J \=1 i = l '

= 1 f"-fMTl,...,TB) I (")n»(t-T,)dT, ft u(r-T,)dT,.
n = l J J fc = l ^K' i = l i = fc + l

Thus

\N(u + v)-Nu\(t)

* I k I Q l^ir1 \Hn~k\ [ f • • JIMTX, ..., Tn)| dr2 • • • drn] |«(t-Tl)| dTl.
As in Theorem 2.3.4 the bracketed expression is a measure in r t with norm
so we have (Desoer & Vidyasagar, 1975)

\K\\
The last inequality in the conclusion of Lemma 2.3.4 follows from the Mean-value
theorem.

A3. Taylor series which are not Volterra series

In Section 2.5 we showed that the Volterra series operators are simply Taylor
series of TI operators :L°° —> L", but noted that the Volterra series are not all of
the Taylor series. In this section we discuss this point in more detail.

Much of the theory of Volterra series holds for the more general Taylor series

Nu= £ Pn(u)= I Mn(u,...,u)
r » = l n = l

where M,, is the bounded TI n-linear map :L°°—»L°° given by Mn =
(n!)-lDwN(O). With the gain bound function f(x) = I | |Mj x" only notational
changes are required to prove all the results of Section 3. For example, such an N
has a Taylor series inverse near 0 if and only if Mj is invertible.
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The differences between our formulation of Volterra series and a more general
formulation based on Taylor series are as follows.

(i) Not all bounded TI n-linear maps :L™" —»L°° have a convolution represen-
tation

Mn{ul,...,un)= • • •
J J

with hnES8".
(ii) The norm we use, ||hj|, is not equivalent to the norm ||- • -W^ on S£nQJ°, L°°),

it is stronger (larger). That is (with some abuse of notation)

l k l L : = sup If- • • f K f a , . . . . T n )u ( r - T l ) • • • u ( t -T B )d T l • •
Hu,||<l 1IJ J

and the ratio of the two is not bounded away from zero. Indeed we will give an
example where the ratio is zero.

(i) is true even for n = 1. We now give an example. Consider the subspace of L™
of those u with a limit at t = -°°, that is

| u e L°°: lim u(t) exists \.

On this subspace we define F(u) as lim,^_«, u(t). F is clearly a LTI bounded
functional on this subspace. Using the Hahn-Banach theorem and the Axiom of
Choice, F can be extended to a LTI bounded functional on all of L°°, which we
denote Lim; see Rudin (1974). Lim can also be thought of as a bounded LTI
operator :L°°-»L~ (though its range is just the constants).

For any u which vanishes for t < 0 we have Lim u = 0. This establishes that Lim
is causal, and that Lim has no representation as a convolution with a measure. It
also shows that the Steady-state theorem does not hold for Lim. To mention just
one more bizarre property of Lim, it is a bounded LTI operator which maps
sinusoids to constants*.

Clearly this example is absurd from an engineering point of view. Lim's
perfect memory of the infinitely remote past (and indeed, total amnesia for the
finite past) contradicts our intuition that bounded LTI physical devices and
systems should have a decaying memoryA

Let us now give an example of (ii). For n > 1, np=i Lim 14 furnishes an example
of a bounded multilinear operator not given by a convolution as in (A3.1). Less
bizarre examples can also be given for n > l . For example we can have a
convolution representation with h,, an unbounded measure.t Consider the kernel

C O S ( T 1 T 2 )

t Moral: don't fiddle with the Axiom of Choice.
% In the literature this is often stated: 'J • • • J |hn(T,, . . . , rn)| di-j • • • drn <°° is a sufficient but not

necessary condition for BIBO stability of a second-order Volterra operator.' An incorrect example is
given in Schetzen (1980).
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then ||h2|| = J|h2(T1, T2)| dT1dT2 =
 00. Nevertheless this kernel induces a bounded

bilinear map :L"2 —» L°°. First we have to say what we mean by the convolution
since the integral in (A3.1) is not absolutely convergent with this h2. We mean

M2(ul,u2)(t):= Urn I I /I2(T1; T2)u1(f-T1)u2(r-T2)dT1 dr2.

To see that this limit exists and that M2 is bounded, we rewrite this as

< A 3 - 2 >

As T—»°° the left-hand bracketed expression in (A3.2) converges in L2 to the
L2-function 1H(T2)M2(*-T2)/(I + T2); by the Plancherel theorem the right-hand
bracketed expression in (A3.2) converges in L2 to the L2-function Refu^f-
•)/(1 + <)]P(T2), where by fp we mean here the Plancherel transform of fe~L2.
Consequently the limit in (A3.2) exists and is bounded by

.. .. .. ..

which establishes ||M2||ml^2V(2Tr)/3. This example was suggested by D. J. New-
man. Like the first example Lim above, it is rather forced.

There are thus at least three costs associated with generalizing Volterra series
operators to arbitrary Taylor series:

(1) we lose the concrete convolution representation (A3.1);
(2) the norm ||fin|| = J • • • J |hj dr t • • • drn is replaced by HMJI™, which is nearly

impossible to compute;
(3) we include clearly nonphysical operators such as Lim.

It is the authors' feeling, and we hope the examples above have convinced the
reader, that the mathematical elegance and completeness of a general Taylor
series formulation is not worth (l)-(3).

A4. Absolute convergence of the inner sum

In Section 4.5 we established the fundamental frequency-domain formula under
the hypothesis that

is finite. In this section we give two simple conditions which ensure that (A4.1) is
finite, the first a condition on the input signal u, and the second a condition on the
kernel Hn.
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A4.1 Conditions on the Input Signal

We seek conditions which ensure that

( I ) Ifi(fci) • • • fi(U (A4.2)

is finite. This of course implies that (A4.1) is finite, since iHj^Hhnll. Note that
(A4.2) is simply (A4.1) when N is the simplest possible n-order operator: the
memoryless n-power-law device Nu(t) = u(t)n.

Since u e L", u e L2 and so u e t2. Thus for n = 2, (A4.2) is just a convolution of
two sequences in €2 and thus is finite by the Cauchy-Schwarz inequality:

Z l/(fcx)g(fc2)l= Zl/(fc)llg(m-fc)|^||/||2||g||2. (A4.3)
Ic,+k2=m fc = l

Since the convolution of two ^-sequences is not, in general, in £2, the finiteness
of (A4.2) already is dubious for n = 3. On the other hand if ue€l, then
convolution iterates of u make sense and are still in €i: (A4.2) is then bounded by

llfilR.
It is a remarkable fact that for most u, (A4.2) is finite, even when u is not in €l.

This is not true for all ueL°°; cos(l/r) (extended periodically) is a
counterexample. t

THEOREM A4.1.1 Suppose that u(k) = O(l/k). Then (A4.2) is finite, that is

Proof. Suppose that u(k) = O(l/k). Then there is a constant (3 such that |u(k)|
where

l (k = 0),W
Since t3 e ^2, it is indeed the Fourier series of some L2 function which we will call,
surprisingly enough, u. In fact

u(f) = l - l n 2 - l n ( l - c o s t )

the verification of which we will spare the reader.
Now

( Z )|fi(k1)---fl(kri)l^|3n( Z W i ) - - « ( U (A4.4)

so it will suffice to show that the right-hand side of (A4.4) is finite. We break up
the proof of this into three lemmas.

LEMMA 1 Suppose f and g are in L2. Then /g = / * g.

t D. J. Newman, personal communication.
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Even though this is well known we give a short proof here for completeness.

Proof. We have already seen in equation (A4.3) that the convolution / * g

converges absolutely. Recall that (Plancherel theorem)

g - Z g(fc)eH ^ 0 as !-»<». (A4.5)
k=-i "2

By the Cauchy-Schwarz inequality

fc=-l » 2

(A4.6)

By (A4.5) the right-hand side of (A4.6), and therefore the left-hand side of
(A4.6), converges to 0 as I —> °°. But the left-hand side of (A4.6) is just

fg(m)- t g(fc)/(m-k) .
k=-l

Letting / —* °° yields the conclusion. •

LEMMA 2 v(t)n eL1 for all n. (That is, veV for all p<°°.)

Proof. Clearly we need only worry about the singularity at t = 0, that is v(t)" eL1

if and only if [hi (1 - cos t)]n is integrable near t = 0. This is true iff (In t)n is
integrable near t = 0, which is true since

r—In e

which establishes Lemma 2. •

LEMMA 3

Z )v(k1)---HK)=f(rn). (A4.7)

Proof. By induction on n. Suppose we have established (A4.7) for n. By Lemma
2, vn and v are in L2, so applying Lemma 1 we have

using the inductive hypothesis

(

= ( Z Wi)
Vi+—+k»+1-iR'

the change of order being valid since the summand is positive (Fubini theorem).
This completes the proof of Lemma 3. •
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We can now finish the proof of Theorem A4.1.1. From (A4.4), (A4.7), and
Lemma 2 we have

establishing Theorem A4.1.1. •

One useful condition which implies u(n) = O(l/n) is that u has bounded
variation over one period.

LEMMA 4.5.1 Suppose u has bounded variation over one period. Then

( I )|fi(ki)---fl(kB)l<»-

Proof. If u has bounded variation over one period then u(n)= O(1/M) (Helson,
1983). (The proof is essentially integrating by parts the formula for u(n).) Thus
Theorem A4.1.1 proves Lemma 4.5.1. •

A4.2 Conditions on the kernel Hn

LEMMA 4.5.2 Suppose that H n ( ja )k 1 ; . . . , j<okj = CM- — ) . Then (A4.1) is
finite, that is: \kl---kn/

( I Wk1)---u(UHnGa>fc1,...,ja,kn)l<°°.

Proof. Suppose HnQcokl,..., jwkj = O(l/ki • • • fcj. Then

Since u<=€2, [u(ki) • • • u(kn)]k.eNe^2(Nn) with norm ||u|g so the Cauchy-Schwarz
inequality yields

( I )\Hk,)---H(K)Hn(jiok1,...,}a,K)\

I \u(k1)---u(kn)Hn(ju>k,,...,ja>kn)\
k, K

which proves Lemma 4.5.2. D

AS. Almost periodic inputs

Recall that T is said to be an e-translation number for u if l|u(-) — u(- + T)|| ̂
e. u is almost periodic if for all e > 0 there is an L such that all L-long intervals
contain at least one e -translation number for u. Formally
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These definitions and a concise discussion can be found in Wiener (1964) or
Corduneanu (1968).

THEOREM A5.1 Suppose u is almost periodic and | |u| |<p=radN. Then Nu is
almost periodic.

This extends some results of Sandberg (1984) who established Theorem A5.1
under the assumption that u has an absolutely convergent Fourier series with
small enough coefficients.

Proof. Let e > 0 . Choose r with ||u||< r<p. By the Incremental Gain theorem
(Theorem 2.3.2) there is a K such that on Br, ||Nu-Nt>||s£K||u-t>||. For any T,
||M(- + T)||s2r, hence if T is an e-translation number for u then

so T is a Ke -translation number for Nu.
Now to finish the proof: since u is almost periodic find L such that all L-long

intervals contain at least one e/K-translation number for u. From the discussion
above these translation numbers are e-translation numbers for Nu, thus Nu
is almost periodic. •

Remark. It is not hard to show that any continuous time-invariant operator from
L°° into If maps almost periodic functions into almost periodic functions. To see
this, we first give a modern (less concrete) definition of almost periodic functions:
u is almost periodic iff it is continuous and the set of its translates {u('-f):'elR}
is compact in L°° (Corduneanu, 1968). Now if u is almost periodic and N is
time-invariant and continuous mapping L°° to L°°, the set of translates of Nu is
{Nu(--t): t eU}, which, being the continuous image of a compact set, is
compact. Hence Nu is almost periodic.

We will now establish the analogous fundamental formula for almost periodic
inputs.

THEOREM A5.2 (Fundamental frequency-domain formula for almost periodic
inputs) Suppose that u is almost periodic and ||u||<p = radN, and in addition

( I )\u(<oki)---u(<oK)Hn(j<oki,...,]o>K)\<co. (A5.1)

Then for any w eU

NH(*>)= t ( I ) " K ) • " • uK.)Hn(ja>kl,..., jaO. (A5.2)

Proof. Due to the similarity to the case of periodic inputs, we give a shortened
proof. As in Section 4.3 we first assume that the input has the form

"(0= I



282 STEPHEN BOYD, L. O. CHUA AND C. A. DESOER

We will call such a u a multitone signal. It is easily verified that for multitone
signals

T — T Jo 10 otherwise.

The limit in (A5.3), which can be shown to exist for any almost periodic function
and any veU, is denoted u(v). The same argument as in Section 4.3 establishes

Nu(w) = Z ( Z )"(« f c l ) • • • a(<oK)HnQwkl,..., j«k.) (A5.4)

for the case of u a multitone signal. We now appeal to Bohr's characterization of
almost periodic functions: they are precisely the uniform limits of multitone signals
(Wiener, 1964). Thus there is a sequence of multitone signals ut with ||u|||<p and
ut—*u uniformly as I —»°°. By the Incremental Gain theorem Nut —*Nu un-
iformly as I ->oo. Hence for any v in R Nut(v) —> Nu(v). Since formula (A5.4)
above holds for multitone signals we have

Nu(co)= Z }im ( Z ]"i(wfcl) • • • uKw^^Cjcuk,,..., jw^).

Since ut—>u uniformly, u|(w)—»u(o>) uniformly. Dominated convergence and
hypothesis (A5.1) yield

^̂  / ^̂  \

which is the conclusion of Theorem A5.2. •


