
Vol.:(0123456789)

Optimization and Engineering (2021) 22:247–259
https://doi.org/10.1007/s11081-020-09508-9

1 3

RESEARCH ARTICLE

Automatic repair of convex optimization problems

Shane Barratt1 · Guillermo Angeris1 · Stephen Boyd1

Received: 4 February 2020 / Revised: 24 April 2020 / Accepted: 25 April 2020 / Published online: 23 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Given an infeasible, unbounded, or pathological convex optimization problem, a
natural question to ask is: what is the smallest change we can make to the problem’s
parameters such that the problem becomes solvable? In this paper, we address this
question by posing it as an optimization problem involving the minimization of a
convex regularization function of the parameters, subject to the constraint that the
parameters result in a solvable problem. We propose a heuristic for approximately
solving this problem that is based on the penalty method and leverages recently
developed methods that can efficiently evaluate the derivative of the solution of a
convex cone program with respect to its parameters. We illustrate our method by
applying it to examples in optimal control and economics.

Keywords  Convex programming · Infeasibility · Unboundedness · Parametric
optimization

1  Introduction

Parametrized convex optimization We consider parametrized convex optimization
problems, which have the form

where x ∈ R n is the optimization variable, � ∈ R k is the parameter, the objective
function f0 ∶ R n × R k

→ R is convex in x, the inequality constraints functions

(1)
minimize f0(x;�)

subject to fi(x;�) ≤ 0, i = 1,… ,m,

gi(x;�) = 0, i = 1,… , p,

 *	 Shane Barratt
	 stbarratt@gmail.com

	 Guillermo Angeris
	 angeris@stanford.edu

	 Stephen Boyd
	 boyd@stanford.edu

1	 Department of Electrical Engineering, Stanford University, Stanford, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-020-09508-9&domain=pdf

248	 S. Barratt et al.

1 3

fi ∶ R n × R k
→ R , i = 1,… ,m, are convex in x, and the equality constraint func-

tions gi ∶ R n × R k
→ R , i = 1,… , p , are affine in x.

Solvable problems A point x is said to be feasible if fi(x;�) ≤ 0 , i = 1,… ,m , and
gi(x;�) = 0 , i = 1,… , k . The optimal value p⋆ of the problem (1) is defined as

We allow p⋆ to take on the extended values ±∞ . Roughly speaking, we say that (1)
is solvable if p⋆ is finite and attainable. (We will define solvable formally in Sect. 2,
when we canonicalize (1) into a cone program.) When the problem is unsolvable,
it falls into one of three cases: it is infeasible if p⋆ = +∞ , unbounded below if
p⋆ = −∞ , and pathological if p⋆ is finite, but not attainable by any x, or strong
duality does not hold for (1). Unsolvable problems are often undesirable since, in
many cases, there does not exist a solution.

Performance metric The goal in this paper is to repair an unsolvable problem by
adjusting the parameter � so that it becomes solvable. We will judge the desirability of
a new parameter � by a (convex) performance metric function r ∶ R k

→ R ∪ {+∞} ,
which we would like to be small. (Infinite values of r denote constraints on the param-
eter.) A simple example of r is the Euclidean distance to an initial parameter vector �0 ,
or r(�) = ‖� − �0‖2.

Repairing a convex optimization problem In this paper, we consider the problem of
repairing a convex optimization problem, as measured by the performance metric, by
solving the problem

with variable �.
Pathologies There are various pathologies that can occur in this formulation. For

example, the set of � that lead to solvable problems could be open, meaning there might
not exist a solution to (2), or the complement could have (Lebesgue) measure zero,
meaning that the problem can be made solvable by essentially any perturbation. Both
of these cases can be demonstrated with the following problem:

and regularization function r(�) = �2 . The set of solvable � is {� ∣ � ≠ 0} , which is
both open and has complement with measure zero. The optimal value of problem (2)
is 0, but is not attainable by any solvable � . The best we can hope to do in these situ-
ations is to produce a minimizing sequence.

NP-hardness Repairing a convex optimization problem is NP-hard. To show this, we
reduce the 0–1 integer programming problem

p⋆ = inf{f0(x;𝜃) ∣ fi(x;𝜃) ≤ 0, i = 1,… ,m, hi(x;𝜃) = 0, i = 1,… , p}.

(2)
minimize r(�)

subject to problem (1) is solvable,

(3)
minimize 0

subject to �x = 1,

(4)
minimize 0

subject to Ax = b,

x ∈ {0, 1}n,

249

1 3

Automatic repair of convex optimization problems﻿	

with variable x ∈ R n and data A ∈ R m×n and b ∈ R m to an instance of
problem (2).

Let r(�) = 0 . The convex optimization problem that we would like to be solvable
be

with variable x. Problem (2) has the same constraints as (4), since (5) is feasible if
and only if �i(�i − 1) = 0 , i = 1,… , n , and A� = b . Therefore, the problem of find-
ing any feasible parameters for (1) (i.e., with r(�) = 0 ), is at least as hard as the 0–1
integer programming problem, which is known to be NP-hard (Karp 1972).

2 � Cone program formulation

In practice, most convex optimization problems are solved by reformulating them as
equivalent conic programs and passing the numerical data in the reformulated prob-
lem to general conic solvers such as SCS (O’Donoghue et al. 2016), MOSEK (2020)
or GUROBI (2019). This process of canonicalization is often done automatically by
packages like CVXPY (Diamond and Boyd 2016), which generate a conic program
from a high-level description of the problem.

Canonicalization For the remainder of the paper, we will consider the canonical-
ized form of problem (1). The primal (P) and dual (D) form of the canonicalized
convex cone program is (see, e.g., Ben-Tal and Nemirovski 2001; Boyd and Vanden-
berghe 2004)

Here x ∈ R n is the primal variable, y ∈ R m is the dual variable, and s ∈ R m
is the slack variable. The functions A ∶ R k

→ R m×n , b ∶ R k
→ R m , and

c ∶ R k
→ R n map the parameter vector � in problem (1) to the cone program prob-

lem data A, b, and c. The set K ⊆ R m is a closed convex cone with associated dual
cone K∗ = {y ∣ yTx ≥ 0 for all x ∈ K}.

Solvability We will adopt a simple and relatively general definition of solvability.
We say that an instance of the primal problem (6) is solvable whenever the primal
(P) is feasible, the dual (D) is feasible, strong duality holds (i.e., the optimal value of
problems (P) and (D) are equal), and this value is achievable by a pair of primal and
dual feasible points.

These conditions are sufficient to ensure that the problem has a solution that is
bounded and that the problem is also easy to solve. There are, of course, many path-
ological cases where strong duality does not hold or the primal optimal value is not
achievable [see, e.g., Ben-Tal and Nemirovski (2001, Sect. 1.4.6), yet the problem

(5)

minimize 0

subject to x = �,

�x = x,

Ax = b,

(6)

(P) minimize c(�)Tx

subject to A(�)x + s = b(�),

s ∈ K,

(D) minimize − b(�)Ty

subject to A(�)Ty + c(�) = 0,

y ∈ K
∗.

250	 S. Barratt et al.

1 3

is still ‘solvable’ in the sense that there exist algorithms that can efficiently solve
the problem or give a sequence of feasible points that minimize the objective. We
exclude such pathological problems from our definition.

Solution The vector (x⋆, y⋆, s⋆) is a solution to problem (6) if

These conditions merely state that (x⋆, s⋆) is primal feasible, y⋆ is dual feasible, and
that there is zero duality gap, which implies that (x⋆, y⋆, s⋆) is optimal by weak dual-
ity (Boyd and Vandenberghe (2004, Sect. 5.2.2). Problems (1) and (6) are solvable if
and only if there exists a point that satisfies (7).

Primal-dual embedding The primal-dual embedding of problem (6) is the cone
program

with variables t, x, y, and s. This problem is guaranteed to be feasible since, for any
� ∈ R k , setting x = 0 , y = 0 , s = 0 , and t = ‖(b(�), c(�))‖2 yields a feasible point.
The problem is also guaranteed to be bounded from below, since the objective is
nonnegative. Taken together, this implies that problem (8) always has a solution,
assuming it is not pathological.

Optimal value of (8) Let t⋆ ∶ R k
→ R denote the optimal value of problem (8)

as a function of � . Notably, we have that t⋆(𝜃) = 0 if and only if problem (1) is solv-
able, since if t⋆(𝜃) = 0 , the solution to problem (8) satisfies (7) and therefore prob-
lem (1) is solvable. On the other hand, if problem (1) is solvable, then there exists a
point that satisfies (7) and is feasible for (8), so t⋆(𝜃) = 0.

Differentiability of t⋆ In practice, t⋆ is often a differentiable function of � . This is
the case when A, b, and c are differentiable, which we will assume, and the optimal
value of problem (8) is differentiable in A, b, and c. Under some technical conditions
that are often satisfied in practice, the optimal value of a cone program is a differ-
entiable function of its problem data (Agrawal et al. 2019b). We will assume that t⋆
is differentiable, and that we can efficiently compute its gradient ∇t⋆(𝜃) using the
methods described in Agrawal et al. (2019b) and the chain rule.

Reformulation In light of these observations, we can reformulate problem (2) as

with variable � . Here we have replaced the intractable constraint in problem (2) with
an equivalent smooth equality constraint. Since this problem is NP-hard, we must
resort to heuristics to find approximate solutions; we give one in Sect. 3.

(7)
⎡
⎢⎢⎣

A(𝜃)x⋆ + s⋆

A(𝜃)Ty⋆ + c(𝜃)

c(𝜃)Tx⋆ + b(𝜃)Ty⋆

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

b(𝜃)

0

0

⎤
⎥⎥⎦
, (s⋆, y⋆) ∈ K ×K

∗.

(8)

minimize t

subject to

�������

⎡
⎢⎢⎣

A(�)x + s − b(�)

A(�)Ty + c(�)

c(�)Tx + b(�)Ty

⎤⎥⎥⎦

�������2
≤ t

s ∈ K, y ∈ K
∗,

(9)
minimize r(𝜃)

subject to t⋆(𝜃) = 0,

251

1 3

Automatic repair of convex optimization problems﻿	

3 � Heuristic solution method

Penalty method One simple heuristic is to use the penalty method to (approximately)
solve (9). Starting from �0 ∈ R k and 𝜆0 > 0 , at iteration � , the penalty method per-
forms the update

and then decreases �� , e.g., ��+1 = (1∕2)�� , until t⋆(𝜃�) ≤ 𝜖out for some given toler-
ance 𝜖out > 0.

To perform the update (10), we must solve the unconstrained optimization
problem

with variable � . The objective is the sum of a differentiable function and a poten-
tially nonsmooth convex function, for which there exist many efficient methods. The
simplest (and often most effective) of these methods is the proximal gradient method
[which stems from the proximal point method (Martinet 1970); for a modern refer-
ence see Nesterov (2013)]. The proximal gradient method consists of the iterations

where the proximal operator is defined as

Since r is convex, evaluating the proximal operator of ��r requires solving a convex
optimization problem. Indeed, for many practical choices of r, its proximal operator
has a closed-form expression (Parikh and Boyd 2014, Sect. 6).

We run the proximal gradient method until the stopping criterion

is reached, where gl = ∇t⋆(𝜃l) , for some given tolerance 𝜖in > 0 (Barratt and Boyd
2019). We employ the adaptive step size scheme described in Barratt and Boyd
(2019). The full procedure is described in algorithm 3.1 below.

(10)𝜃�+1 = argmin
𝜃

𝜆�r(𝜃) + t⋆(𝜃),

(11)minimize L(𝜃, 𝜆�) = 𝜆�r(𝜃) + t⋆(𝜃),

𝜃�+1 = ����𝛼�𝜆�r
(
𝜃� − 𝛼�∇t⋆(𝜃�)

)
,

����𝛼𝜆r(𝜃) = argmin
𝜃

𝛼𝜆r(𝜃) +
1

2
‖𝜃 − 𝜃‖2

2
.

‖(�l − �l+1)∕�l + (gl+1 − gl)‖2 ≤ �in,

252	 S. Barratt et al.

1 3

Runtime Algorithm 3.1 has two loops: one which updates the parameter in the
penalty method, and one which approximately solves the sub-problem using the
proximal gradient method. At every iteration of the algorithm, we need to solve
an instance of problem (8), and compute the derivative of the optimal value with
respect to the parameters. Therefore, algorithm 3.1 involves solving tens to hundreds
of convex optimization problems, and as a result can be much slower than simply
verifying infeasibility or unboundedness. However, there are several performance
enhancements we can employ that make solving each of these problems faster. One
enhancement is warm-starting, where we use the solution from the most recently
solved problem to initialize the variables in the next problem. Another is factoriza-
tion caching, where we re-use parts of matrix factorizations from previous problems.

Implementation We have implemented algorithm 3.1 in Python, which is avail-
able online at

The interface is the repair method, which, given a parametrized CVXPY problem
(Diamond and Boyd 2016) and a convex regularization function, uses algorithm 3.1
to find the parameters that approximately minimize that regularization function and
result in a solvable CVXPY problem. We use SCS (O’Donoghue et al. 2016) to
solve cone programs and diffcp (Agrawal et al. 2019b) to compute the gradient of
cone programs. We require the CVXPY problem to be a disciplined parametrized
program (DPP), so that the mapping from parameters to (A, b, c) is affine, and hence
differentiable (Agrawal et al. 2019a).

Until this point, we have assumed that the optimal value of problem (8) is dif-
ferentiable in A, b, and c. However, in our implementation, we do not require this
to be the case. So long as it is differentiable almost everywhere, it is reasonable
to apply the proximal gradient method to (11). At non-differentiable points, we
instead compute a heuristic quantity. For example, a source of non-differentiability

����� ∶ ∕∕������.���∕������∕�����������

253

1 3

Automatic repair of convex optimization problems﻿	

is the singularity of a particular matrix; in this case, diffcp computes a least-squares
approximation of the gradient (Agrawal et al. 2019b, Sect. 3).

4 � Examples

4.1 � Spacecraft landing

We consider the problem of landing a spacecraft with a gimbaled thruster. The
dynamics are

where m > 0 is the spacecraft mass, x(t) ∈ R 3 is the spacecraft position, f (t) ∈ R 3
is the force applied by the thruster, g > 0 is the gravitational acceleration, and
e3 = (0, 0, 1).

Our goal, given some initial position xinit ∈ R 3 and velocity vinit ∈ R 3 , is to
land the spacecraft at zero position and velocity at some touchdown time T > 0 , i.e.,
x(T) = 0 and ẋ(T) = 0.

We have a total available fuel Mfuel and a thrust limit Fmax . This results in the
constraints

where � is the fuel consumption coefficient. We also have a gimbal constraint

where � is equal to the tangent of the maximum gimbal angle.
We discretize the thrust profile, position, and velocity at intervals of length h, or

where H = T∕h + 1.
To find if there exists a thrust profile to land the spacecraft under this discretiza-

tion, we solve the problem

with variables x, v, and f. This problem is a parametrized convex optimization prob-
lem, with parameter

mẍ(t) = f (t) − mge3,

�
T

0

�‖f (t)‖2 dt ≤ Mfuel, ‖f (t)‖2 ≤ Fmax, 0 ≤ t ≤ T ,

f3(t) ≥ �‖(f1(t), f2(t))‖2,

fk = f ((k − 1)h), xk = x((k − 1)h), vk = ẋ((k − 1)h), k = 1,… ,H,

(12)

minimize 0

subject to xk+1 = xk + (h∕2)(vk+1 + vk), k = 1,… ,H,

mvk+1 = fk − hmge3, k = 1,… ,H,

‖fk‖2 ≤ Fmax, k = 1,… ,H,∑H

k=1
h�‖fk‖2 ≤ Mfuel,

(fk)3 ≥ �‖((fk)1, (fk)2)‖2,
x1 = xinit, v1 = vinit,

xH = 0, vH = 0,

254	 S. Barratt et al.

1 3

Suppose that we are given a parameter vector �0 for which it is impossible to find
a feasible thrust profile, i.e., problem (12) is infeasible. Suppose, in addition, that
we are allowed to change the spacecraft’s parameters in a limited way. We seek to
find the smallest changes to the mass and constraints on the fuel and thrust limit
that guarantees the feasibility of problem (12). We can (approximately) do this with
algorithm 3.1.

Numerical example We consider a numerical example with data

and initial parameters

The initial parameters are infeasible, i.e., there is no possible thrust profile which
allows the spacecraft to land in time, so we use algorithm 3.1 to modify the design
parameters in order to have a feasible landing thrust profile. We use the performance
metric

which constrains the mass to be greater than or equal to 9, and penalizes the per-
centage change in each of the parameters. The resulting feasible design has the
parameters

and r(�) = 0.948.

4.2 � Arbitrage

Consider an event (e.g., horse race, sports game, or a financial market over a short
time period) with m possible outcomes and n possible wagers on the outcome. The
return matrix is R ∈ R m×n , where Rij is the return in dollars for the outcome i and
wager j per dollar bet. A betting strategy is a vector w ∈ R n

+
 , where wi is the amount

that we bet on the ith wager. If we use a betting strategy w and outcome i occurs,
then the return is (Rw)i dollars.

We say that there is an arbitrage opportunity in this event if there exists a betting
strategy w ∈ R n

+
 that is guaranteed to have nonnegative return for each outcome,

and positive return in at least one outcome. We can check whether there exists an
arbitrage opportunity by solving the convex optimization problem

� = (m,Mfuel,Fmax, �).

T = 10, h = 1, g = 9.8, xinit
⎡
⎢⎢⎣

10

10

50

⎤
⎥⎥⎦
, vinit =

⎡
⎢⎢⎣

10

−10

−10

⎤
⎥⎥⎦
, � = 1,

m0 = 12, Mfuel
0

= 200, Fmax
0

= 50, �0 = 0.5.

r(�) =

{ |m−m0|
m0

+
|Mfuel−Mfuel

0
|

Mfuel
0

+
|Fmax−Fmax

0
|

Fmax
0

+
|�−�0|
�0

m ≥ 9,

+∞ otherwise,

m = 9.03, Mfuel = 271.35, Fmax = 67.16, � = 0.5,

255

1 3

Automatic repair of convex optimization problems﻿	

with variable w. If this problem is unbounded above, then there is an arbitrage
opportunity.

Suppose that we are the event organizer (e.g., sports book director, bookie, or
financial exchange) and we wish to design the return matrix R such that there are
arbitrage opportunities and that some performance metric r is small. We can tackle
this problem by finding the nearest solvable convex optimization problem to prob-
lem (13) using algorithm 3.1.

Numerical example We consider a horse race with n = 3 horses and m = 5 out-
comes. The initial return matrix is

for which there is an arbitrage opportunity in the direction

We consider the regularization function r(R) = ‖(R − R0)∕R0‖1 , where / is meant
elementwise. After running algorithm 3.1, the arbitrage-free return matrix is

and r(Rfinal) = 0.142.

5 � Related work

Irreducible infeasible subsets An irreducible infeasible subset (IIS) of an optimi-
zation problem is a subset of the constraints that are by themselves infeasible, but
any proper subset of them is feasible. Carver was the first to mention the concept
of an IIS in (1922). Van Loon (1981) and Greenberg (1987) were among the first
to recognize IIS in linear programs (LPs), but did not propose practical methods
for finding them; Chinneck and Dravnieks (1991) were the first to provide practi-
cal methods for finding IIS in LPs. Once IISs have been identified, various meth-
ods can be used to remove constraints until feasibility is obtained. Some notable
examples of methods to prune constraints include the deletion filter (Chinneck
and Dravnieks 1991), the additive method (Tamiz et al. 1995, 1996), the elastic

(13)
maximize �TRw

subject to Rw ≥ 0,

w ≥ 0,

R0 =

⎡
⎢⎢⎢⎢⎣

0.05 1.74 − 0.88

0.08 0.45 − 1.02

0.18 − 0.31 1.29

0.9 − 1.17 0.27

−0.93 0.17 2.39

⎤
⎥⎥⎥⎥⎦
,

w = (0.71, 0.62, 0.33).

Rfinal =

⎡
⎢⎢⎢⎢⎣

0.05 1.71 − 0.9

0.08 0.42 − 1.09

0.18 − 0.31 1.27

0.81 − 1.22 0.27

−0.97 0.17 2.37

⎤
⎥⎥⎥⎥⎦
, Rfinal − R0 =

⎡
⎢⎢⎢⎢⎣

0 − 0.03 − 0.02

0 − 0.04 − 0.08

0 0 − 0.02

−0.09 − 0.05 0

−0.04 0 − 0.03

⎤
⎥⎥⎥⎥⎦
,

256	 S. Barratt et al.

1 3

filter (Chinneck and Dravnieks 1991), the reciprocal filter (Chinneck 1997), and
the sensitivity filter (Chinneck and Dravnieks 1991). For an excellent survey of
IISs and how to use them to repair infeasible optimization problems, as well as
applications, see (Chinneck 2007, Sect. 6) and the many references therein. IISs
have also been applied to convex quadratic inequalities in Obuchowska (1998), to
convex analytic inequalities in Obuchowska (1999), and to semidefinite systems
in Kellner et al. (2019).

Maximum feasible subsystem The maximum feasible subsystem (MAX FS) of
a set of constraints is the largest subset of the constraints that is feasible, intro-
duced by Amaldi et al. (1999). MAX FS has some equivalent formulations,
including the minimum unsatisfied linear relation problem (Amaldi 1994), and
the minimum cardinality IIS set-covering problem (Chinneck 1996). [All of these
problems are NP-hard; see, e.g., Sankaran (1993)]. The problem of finding the
MAX FS for linear constraints can be formulated as a mixed-integer linear pro-
gram Greenberg and Murphy (1991). Various heuristics also exist for this prob-
lem, e.g., based on IISs Chinneck (1996) and branch-and-cut (Pfetsch 2008). For
a survey of MAX FS problems and solution methods, see, e.g., (Chinneck 2007,
Sect. 7) and (Pfetsch 2003, Sect. 1).

Optimal repair IIS and MAX FS, the two aforementioned methods, both try to
make the optimization problem feasible by removing constraints. In many cases,
however, the goal is not to remove constraints, but to adjust parameters in the
problem so that it becomes solvable (Chinneck 2007, Sect. 8). Also, removing or
adjusting the constraints to obtain feasibility might inadvertently make the prob-
lem unbounded, so we have to assure that the problem becomes both feasible and
bounded.

Problem (2) is often tractable when, in its conic representation (6), A is con-
stant, and b and c are affine functions of � . (This is not the case in any of our
examples.) In this case, problem (2) can be expressed as a single convex prob-
lem, as noted by Roodman (1979). In the case where the cones are products of
the nonnegative reals, the resulting problem is immediately convex, while the
more general case requires some care (see "Appendix"). Similar ideas have been
applied to the more difficult problem of adjusting the coefficient matrix in LPs
Amaral et al. (2008), and to repairing polynomial optimization problems (Gam-
bella et al. 2019) (for more examples see (Chinneck 2007, Sect. 8) and the refer-
ences therein). To the best of our knowledge, our paper is the first to consider
automatic repair of convex optimization problems, allowing any parameter to be
adjusted and guaranteeing both feasibility and boundedness.

Software Various software packages have been developed for IIS, MAX FS,
and optimal repair, and are part of most numerical solvers. One of the earliest
is ANALYZE by (Greenberg 1987), which is an interactive system for analyz-
ing and modifying linear programming models; more recent software packages
include PERUSE (Kurator and O’Neill 1980) and MProbe (Chinneck 2001).
Implementations of simple optimal repair methods for the righthand side of con-
straints in LPs can be found in the solvers MOSEK (2020, Sect. 14.2), GUROBI
(2019), and CPLEX (2016, Sect. 34).

257

1 3

Automatic repair of convex optimization problems﻿	

Acknowledgements  S. Boyd is an Engineering Subject Editor for the Optimization and Engineering
journal. S. Barratt is supported by the National Science Foundation Graduate Research Fellowship under
Grant No. DGE-1656518.

Compliance with ethical standards 

Conflicts of interest  The authors declare that they have no conflict of interest.

Appendix: Convex formulation

In the case that A is a constant while b and c are affine functions of � , we can
write (9) as an equivalent convex optimization problem. In the linear case (i.e., when
K = R n

+
 ), we can simply drop the strong duality requirement (which always holds

in this case) and express (9) as

For more general cones K (such as, e.g., the second order cone), a sufficient condi-
tion for strong duality is that there exist a feasible point in the interior of the cone.
We can write this as, for example,

(We could similarly constrain y ∈ ���K∗ and s ∈ K.)
In general, optimizing over open constraint sets is challenging and these problems

may not even have an optimal point, but, in practice (and for well-enough behaved r,
e.g., r continuous) we can approximate the true optimal value of (6) by approximat-
ing the open set ���K as a sequence of closed sets K𝜀 ⊆ ���K such that K� → ���K
as � ↓ 0.

References

Agrawal A, Amos B, Barratt S, Boyd S, Diamond S, Kolter J.Z (2019a) Differentiable convex optimi-
zation layers. In: Advances in neural information processing systems, pp 9558–9570

Agrawal A, Barratt S, Boyd S, Busseti E, Moursi W (2019b) Differentiating through a cone program.
J Appl Numer Optim 1(2):107–115

Amaldi E (1994) From finding maximum feasible subsystems of linear systems to feedforward neural
network design. Ph.D. thesis, Citeseer

Amaldi E, Pfetsch M, Trotter L (1999) Some structural and algorithmic properties of the maximum
feasible subsystem problem. In: International conference on integer programming and combina-
torial optimization. Springer, pp 45–59

minimize r(�)

subject to Ax + s = b(�)

ATy + c(�) = 0

s ∈ K, y ∈ K
∗.

(14)

minimize r(�)

subject to Ax + s = b(�)

ATy + c(�) = 0

s ∈ ���K, y ∈ K
∗.

258	 S. Barratt et al.

1 3

Amaral P, Júdice J, Sherali H (2008) A reformulation–linearization–convexification algorithm
for optimal correction of an inconsistent system of linear constraints. Comput Oper Res
35(5):1494–1509

Barratt S, Boyd S (2019) Least squares auto-tuning. arXiv preprint arXiv​:1904.05460​
Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and

engineering applications, vol 2. SIAM
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Carver W (1922) Systems of linear inequalities. Ann Math 212–220
Chinneck J (1996) An effective polynomial-time heuristic for the minimum-cardinality IIS set-cover-

ing problem. Ann Math Artif Intell 17(1):127–144
Chinneck J (1997) Finding a useful subset of constraints for analysis in an infeasible linear program.

INFORMS J Comput 9(2):164–174
Chinneck J (2001) Analyzing mathematical programs using MProbe. Ann Oper Res 104(1–4):33–48
Chinneck J (2007) Feasibility and infeasibility in optimization: algorithms and computational meth-

ods, vol 118. Springer, Berlin
Chinneck J, Dravnieks E (1991) Locating minimal infeasible constraint sets in linear programs. ORSA

J Comput 3(2):157–168
Diamond S, Boyd S (2016) CVXPY: a Python-embedded modeling language for convex optimization.

J Mach Learn Res 17(83):1–5
Gambella C, Marecek J, Mevissen M (2019) Projections onto the set of feasible inputs and the set of

feasible solutions. In: Allerton conference on communication, control, and computing. IEEE, pp
937–943

Greenberg H (1987) ANALYZE: a computer-assisted analysis system for linear programming models.
Oper Res Lett 6(5):249–255

Greenberg H (1987) Computer-assisted analysis for diagnosing infeasible or unbounded linear pro-
grams. In: Computation mathematical programming. Springer, pp 79–97

Greenberg H, Murphy F (1991) Approaches to diagnosing infeasible linear programs. ORSA J Com-
put 3(3):253–261

GUROBI Optimization (2019) Gurobi optimizer reference manual
IBM (2016) IBM ILOG CPLEX optimization studio CPLEX user’s manual
Karp R (1972) Reducibility among combinatorial problems. In: Complexity of computer computa-

tions, pp 85–103
Kellner K, Pfetsch M, Theobald T (2019) Irreducible infeasible subsystems of semidefinite systems. J

Optim Theory Appl 181(3):727–742
Kurator W, O’Neill R (1980) PERUSE: an interactive system for mathematical programs. ACM Trans

Math Softw 6(4):489–509
Martinet B (1970) Brève communication. régularisation d’inéquations variationnelles par approxi-

mations successives. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation
Mathématique et Analyse Numérique 4(R3):154–158

MOSEK Aps (2020) MOSEK optimizer API for Python. https​://docs.mosek​.com
Nesterov Y (2013) Gradient methods for minimizing composite functions. Math Program

140(1):125–161
Obuchowska W (1998) Infeasibility analysis for systems of quadratic convex inequalities. Eur J Oper

Res 107(3):633–643
Obuchowska W (1999) On infeasibility of systems of convex analytic inequalities. J Math Anal Appl

234(1):223–245
O’Donoghue B, Chu E, Parikh N, Boyd S (2016) Conic optimization via operator splitting and homo-

geneous self-dual embedding. J Optim Theory Appl 169(3):1042–1068
Parikh N, Boyd S (2014) Proximal algorithms. Found Trends® Optim 1(3):127–239. https​://doi.

org/10.1561/24000​00003​
Pfetsch M (2003) The maximum feasible subsystem problem and vertex-facet incidences of polyhe-

dra. Ph.D. thesis
Pfetsch M (2008) Branch-and-cut for the maximum feasible subsystem problem. SIAM J Optim

19(1):21–38
Roodman G (1979) Note–post-infeasibility analysis in linear programming. Manage Sci

25(9):916–922
Sankaran J (1993) A note on resolving infeasibility in linear programs by constraint relaxation. Oper

Res Lett 13(1):19–20

http://arxiv.org/abs/1904.05460
https://docs.mosek.com
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003

259

1 3

Automatic repair of convex optimization problems﻿	

Tamiz M, Mardle S, Jones D (1995) Resolving inconsistency in infeasible linear programmes. Techni-
cal report, School of Mathematical Studies, University of Portsmouth, UK

Tamiz M, Mardle S, Jones D (1996) Detecting IIS in infeasible linear programmes using techniques from
goal programming. Comput Oper Res 23(2):113–119

Van Loon JNM (1981) Irreducibly inconsistent systems of linear inequalities. Eur J Oper Res
8(3):283–288

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Automatic repair of convex optimization problems
	Abstract
	1 Introduction
	2 Cone program formulation
	3 Heuristic solution method
	4 Examples
	4.1 Spacecraft landing
	4.2 Arbitrage

	5 Related work
	Acknowledgements
	References

