
Systems & Control Letters 98 (2016) 44–48

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Antagonistic control
Thomas Lipp a,*, Stephen Boydb

a Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
b Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

h i g h l i g h t s

• Presented a framework for considering an aggressor attacking a system.
• Explained how this could be used to defend a system.
• Presented a convex–concave procedure method for attaining a lower bound on damage.
• Presented an S-procedure method for attaining an upper bound on damage.
• Demonstrated these methods with a simple example.

a r t i c l e i n f o

Article history:
Received 9 June 2015
Received in revised form 14 August 2016
Accepted 10 October 2016
Available online 4 November 2016

Keywords:
Optimization
Control
Defending against attacks
Convex–concave procedure
S-procedure

a b s t r a c t

In antagonistic control we find an input sequence that maximizes (or at least makes large) an objective
that is minimized in typical control. Applications include designing inputs to attack a control system,
worst-case analysis of a control system, and security assessment of a control system. The antagonistic
control problem is not convex, and so cannot be efficiently solved. We present here a powerful convex-
optimization-based heuristic for antagonistic control, based on the convex–concave procedure, which
can be used to find bad, if not the global worst-case, inputs. We also give an S-procedure-based upper
bound for antagonistic control, applicable in cases when the objective and constraints can be described
by quadratic inequalities, and use this to verify on examples that our method yields inputs very close to
the (global) worst-case.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

More and more of the world’s control systems, from irrigation
systems to the power grid, are transitioning to control by supervi-
sory control and data acquisition (SCADA) systems that transmit
their measurements from remote locations over networks. This
vast increase in points of entry, and sometimes public nature of
these networks, has increased the risk of attack on these sys-
tems. Much research has gone into how to protect against vari-
ous types of attacks including stealthy deception [1,2], false data
injection [3,4], denial of service [5], and replay data attacks [6]. It
has been demonstrated how these attacks can occur and proposals
have been made for how to protect against these attacks [7–10].
While the approaches above are typically concernedwithmonitor-
ing and detecting attacks, there is an alternative approach which
attempts to constrain the system so that a catastrophic event can-
not occur [11,12]. Another branch of inquiry models the problem
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from a game theoretic perspective, often asking how best to invest
resources to defend a system [13,14].

We concern ourselves herewith a different set of questions.We
simply assume that an aggressor has taken control of (parts of) a
system, and ask how much damage are they capable of inflicting,
or the related question of how quickly can they inflict this damage.
Knowing the answers to these questions allows for the design of
better protections for the system by showingwhich vulnerabilities
are the most dangerous and therefore deserving of the most pro-
tection. Knowing how quickly a catastrophic event can occur post-
intrusion gives information about how often monitoring systems
need to run and how quickly a response must be taken.

2. Antagonistic control

We consider a discrete-time time-varying linear dynamical sys-
tem with state xt ∈ Rn, input ut ∈ Rm, and affine dynamics

xt+1 = Atxt + Btut + ct , t = 1, . . . , T − 1,

where t denotes (discrete) time, and At ∈ Rn×n, Bt ∈ Rn×m, ct ∈ Rn.
Here ct can be known disturbances to the system, or simply model
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affine dynamics perhaps created by some bias in the system. The
states and inputs are constrained, (xt , ut) ∈ Ct , t = 1, . . . , T ,
where Ct ⊆ Rn

×Rm is convex. The objective has the traditional
time-separable form

J = ℓ1(x1, u1) + · · · + ℓT (xT , uT ),

where ℓt , t = 1, . . . , T are the stage cost functions, which we
assume are convex. If J were only a function of xT it would be the
familiar terminal cost from model predictive control. This leads to
the standard control problem
minimize J
subject to xt+1 = Atxt + Btut + ct , t = 1, . . . , T − 1

(xt , ut) ∈ Ct , t = 1, . . . , T ,
(1)

where xt andut are optimization variables. (A knownor fixed initial
state x1 can be incorporated into C1.) This is a convex optimization
problem that is easily solved, indeed with a complexity that grows
only linearly in T . This gives us the best input and state trajectory.

The antagonistic control problem is simply the problem of max-
imizing rather than minimizing J ,
maximize J
subject to xt+1 = Atxt + Btut + ct , t = 1, . . . , T − 1

(xt , ut) ∈ Ct , t = 1, . . . , T ,
(2)

with optimization variables xt and ut . This gives us the worst input
and state trajectory. We let p⋆ be the optimal value of (2), i.e.,
the worst possible objective value. This problem is evidently not
convex, and simple versions of it can be shown to be NP-hard.

In this paper we present a heuristic for approximately solving
the antagonistic control problem (2). Our goal is to efficiently
find bad, if not necessarily worst case, feasible input and state
trajectories.

We will approximately solve the antagonistic control prob-
lem using the convex–concave procedure, which we describe in
Section 4. This is a standard method for approximately solving a
problem in which the objective is a sum of a convex and a concave
function. This gives us a bad sequence of inputs, if not necessarily
the worst, i.e., a lower bound on p⋆. This is useful even if it is not
optimal; for example, when it is large, it tells us that an attacker
can indeed do grave damage.

For cases in which the objective is quadratic and the con-
straints are described by quadratic inequalities, we develop an
upper bound on p⋆ using the S-procedure,whichwepresent in Sec-
tion 5. Numerical examples show that our two dual methods – the
convex–concave procedure for lower bounds and the S-procedure
for upper bounds – often yield bounds that are close to each other,
which implies that they are each (nearly) globally optimal.

3. Applications

In this section we elaborate on more specific applications of
antagonistic control.

The antagonistic control problem arises in a variety of situa-
tions. In the simplest case, it can be used by an aggressor who
has taken control of (parts of) a control system and wishes to do
maximum (or at least very much) damage. In this case, what we
call the input ut is not necessarily the actual control system input,
but rather the signal injection points that the aggressor has access
to, e.g., a sensor signal that can be manipulated. The dynamics are
then not the open-loop dynamics of the control system, but rather
the closed-loop dynamics. The constraints Ct can include not only
actual constraints, like actuator limits, but also constraints that
an alarm not be triggered, or that the intrusion is unlikely to be
detected. (This idea of adding stealth constraints will be addressed
in more detail later, when we discuss ambush control.) Thus the
problem (2) asks us to find a sequence of actions (which can include
modified sensormeasurements) that do themost damage (in terms
of the objective), while respecting constraints that can include
maintaining stealth (to the extent possible).

3.1. Vulnerability monitoring

From the defender’s point of view, it is very useful to have a
method that can (approximately) solve the antagonistic control
problem (2). This can be used to do (approximate) worst-case
analysis, or to analyze or improve defenses. For example, we can
solve the antagonistic control problem, starting from the current
state (with some specific set of inputs taken over by the attacker)
and use p⋆ as a measure of the current system vulnerability. This
can be displayed in real-time, with a warning issued if the value
of p⋆ gets too large. Antagonistic control can be used to monitor
the current safety or vulnerability of the system. This analysis can
be carried out for different values of T (the horizon), and different
assumptions about which subsystems have been taken over by the
attacker. All of the values can be monitored in real-time.

In one variation on this, we can take ℓt = 0 for t = 1, . . . , T −1,
and ℓT is such that ℓT (xT , uT ) ≥ 1 (say) corresponds to system
failure or destruction. By solving the antagonistic control problem
for different values of T , we can find the smallest value T ⋆ for
which p⋆

≥ 1, and this tells us the minimum time it would take
an attacker to destroy the system. This is of course a function of
the current state. If T ⋆ is large, we have time (to react) if an attack
occurs; if T ⋆ is small, an attack could destroy the system quickly.
We can interpret T ⋆ as the vulnerability time of the current state.

3.2. Security assessment

Rather than actively monitoring the system, antagonistic con-
trol can be used a priori to detect the vulnerabilities in a system
and drive the focus of defenses to the appropriate subsystems. A
typical system will consist of many sensors and actuators many
of which are on subsystems that are isolated from each other. The
cost to the aggressor of controlling additional sensors and actuators
increases asmore andmore subsystems are involved. Therefore the
aggressorwould like to gain control of as few sensors and actuators
as possible. We can help secure our systems by identifying subsets
of critical systems from which an aggressor can easily do much
damage, and defending them robustly or isolating them to force
the aggressor to gain control of several subsystems.

To carry out this assessment,we simply use antagonistic control
using an appropriate model for each specific subset of subsystems
that are taken over by an attacker, or for different configurations
of alarms or warning systems that we might install. We derive the
dynamics for the system with various actuators and sensors made
available to the aggressor (that is represented in u) and determine
the relative values of J that can be achieved under different config-
urations. Knowing which configurations allow for small and large
values of J reveals which subsets of injection points it would be
detrimental for an aggressor to take control of, and which subsets
of points give the aggressor limited control authority. Resources
can then be allocated to defending those systems (or subsets of
systems) which are critical, freeing resources from those systems
whose loss would be less harmful.

3.3. Ambush control

Wenow take on the role of the aggressor and consider a specific
instance of the antagonistic control problem (2), which we call
ambush control. In ambush control an aggressor manipulates the
system by choosing the inputs ut , with the requirement that these
manipulations remain undetected (or probably undetected) until
time T det < T (the detection time). We include these stealth
constraints in the constraints C1, . . . , CTdet .

The inputs designed in this case can be interpreted as an am-
bush that occurs at time t = T det. Actions taken before that time
are required to be (probably) undetectable; they are used to set the
system state up so that once the attack is detected, at time t = T det,
much damage can be done quickly.
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4. Convex–concave procedure

The convex–concave procedure is a powerful heuristic that can
be used to find bad controls (ut that give J near p⋆), although
not necessarily worst case control. CCP is an iterative procedure
which addresses difference of convex problems [15]. Much more
about the algorithm and its variations and the related difference of
convex algorithms can be found in [16,17].

To simplify the notation we introduce the variable

z = (x1, u1, . . . , xT , uT ) ∈ RT (n+m),

and write the problem (2) as

maximize J(z)
subject to Fz = g, z ∈ C,

(3)

where F ∈ Rn(T−1)×T (n+m), g ∈ Rn(T−1), and C = C1× · · · ×CT .
(The matrix F has block banded structure, allowing for efficient
solving, but this will not be needed in the following description
of the method.)

To apply the convex–concave procedure to problem (3) we
solve a series of convex optimization problems created by lineariz-
ing the objective function J at the current value of z.

Algorithm 4.1 CCP algorithm.

given an initial point z(0).
k := 0.
repeat

1. Convexify. Form Ĵ(z; z(k)) ≜ J(z(k)) + ∇J(z(k))T (z − z(k)).
2. Solve. Set z(k+1) to be a solution of the (convex) problem,
with variable z,

maximize Ĵ(z; z(k))
subject to Fz = g, z ∈ C.

3.Update iteration. k := k + 1.
until stopping criterion is satisfied.

The convex–concave procedure does not guarantee conver-
gence to a global maximum, but it is an ascent algorithm, i.e., we
have J(z(k+1)) ≥ J(z(k)). This is readily derived from the inequality
Ĵ(z; z(k)) ≤ J(z) which holds for all z and all z(k), which follows
from convexity of J . The stopping criterion can be as simple as
J(x(k)) − J(x(k−1)) ≤ ϵ, where ϵ > 0 is a tolerance. The final
result can depend on the initial choice of z(k). It is typical to run
the CCP algorithm several times with different initial conditions,
and take the value of z with the largest final value of J as our
approximate solution. For our examples a single initiationwas suf-
ficient, although, as mentioned, the problem can be NP-hard. One
can determine if the solution found is sufficiently bad, or if alter-
native initializations should be tried, by looking at the S-procedure
upper bound detailed in the next section.

5. S-procedure upper bounds

In this section we assume that J is convex quadratic,

J(z) =
[
z 1

]
Q0

[
z
1

]
,

where Q0 is positive semidefinite. (The bounds we describe here
can also be derived for problems when J is not convex quadratic,
but we can find a convex quadratic upper bound on J .)

We will also assume that the constraints are described by
(or covered by) quadratic inequalities. Let f1, . . . , fk be a set of
quadratic functions for which

z ∈ C H⇒ fi(z) =
[
z 1

]
Qi

[
z
1

]
≤ 0, i = 1, . . . , k. (4)

In otherwords, fi(z) ≤ 0 are valid quadratic inequalities over C. The
quadratic functions fi do not need to be convex.

The S-procedure is a well known method that provides a suf-
ficient condition under which nonnegativity (nonpositivity) of a
set of quadratic functions implies nonnegativity (nonpositivity) of
another quadratic function [18, §2.6.3]. In the current application,
it has the following form. If there exist τ1, . . . , τk ≥ 0 andW = W T

for which

J(z) − γ ≤ τ1f1(z) + · · · + τkfk(z) + (Fz − g)TW (Fz − g), (5)

holds for all z, then γ ∈ R is an upper bound on p⋆. Here we have
applied the S-procedure to the inequalities

f1(z) ≤ 0, . . . , fk(z) ≤ 0, (Fz − g)TW (Fz − g) ≤ 0,

in order to imply J(z) − γ ≤ 0. This assertion that γ is an upper
bound on J(z) is easily verified, noting that the last term on the
right hand side of (5) is zero for any z that satisfies Fz = g , and the
first k terms are nonpositive for any z ∈ C by construction. Thus
for any feasible z for (3) all of the fi ≤ 0 and (Fz − g)TW (Fz −

g) ≤ 0. Therefore if z is feasible and the S-procedure conditions
are satisfied J(z) ≤ γ . The condition (5) states that a quadratic
inequality holds, and is equivalent to the linear matrix inequality
(LMI)

Q0 −

[
0 0
0 γ

]
⪯

k∑
i=1

τiQi +

[
F T

−gT

]
W

[
F −g

]
with variables τi, W .

Since γ is an upper bound on p⋆, we can find the best such upper
bound by minimizing γ subject to the LMI above. This leads to the
(readily solved) semidefinite program (SDP) [19,20, § 4.6.2]

minimize γ

subject to Q0 −

[
0 0
0 γ

]
⪯

k∑
i=1

τiQi +

[
F T

−gT

]
W

[
F −g

]
τi ≥ 0, i = 1, . . . , k
W = W T ,

where γ , τi, and W are optimization variables. The optimal value
of this SDP is an upper bound on p⋆. It depends on the choice of the
valid quadratic inequalities fi(z) ≤ 0. This boundmay be tightened
by adding additional inequality constraints.

6. Examples

6.1. Ambush control

Here we consider an instance of the ambush control problem

maximize xTTQ0xT
subject to xt+1 = Atxt + Btut , t = 1, . . . , T − 1

x1 = xinit
∥ut∥∞ ≤ 1, t = 1, . . . , T − 1
xTt Q0xt ≤ q, t = 1, . . . , T det,

(6)

with optimization variables xt and ut , where n = 4, m = 2,
T = 26, T det

= 20, q = 0.1, and Q0 is a randomly generated
positive definite matrix. We generate an A matrix by perturbing
the entries of the identity by values drawn from a Gaussian normal
distribution with mean 0 and variance 0.015. A B matrix is drawn
from the same distribution. The Ai and Bi matrices are formed by
further perturbing the entries of A and Bwith values drawn from a
Gaussian distribution with mean 0 and variance 0.0015.

For the first 30 time steps (the time before t = 1) the system
runs model predictive control feedback to respond to random dis-
turbances. This is solely to show the behavior of the system under
normal circumstances and is not incorporated into the antagonistic



T. Lipp, S. Boyd / Systems & Control Letters 98 (2016) 44–48 47

Fig. 1. Ambush control example where the system is taken over at t = 1, and the
ambush reveals itself at t = 20. The dash dotted line is q = 0.1. The dashed line
after t = 20 is the S-procedure upper bound.

control problem. We use the state after 30 time steps (at t = 1)
as xinit. We apply the convex–concave procedure to problem (6)
and plot the results in Fig. 1. The dotted line shows the value q
that xTQ0x stays beneath until T det. The dashed line in the xTQ0x
plot is an S-procedure bound using all of the constraints except
x1 = xinit. Observe that the constraints on u are easily represented
as quadratic inequalities where each infinity norm becomesm = 2
quadratic inequalities (one for each control input). If we include
the initial condition constraint, the resulting S-procedure bound
shows that the CCP solution is optimal.

6.2. Ambush control with monitoring

On the same system presented in Section 6.1 we run two dif-
ferent monitors. The first monitor depicted in Fig. 2 (p⋆, T = 5)
finds bad controls by applying CCP to (6)with detection constraints
removed and T = 5, and reports how large it is possible for p⋆ (in
this case xTk+TQ0xk+T ) to become. So at time t = kwith current state
xcurrent the problem formulation is

maximize xTk+TQ0xk+T
subject to xt+1 = Atxt + Btut , t = k, . . . , k + T − 1

xk = xcurrent
∥ut∥∞ ≤ 1, t = k, . . . , k + T − 1,

(7)

where the xt and ut are the optimization variables. The dashed
green line is the S-procedure upper bound on this value. This
monitor tracks how large it is possible for the objective to grow in
five time steps, providing an early warning of when it will become
possible to cross some dangerous threshold.

The secondmonitor solves a series of antagonistic control prob-
lems and reports T ⋆ (the minimum T required for xTk+TQ0xk+T ≥

pfailure, represented by the dash dotted line). In other words we use
the convex–concave procedure on the antagonistic control prob-
lem (7) for T = 1, 2, . . . , 10. And report the minimum T ⋆. In our
example pfailure = 0.65. The dashed green line is the S-procedure
lower bound on this value.

In both instances, our S-procedure bounds do not include a
constraint xk = xinit, but rather xTkQ0xk ≤ xTcurrentQ0xcurrent. This
gives looser bounds, but means our monitor only needs xTQ0x, not
the full state. If this were a time invariant system, then all of the
bounds could be computed offline once, and the monitor could be
implemented as a look up table.

In the first monitor, T could be determined by the known
response time of the system once the aggressor is detected. The
slower the system is to respond, the larger T would be. Similarly,
the second monitor could sound an alarm when T ⋆ reaches a
threshold near the response time.

Fig. 2. Two monitors for the system in Fig. 1. The first plot depicts the system
undergoing ambush control. The second plot is a monitor of that system that
determines how large it is possible for xTQ0x to become in five time steps. The third
plot is a monitor that calculates how many time steps are required until xTQ0x >

pfailure can be achieved. The dash dotted lines are q = 0.1 and pfailure = 0.65. On the
monitor plots, the solid line is the CCP bound and the dashed line is the S-procedure
bound.
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