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Antenna Array Pattern Synthesis
via Convex Optimization

Hervé Lebret and Stephen Boyd

Abstract—We show that a variety of antenna array pattern
synthesis problems can be expressed as convex optimization
problems, which can be (numerically) solved with great effi-
ciency by recently developed interior-point methods. The syn-
thesis problems involve arrays with arbitrary geometry and
element directivity, constraints on far- and near-field patterns
over narrow or broad frequency bandwidth, and some important
robustness constraints. We show several numerical simulations
for the particular problem of constraining the beampattern level
of a simple array for adaptive and broadband arrays.

I. INTRODUCTION

A NTENNA arrays provide an efficient means to detect
and process signals arriving from different directions.

Compared with a single antenna that is limited in directivity
and bandwidth, an array of sensors can have its beampattern
modified with an amplitude and phase distribution called the
weights of the array. After preprocessing the antenna outputs,
signals are weighted and summed to give the antenna array
beampattern. The antenna array pattern synthesis problem
consists of finding weights that satisfy a set of specifications
on the beampattern.

The synthesis problem has been studied quite a lot. From the
first analytical approaches by Schelkunoff [1] or Dolph [2] to
the more general numerical approaches such as mentioned in
the recent paper by Bucciet al. [3], it would be impossible to
make an exhaustive list. An important comment in [3] is that
in many minimization methods, there is no guarantee that we
can reach the absolute optimum unless the problem is convex.

In this paper, we emphasize the importance of convex
optimization in antenna array design. Of course, not all antenna
array design problems are convex. Examples of nonconvex
problems include those in which the antenna weights have
fixed magnitude (i.e., phase-only weights), problems with
lower bound constraints (contoured beam antennas), or prob-
lems with a limit on the number of nonzero weights.

Nevertheless, other important synthesis problems are con-
vex and can thus be solved with very efficient algorithms
that have been developed recently. Even nonlinear convex
optimization problems can be solved with great efficiency
using new interior-point methods that generalize Karmarkar’s
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linear programming method (see [4] and [5]). Moreover, by
“solve” here we mean a very strong form:Global solutions are
found with a computation time that isalwayssmall and grows
gracefully with problem size. Of course, the computation time
is not as small as that required by an “analytical” method,
but the number and variety of problems that can be handled
is much larger. At the other extreme, we find nonconvex
optimization, which is completely general—essentially, all
synthesis problems can be posed as general optimization prob-
lems. The disadvantage is that such methods cannot guarantee
global optimality, small computing time, and graceful growth
of computing time with problem size. In our opinion, convex
optimization is an excellent tradeoff in efficiency/generality
between the (fast but limited) analytical methods and the (slow
but comprehensive) general numerical techniques.

Convexity of problems arising in engineering design has
been exploited in several fields, e.g., control systems [6],
mechanical engineering [7], signal and image processing [8],
[9], circuit design [10], and optimal experiment design [11].
To our knowledge, however, it has not been used very much
in antenna array design.

As the main objective of our paper is to illustrate the
importance and utility of convex optimization for antenna
array pattern synthesis problems, we will limit most of our
examples to simple arrays. In Section II, we formulate the
gain pattern for two examples, which are then generalized.
In Section III, we will briefly describe the basic properties of
convex optimization and of the algorithms mentioned above. In
Section IV, we introduce some design problems and show how
they can be recast or reduced to convex optimization problems.
Finally, in Section V, we show some numerical examples.

II. THE ANTENNA ARRAY PATTERN FORMULATION

A. The Linear Array Pattern

Consider a linear array of isotropic antennas at locations
A harmonic plane wave with frequency

and wavelength is incident from direction and propagates
across the array (which, we assume for simplicity does not
change the field). The signal outputs are converted to
baseband (complex numbers), weighted by the weights,
and summed to give the well-known linear array beampattern

(1)
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where is the complex weight vector
to be designed. The weights are chosen to give a desired
beampattern expressed as specifications on

B. Near-Field Broadband Acoustic Array

The next example is from acoustics. An isotropic sinusoidal
source at frequency at position creates at the point

(complex) acoustic pressure given by

(2)

where is the wave speed, and is
the wave number. (The actual acoustic pressure is the real part
of in (2), but it is convenient to use complex notation.)

We assume there are omnidirectional microphones at loca-
tions (which, as above, we assume for
simplicity do not disturb the acoustic field). The microphones
convert the acoustic pressure into electrical signals, which
are discretized at the sampling frequencyThese discrete-
time signals are then filtered by an-input, single-output finite
impulse response (FIR) filter to yield the combined output

(3)

For each fixed set of filter coefficients , this gives a response
function that depends on the source location and the
frequency. The goal is to choose the weights so that this
response function has the required properties.

C. Extensions

These two examples have the same general pattern formu-
lation:

(4)

where is the vector of complex weights for the linear
array, whereas it becomes the vector of the coefficients of
the FIR filters for the acoustic array. The parameters
include the frequency and the geometric positions of the
sources, but they could be extended to include, for example,
polarization of electromagnetic signals. Finally, vector
includes the individual properties of antenna and/or filter
outputs. The formulation of the pattern will be modified if the
antenna elements have directional patterns. The description of
the environment can furthermore modify the formulation of
the array pattern if physical boundaries are included, if the
characteristics of the propagation medium are detailed, or if
coupling between the array elements is taken into account.
Nevertheless, the array pattern will keep the general expression
of a linear function of the weights as in (4).

III. CONVEX OPTIMIZATION

A. Convexity and Its Properties

A set is convex if for any pair of its points, the line joining
these two points lies in the set. A functionis convex on a
convex set if for

A convex optimization problem (or convex
program) is the minimization of a convex function over a
convex set. It is easy to show that any local minimum of
a convex function is a global minimum.

Some important and common convex functions include the
following: affine functions , where are vectors
and is a scalar; quadratic functions , provided is a
symmetric positive semi-definite matrix; and norms of vectors

(which include the Euclidean norm, the absolute value,
and the maximum value of a set of elements).

An upper bound on a convex function yields a convex set,
i.e., if is convex and , then is convex.
A lower bound on a convex function, however, is, in general,
not a convex constraint.

B. Interior Point Methods

In the last 10 years, there has been considerable progress and
development of efficient algorithms for solving wide classes
of convex optimization problems. One family of methods that
has been greatly developed is interior point methods (IPM’s),
which are always efficient in terms of complexity theory
and are also very efficient in practice. These methods gained
great popularity when Karmakar [5] showed their polynomial
complexity when applied to linear programming. Since then,
a considerable amount of work has been done on the subject.
One can consult a review by Gonzaga [12] and a very complete
work by Nesterov and Nemirovsky [13], who developed a very
general framework for solving nonlinear convex optimization
problems using IPM’s.

IPM’s have another important advantage: It is possible
to exploit the underlying structure of the problem under
consideration to develop very efficient algorithms (see, e.g.,
Vandenberghe and Boyd [4], [14]). In the following examples,
all the problems have been solved with various specific IPM’s.

IV. THE ARRAY PATTERN SPECIFICATIONS

The specifications that we describe here apply mainly to our
first example, and we will just mention some differences for
the nearfield broadband acoustic array.

A. Convex Synthesis Problems

As an example, let us consider the minimization of the
beampattern level over a given zone with the possibility of
level constraints in other areas:

subject to
(5)

The way to express it as a standard convex optimization
problem is rather natural and very similar to a framework
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Fig. 1. Optimal beampatterns. The solid lines give the minimized patterns, whereas the dotted lines correspond to the original pattern. The right plot
includes four more equality constraints than the right one, giving the desired mainlobe.

Fig. 2. Optimal properties of an adaptive array: The left plot gives the classical adaptive array and the right one the constrained adaptive array. In both
cases, the interferences at20; 50; and70� are rejected, but the right plot includes a�40 dB level constraint between60 and80�.

used in a paper by Lasdonet al. [15]. We first eliminate the
equality constraint by expressing the last weight
with the first ones:

(6)

Then, we replace the objective of the problem with a new
variable by adding new (convex) constraints for

If we now create the vector with

(7)

it is easy to express the original problem as

minimize
subject to

(8)

which is a convex problem that is easily solved with IPM’s.
Thus, the complex number is replaced with a 2-D
vector , whose components are its real and imaginary
parts. To achieve the explanation, let us finally notice that

and that for each direction , and
for the first constraints, and and for

the last constraints.
Furthermore, we could just as easily add new convex

constraints such as level constraints on the weights
while preserving the convexity of the problem. Each new

equality constraint is taken into account by elimination of a
weight as a variable. The same kind of techniques can be used
for convex quadratic constraints such as power constraints or
objectives. The signal power is generally expressed as ,
where is the signal correlation matrix.

B. The Problem of Robustness

Robustness specifications are probably among the most
important. When some information about the weights or the
direction of arrival is only known approximately, it is essential
that the performances of the array are not degraded with
slightly different parameter values. We refer now more specif-
ically to papers by Evans [16] and Cantoni [17]. The authors
deal with the standard adaptive array processing problem
(see also (10)), but they furthermore introduce robustness
constraints. The authors have shown that these problems can
be expressed as convex problems withreal weights, but it is
possible to generalize their approach and to show that even
with complexweights, the robustness problem can be replaced
by the following convex problem:

(9)

where and include the robustness elements. The important
point we want to make here is that (9) is convex and, therefore,
can be solved with interior point methods. It is also important
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Fig. 3. Optimized pattern for six elements with 10 taps.

to notice that contrary to the previous examples, this was
not an obvious convex problem. This means that many more
problems might be convex problems, although they do not look
convex at first sight. We will not show specific simulations
here, but some can be found in [18].

V. NUMERICAL RESULTS

A. The Linear Array: Contrained Synthesis

As a first example, we tried to optimize a cosecant diagram
with various constraints. The array has 24 elements with a

interelement distance. The mainlobe direction is
but for a more convenient description, we assume that

is now the origin The original diagram
was given and is showed on both plots of Fig. 1 by a dotted
line. The left plot gives the optimal pattern for the following
constraints: The problem was to minimize the level between

and while constraining the sidelobe level to less than

dB and keeping a mainlobe shape (betweenand
as near as possible to the original one (i.e., never above 1%
of the initial diagram). The optimization problem is exactly
expressed as in Section IV-A with a discretization step of

Because lower bound constraints are not convex, the
result is not satisfying, but the most important result given by
convex optimization is the following: It is impossible to find a
set of weights that give a level under dB with the given
specifications and precision Now, the right plot is a
new optimization with four new equality constraints at angles

and (the pattern is identical to the original one
for these four values). With these new constraints, a satisfying
new pattern is found.

B. A Comparison to Adaptive Array Processing

A well-known technique applied to reject interferences
relatively to a desired signal in a directionis to minimize the
total received power , where is the signal covariance
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Fig. 4. Normalized and optimized pattern for six elements with 10 taps.

matrix with a normalization gain in the direction [19]. When
more equality constraints are used, the problem is

minimize
subject to

(10)

where and are a matrix and a vector with adapted sizes.
The solution to the problem is given by the optimal weights
vector

As a simple example, the left plot of Fig. 2 gives the
adaptive array processing for a 32-element regular linear with a
half-wavelength interelement distance. The covariance matrix
is built with a signal of interest in direction with level
of dB, three interferences in directions and with
level dB and a uniform noise density per element of
dB. The right plot of Fig. 2 shows the result obtained for
the minimization of the power with the following new
constraints: The level is less than dB between and
and dB elsewhere in the sidelobes. The discretization step
is , and the precision on the objective is Compared

with the expression of Section IV-A, we have a difference in
the objective that, here, is the signal power, replaced as before
with a convex constraint of the type Other similar
results including interference in the mainlobe with a signal to
noise ratio analysis can be found in [20].

C. Broadband Acoustics Array

For the nearfield broadband array, we consider an array of
six elements, each with 10 taps. The beam pattern is given here
by (3). These elements are microphones receiving the human
voice in a frequency band going from 300 to 3000 Hz, with a
sampling frequency used in telephone, 8000 Hz. The sound
velocity is taken to be equal to m/s.

The array is once again regular and linear with a distance
between elements of 4 cm. We limit the geometric zone of
reception as a line orthogonal to the array, intersecting it in its
center. Furthermore, we only consider the levels of reception
at distances from 0.4 to 4 m every 0.1 m. For the frequencies,
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the step is 50 Hz so that we have a grid of discretization
of 37 positions and 55 frequencies, and the objective is to
minimize the received level from the distance 0.9 to 4 m at all
frequencies. As usual, we add a normalization constraint that
is taken here for m and Hz. We have also
added constraints on the weights modules, more precisely, we
have The problem is then precisly

(11)

As in Section IV-A, a transformation on the problem including
the weight level constraints is made to arrive at a formulation
similar to (8). The results of the optimization are shown in
Fig. 3. The precision was required to be 0.01 on the maximum
amplitude in the minimized region. On the upper part
of the figure, the gain pattern is represented as a function of
both the distance and frequency. Although it is not possible
to use it for precise data, it shows that the minimized level
is very low. We can also see that the frequency transfer
function at m has a nonuniform shape that will give
a unacceptable reception.

On the lower part of the figure, we have extracted six
transfer functions for various distances. We can read the
minimum level, whose value is dB. We also notice the
gaps in the transfer function at m, which has to be
improved.

This can naturally be improved by adding new normal-
ization constraints at frequencies corresponding to the gaps.
Fig. 4 shows the result of an optimization with eight nor-
malization constraints. The weight level has been relaxed to

, bringing it to an acceptable level. A small gap
remains at 2900 Hz, but the transfer function at m
has been enormously improved. The relaxation of the weights
has even enabled a better minimum level of dB.

VI. CONCLUSION

We have shown how convex optimization can be used
to design the optimal pattern of arbitrary antenna arrays.
Although the methods used do not give analytical solutions,
we think that the enormous advances in available computing
power, together with interior-point methods, and the large
number of problems that can be handled, make this approach
attractive. The method finds global optimum values with a
desired precision; the algorithms either find a feasible point
or unambiguously determine that the problem is infeasible. In
summary, we think that convex optimization is an excellent
tool for pattern synthesis. Of course, we can neither solve
all synthesis problems nor more general methods because in
many cases, only local optima are found, and the choice of
good initial points is often crucial. The general methods work
when the problems are convex, but then, we state that it is a
better choice to use convex optimization algorithms. Our goal
was mainly to illustrate the power of convex optimization, and
we have chosen simple numerical examples. Nevertheless, the

simulations of the near-field broadband array are sufficiently
striking in our case to show the power and efficiency of convex
optimization for antenna array pattern synthesis.
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