
Block Splitting for Large-Scale Distributed Learning

Neal Parikh
Department of Computer Science

Stanford University
Stanford, CA 94305

npparikh@cs.stanford.edu

Stephen Boyd
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

boyd@stanford.edu

Abstract

Machine learning and statistics with very large datasets isnow a topic of widespread interest, both
in academia and industry. Many such tasks can be posed as convex optimization problems, so
algorithms for distributed convex optimization serve as a powerful, general-purpose mechanism for
training a wide class of models on datasets too large to process on a single machine. In previous
work, it has been shown how to solve such problems in such a waythat each machine only looks at
either a subset of training examples or a subset of features.In this paper, we extend these algorithms
by showing how to split problems by both examples and features simultaneously, which is necessary
to deal with datasets that are very large in both dimensions.We present some experiments with these
algorithms run on Amazon’s Elastic Compute Cloud.

1 Introduction

Many modern datasets now share three key characteristics: they contain a large number of training examples, they
contain a large number of features, and they are stored (and in some cases even collected) in a distributed or decentral-
ized fashion. Training machine learning models in this regime requires the use of algorithms amenable to distributed
computation, and ideally, one should be able to fit a global model over such distributed datasets without having to
transfer any portions of the dataset over the network. Sincemany such problems reduce to solving a convex optimiza-
tion problem to estimate model parameters from data, the distributed optimization algorithm we present here can be
used to train a wide variety of machine learning models in a distributed setting.

While there has been work on training models in the presence ofeither a large number of examples or a large number of
features, there has been no general purpose method for training models on datasets that are large (and possibly dense)
in both dimensions, to the best of our knowledge. We present such an algorithm here. We first discuss theoretical
motivation for the method, then the algorithm and some implementation details, and finally some initial experiments.

Related work. This paper directly builds on the recent paper by Boyd et al. [2], which in turn draws from, among
other areas, the literature on proximal methods [13, 15, 16], monotone operator splitting methods [5, 12], (dual)
decomposition [4, 7], and augmented Lagrangians [10, 9, 15,8]. For some examples of recent related work in the
machine learning literature, see,e.g., [6, 17, 11]. We omit a detailed review of related work for space reasons.

2 Problem statement

Let D be a dataset consisting ofm examples each withn features, collected in a feature matrixA ∈ Rm×n. For
simplicity of notation in the sequel, we consider the responses, or outputs, as being included as a column inA. Many
learning problems can then be posed as (regularized) loss minimization problems of the form

minimize l(y) + r(x)
subject to y = Ax

(1)

1



with variablesx ∈ Rn (the model parameters) andy ∈ Rm, convex loss functionl : Rm → R ∪ {+∞}, and convex
regularization functionr : Rn → R ∪ {+∞}. (We assume that the component ofx corresponding to the responses is
fixed as−1.) The reason for expressing the problem in this particular way (with the auxiliary variabley) is to make it
more amenable to decomposition, for reasons that will become more clear later.

For example, ifl = (1/2)‖·‖22 andr = λ‖·‖1, this is exactly the lasso [18], and ifl is hinge loss andr = λ‖·‖22, this is
the primal form of a support vector machine. Generalized linear and additive models also follow this form, in addition
to a variety of other model families. The regularization function r can take the form of a squaredℓ2 penalty (ridge or
Tikhonov regularization),ℓ1, sum-of-norms or group lasso [14, 20], and many other more sophisticated variants (e.g.,
[21]). Becausel andr can be extended-real-valued, they can also encode constraints [3,§3.1.2].

We partitionA into MN blocksAij ∈ Rmi×nj andx conformably intoN subvectorsxj ∈ Rnj , so
∑M

i=1
mi = m

and
∑N

j=1
nj = n. Thusy = Ax can be expressed asyi =

∑N
j=1

Aijxj for i = 1, . . . ,M . We assume thatl andr

areblock separable, i.e., l(y) =
∑M

i=1
li(yi) andr(x) =

∑N
j=1

rj(xj). As a convention,i will index block rows and
j will index block columns.

The goal is to solve this problem in a way that (a) allows for each blockAij to be handled by a separate processor or
machine, and (b) does not involve transfer of theAij over the network.

3 Operator splitting

The algorithm we use is an operator splitting method called thealternating direction method of multipliers(ADMM),
or equivalently,Douglas-Rachford splitting. The algorithm itself is discussed in detail in [2], so we omit background
here for space reasons; for general background on monotone operator theory and operator splitting, see [1].

For the generic constrained convex problem
minimize f(z)
subject to z ∈ C,

whereC is convex, one form of the algorithm is, fork = 0, 1, 2, . . .,

zk+1/2 := proxf (z
k − z̃k)

zk+1 := ΠC(z
k+1/2 + z̃k)

z̃k+1 := z̃k + zk+1/2 − zk+1.

Herek is an iteration counter,ΠC denotes (Euclidean) projection ontoC, and

proxf (v) = argmin
x

(

f(x) + (ρ/2)‖x− v‖22
)

is called theproximal operatorof f with parameterρ > 0 [13]. Some of the proximal operators that will arise here
have simple closed form expressions; for instance, the operators

Sλ/ρ(v) = (v − λ/ρ)+ − (−v − λ/ρ)+, Tρ(v) =

(

ρ

1 + ρ

)

v,

are the proximal operators ofλ‖ · ‖1 (here,(·)+ = max(0, ·)) and(1/2)‖ · ‖22, respectively. Note that both of these
proximal operators are very efficient to evaluate. The operator Sλ/ρ is known assoft thresholding.

4 Block splitting algorithm

The final algorithm is obtained by carrying out an appropriate problem transformation of (1), applying ADMM to it,
and simplifying. For brevity, we show the problem transformation and then present the simplified algorithm directly.

Problem transformation. IntroducingMN new variablesxij ∈ Rnj andyij ∈ Rmi , the problem becomes

minimize
∑M

i=1
li(yi) +

∑N
j=1

rj(xj)
subject to xij = xj , i = 1, . . . ,M

yi =
∑N

j=1
yij , i = 1, . . . ,M

yij = Aijxij , i = 1, . . . ,M, j = 1, . . . , N,

2



with variablesxj , yi, xij , andyij . Here,xij can be viewed as the ‘local opinion’ of the value ofxj only using data
blockAij , andyij can be viewed as the ‘partial’ responses only using the localestimatexij and local dataAij .

We now move the partial response constraintsyij = Aijxij into the objective, writing the problem as

minimize
∑M

i=1
li(yi) +

∑N
j=1

rj(xj) +
∑M

i=1

∑N
j=1

Iij(yij , xij)
subject to xij = xj , i = 1, . . . ,M

yi =
∑M

j=1
yij , i = 1, . . . ,M,

(2)

whereIij is the indicator function [3,§3.1.2] of the convex setCij = {(yij , xij) | yij = Aijxij}. The three objective
terms now involve distinct sets of variables, and the two sets of constraints involve distinct sets of variables, which
will simplify a number of computations in the sequel.

Algorithm. Applying the form of ADMM above to (2) and simplifying yieldsthe algorithm

y
k+1/2
i := proxli(y

k
i − ỹki ) (3)

x
k+1/2
j := proxrj (x

k
j − x̃k

j ) (4)

(y
k+1/2
ij , x

k+1/2
ij ) := Πij(y

k
ij + ỹki , x

k
j − x̃k

ij) (5)

xk+1

j := avg(x
k+1/2
j , {x

k+1/2
ij }Mi=1) (6)

(yk+1

i , {yk+1

ij }Nj=1) := exch(y
k+1/2
i , {y

k+1/2
ij }Nj=1) (7)

x̃k+1

j := x̃k
j + x

k+1/2
j − xk+1

j (8)

ỹk+1

i := ỹki + y
k+1/2
i − yk+1

i (9)

x̃k+1

ij := x̃k
ij + x

k+1/2
ij − xk+1

j . (10)
Here,Πij is projection ontoCij , the averaging operatoravg is given by

avg(c, c1, . . . , cM ) =
1

M + 1

(

c+

M
∑

i=1

ci

)

,

and the exchange projectionexch(c, {cj}Nj=1) is given by

yk+1

ij := cj +
1

N + 1



c−
N
∑

j=1

cj



 , yk+1

i := c−
1

N + 1



c−
N
∑

j=1

cj



 .

This can be viewed as a kind of de-meaning operation. We call this an exchange projection since it enforces a constraint
very similar to the one in the optimal exchange problem described in [2,§7.3.2].

The iterate(xk+1/2
1 , . . . , x

k+1/2
N ) converges to optimality (see [2,§3.3] for details).

5 Implementation

Computing Πij . Explicitly, the projectionΠij(c, d) is given by

y
k+1/2
ij := (I +AijA

T
ij)

−1(Aijd+AijA
T
ijc)

x
k+1/2
ij := d+AT

ij(c− y
k+1/2
ij ).

(Theyk+1/2
ij update can be adjusted in a straightforward manner for the block that contains the column of responses.)

Thus the work reduces to solvingMN linear systems (in parallel) with coefficient matricesI+AijA
T
ij , assumed to be

of modest size. The key fact we can exploit is that these matrices stay fixed throughout the runtime of the algorithm.
This means, for instance, that we can formI +AijA

T
ij and its Cholesky factorizationLijL

T
ij (assumingAij is dense)

once and cache them, then simply reuse these in all subsequent iterations, giving a very large speed improvement.
There are a number of ways of solving linear systems of this form, some of which can be superior to the simple
method described here, but we omit a further discussion for space reasons. (In particular, an iterative method like
conjugate gradient or LSQR is likely best whenA is sparse.) See [2,§4.2–4.3] for related material.

3



Parallelism. Several of the steps in the algorithm be carried out independently in parallel. The first three steps can
all be performed in parallel: Each of theM y

k+1/2
i ’s, theN x

k+1/2
j ’s, and theMN (xk+1/2

ij , yk+1/2
ij ) pairs can all be

updated separately. Similarly, each of theN averaging andM exchange operations can be carried out independently
in parallel, and the final three steps can also be carried out independently in parallel. Overall, the algorithm thus
involves three distinct stages. Intuitively, theavg andexch operations are the mechanism by which the local variables
coordinate to move towards the global solution.

Communication. We use a total ofMN processes split across some number of machines. For example, we may
want each process on a separate machine, in which caseMN machines are required; alternatively, each process may
use a distinct core, in which case multiple processes would run on the same machine. Only the averaging and exchange
steps require communication. The averaging step communicates within each block column (but not across columns),
and the exchange step communicates within block rows (but not across rows). The main collaborative component in
computing both is summing a set of vectors, so both can be implemented viareduceoperations in parallel programming
frameworks like MPI; averaging involvesN reduce steps run in parallel and exchange involvesM reduce steps.

Separating data from problems. Note that the dataAij and the objective termsli andrj never appear together; the
objective terms appear in their own proximal step and the data only appears in theΠij projection step. This implies
that if one wishes to train multiple models on the same dataset, the fitting problems can be solved simultaneously, and
a large amount of computational work can be shared and reusedacross the problems (such as the cached factorizations
mentioned above). Roughly speaking, one can fit multiple models for the price of one. Obtaining an algorithm for a
specific problem only requires working out the proximal operators ofli andrj . Though this is not the main use case
of the algorithm, it is an interesting and unusual side benefit.

6 Experiments

We solve three instances of the lasso (i.e., sparse regression), which involves solving

minimize (1/2)‖Ax− b‖22 + λ‖x‖1,

whereA is the feature matrix andb is the vector of outputs or responses. In the form (1), this involves setting
li = (1/2)‖ · ‖22 andrj = λ‖ · ‖1, so the proximal operators forli andrj areTρ andSλ/ρ, respectively, as described
in §3. These operators are so efficient to evaluate (both are simple elementwise vector operations) that the bulk of the
work is in computingΠij ; this is often the case for many other problems as well.

To get a reasonably large problem, we generate synthetic data in a similar manner as [2,§11.1]. We implemented the
algorithm above as written (with factorization caching) inC using MPI and the GNU Scientific Library (linked against
ATLAS [19]); the computations were done on Amazon EC2. Below, the ‘factorization step’ refers to formingAijA

T
ij

and factoringI +AijA
T
ij once, and the ‘main loop’ refers to all the iterations after the factorization has been cached.

We take theAij to be dense3000 × 5000 blocks and then setM andN as needed to produce problems at different
scales. For example, ifM = 4 andN = 2, the totalA matrix is12000 × 10000 and contains 120 million nonzero
entries. We solved such a problem in parallel on a single 8-core machine; the factorization step took around 15 seconds
and the main loop (90 iterations) took around 10 seconds, yielding a total solve time of 28 seconds. Since each iteration
takes only 0.10–0.15 seconds (including all communication), running for more iterations costs little in total runtime.

Second, we solved a problem withM = 8 andN = 5 (600 million nonzero entries in total) across 5 machines (40
cores total). The Cholesky factorization step still takes around 15 seconds, since it is carried out in parallel. The main
loop ran for 230 iterations, taking around 27 seconds, yielding a total solve time of 50 seconds.

Finally, we solved a problem withM = 8 andN = 10 (1.2 billion nonzero entries and over 10 GB of data) across 10
machines (80 cores total). Again, the only difference was that the main loop ran for 490 iterations, taking around 60
seconds, yielding a total solve time of 80 seconds. Note thateach iteration still takes only 0.05–0.15 seconds, despite
the larger problem size. In general, larger problems do not necessarily require more iterations to solve, so in some
cases, it is possible that larger problems can be solved withno increase in total solve time.

Acknowledgements

We thank Eric Chu and Yang Wang for helpful discussions.

4



References

[1] H. H. Bauschke and P. L. Combettes.Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
Springer-Verlag, 2011.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the
alternating direction method of multipliers.Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[3] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, 2004.

[4] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs.Operations Research, 8:101–111,
1960.

[5] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in two and three space
variables.Transactions of the American Mathematical Society, 82:421–439, 1956.

[6] J. C. Duchi and Y. Singer. Efficient learning using forward-backward splitting.Advances in Neural Information
Processing Systems, 22:495–503, 2009.

[7] H. Everett. Generalized Lagrange multiplier method forsolving problems of optimum allocation of resources.
Operations Research, 11(3):399–417, 1963.

[8] M. Fortin and R. Glowinski. Augmented Lagrangian Methods: Applications to the Numerical Solution of
Boundary-Value Problems. North-Holland: Amsterdam, 1983.

[9] D. Gabay and B. Mercier. A dual algorithm for the solutionof nonlinear variational problems via finite element
approximations.Computers and Mathematics with Applications, 2:17–40, 1976.

[10] R. Glowinski and A. Marrocco. Sur l’approximation, parelements finis d’ordre un, et la resolution, par
penalisation-dualit́e, d’une classe de problems de Dirichlet non lineares.Revue Française d’Automatique, In-
formatique, et Recherche Opérationelle, 9:41–76, 1975.

[11] J. Langford, A. Strehl, and L. Li. Vowpal Wabbit, 2007.https://github.com/JohnLangford/vowpal_
wabbit.

[12] P. L. Lions and B. Mercier. Splitting algorithms for thesum of two nonlinear operators.SIAM Journal on
Numerical Analysis, 16:964–979, 1979.

[13] J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace Hilbertien.Reports of the Paris
Academy of Sciences, Series A, 255:2897–2899, 1962.

[14] H. Ohlsson, L. Ljung, and S. Boyd. Segmentation of ARX-models using sum-of-norms regularization.Automat-
ica, 46(6):1107–1111, 2010.

[15] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in convex program-
ming. Mathematics of Operations Research, 1:97–116, 1976.

[16] R. T. Rockafellar. Monotone operators and the proximalpoint algorithm. SIAM Journal on Control and Opti-
mization, 14:877, 1976.

[17] C. H. Teo, S. V. N. Vishwanathan, A. J. Smola, and Q. V. Le.Bundle methods for regularized risk minimization.
Journal of Machine Learning Research, 11:311–365, 2010.

[18] R. Tibshirani. Regression shrinkage and selection viathe lasso.Journal of the Royal Statistical Society, Series
B, 58(1):267–288, 1996.

[19] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. InProceedings of the 1998
ACM/IEEE Conference on Supercomputing (CDROM), pages 1–27, 1998.

[20] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

[21] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable
selection.Annals of Statistics, 37(6A):3468–3497, 2009.

5


