Block Splitting for Large-Scale Distributed L earning

Neal Parikh Stephen Boyd
Department of Computer Science Department of Electrical Engineering
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305
nppari kh@s. st anf ord. edu boyd@t anf or d. edu
Abstract

Machine learning and statistics with very large dataseit®vg a topic of widespread interest, both
in academia and industry. Many such tasks can be posed asxcoptimization problems, so
algorithms for distributed convex optimization serve a®agrful, general-purpose mechanism for
training a wide class of models on datasets too large to psoge a single machine. In previous
work, it has been shown how to solve such problems in such aheyeach machine only looks at
either a subset of training examples or a subset of featlirdisis paper, we extend these algorithms
by showing how to split problems by both examples and featsiraultaneously, which is necessary
to deal with datasets that are very large in both dimensidfespresent some experiments with these
algorithms run on Amazon'’s Elastic Compute Cloud.

1 Introduction

Many modern datasets now share three key characteristieg:contain a large number of training examples, they
contain a large number of features, and they are stored faswhie cases even collected) in a distributed or decentral-
ized fashion. Training machine learning models in thismegrequires the use of algorithms amenable to distributed
computation, and ideally, one should be able to fit a globadlehover such distributed datasets without having to
transfer any portions of the dataset over the network. Simmey such problems reduce to solving a convex optimiza-
tion problem to estimate model parameters from data, thakised optimization algorithm we present here can be
used to train a wide variety of machine learning models irs&ithuted setting.

While there has been work on training models in the preseneighadr a large number of examples or a large number of
features, there has been no general purpose method fangramodels on datasets that are large (and possibly dense)
in both dimensions, to the best of our knowledge. We presgett an algorithm here. We first discuss theoretical
motivation for the method, then the algorithm and some imgletation details, and finally some initial experiments.

Related work. This paper directly builds on the recent paper by Boyd et2d).\hich in turn draws from, among
other areas, the literature on proximal methods [13, 15, @®jnotone operator splitting methods [5, 12], (dual)
decomposition [4, 7], and augmented Lagrangians [10, 98]L5For some examples of recent related work in the
machine learning literature, seeg, [6, 17, 11]. We omit a detailed review of related work for spaeasons.

2 Problem statement

Let D be a dataset consisting of examples each with features, collected in a feature matrix € R™*". For
simplicity of notation in the sequel, we consider the regasn or outputs, as being included as a columA.iMany
learning problems can then be posed as (regularized) losmimation problems of the form

minimize (y) + r(x) 1
subjectto y = Ax @

with variablesx € R" (the model parameters) apde R™, convex loss functio : R™ — R U {4o0c}, and convex
regularization functiom : R® — R U {+o0}. (We assume that the component:aforresponding to the responses is
fixed as—1.) The reason for expressing the problem in this particulay (with the auxiliary variableg) is to make it
more amenable to decomposition, for reasons that will becmore clear later.

For example, if = (1/2)|-||3 andr = \||-||1, this is exactly the lasso [18], and/ifs hinge loss and = \||-||2, this is
the primal form of a support vector machine. Generalizeedirand additive models also follow this form, in addition
to a variety of other model families. The regularizationdtion r can take the form of a squarég penalty (ridge or
Tikhonov regularization){;, sum-of-norms or group lasso [14, 20], and many other mgplisticated variantse(g,
[21]). Becausé andr can be extended-real-valued, they can also encode constf&;§3.1.2].

We partitionA into M N blocks A;; € R™*™ anda conformably intoN subvectors:; € R™, so3 " m; = m
andY>Y |, n; = n. Thusy = Az can be expressed gs= > | A;z; fori = 1,..., M. We assume thatandr
areblock separablgi.e., ((y) = Zf‘il l;i(y;) andr(z) = Z?’zl rj(z;). As a convention; will index block rows and
j willindex block columns.

The goal is to solve this problem in a way that (a) allows farteblock A;; to be handled by a separate processor or
machine, and (b) does not involve transfer of the over the network.

3 Operator splitting

The algorithm we use is an operator splitting method caledlternating direction method of multiplie(A\DMM),
or equivalentlyDouglas-Rachford splittingThe algorithm itself is discussed in detail in [2], so we bh@ackground
here for space reasons; for general background on monoparator theory and operator splitting, see [1].
For the generic constrained convex problem

minimize f(z)

subjectto z €C,
whereC is convex, one form of the algorithmis, fér=10,1,2,.. .,

2R +1/2 prox (" — Z¥)
Zk:+l = Hc(zk?+1/2 +2k‘)
Sl gk kH1/2 kel

Herek is an iteration countef]. denotes (Euclidean) projection ordpand
prox;(v) = argmin (f(z) + (p/2)|lx — v||3)

is called theproximal operatorof f with parametep > 0 [13]. Some of the proximal operators that will arise here
have simple closed form expressions; for instance, theabqesr

Suplt) = 0= Mo - (o= Mohe T = (725) v

are the proximal operators af| - ||; (here,(-); = max(0,-)) and(1/2)| - ||3, respectively. Note that both of these
proximal operators are very efficient to evaluate. The dpers, ,, is known assoft thresholding

4 Block splitting algorithm

The final algorithm is obtained by carrying out an appropriatoblem transformation of (1), applying ADMM to it,
and simplifying. For brevity, we show the problem transfatimn and then present the simplified algorithm directly.

Problem transformation. Introducingd/ N new variables:;; € R™ andy;; € R™¢, the problem becomes
minimize S Li(y:) + S0, ()

subjectto z;; = z;, i=1,....M
N .
yi:ijlyij, i=1,....M
yij:Aija:ij, izl,...,M, jzl,...,N,

with variablesz;, y;, x;;, andy;;. Here,z;; can be viewed as the ‘local opinion’ of the valueagfonly using data
block A;;, andy;; can be viewed as the ‘partial’ responses only using the lestitnater;; and local datad;;.

We now move the partial response constraigjs= A;;x;; into the objective, writing the problem as
P M N M N
minimize >0 Liyi) + 2252 75(@5) + 22500 25— Lig (Wi, wij)
subjectto z;; _xj, i=1,....M (2)
yl*Zjulyijv i:17...7M7
wherel,; is the indicator function [3§3.1.2] of the convex set;; = {(vi;, ;) | vij = Aijxi;}. The three objective

terms now involve distinct sets of variables, and the twes sétconstraints involve distinct sets of variables, which
will simplify a number of computations in the sequel.

Algorithm. Applying the form of ADMM above to (2) and simplifying yieldke algorithm

yi T2 = prox, (yF — b ®)
x?“m = proxrj(xf—if) 4)
W2) = Il gk ok —))
A= avg(al TR {2 (6)
(il L) = exeh(y T {5) ()
f?+l — f?—i—x?Jrl/z—a:’?H @)
gt = yz+yk“/2 yitt (9)

B = w4l -k (10)
Here,II;; is projection ontd’;;, the averaging operateNg is g|ven by

1 M
1 <C + Z CZ‘> 5
i=1

avg(c,cq,...,ep) = T

and the exchange projectiesch(c, {c;}},) is given by

k+1 k+1
yij+ =c¢+ N+1 ZCJ) yz+ =c- N+1 ZCJ

This can be viewed as a kind of de-meaning operatlon. Wetgalan exchange prolectlon since it enforces a constraint
very similar to the one in the optimal exchange problem desdrin [2,57.3.2].

The iterate(x’f+1/2, ceey ’]“\,+1/2) converges to optimality (see [23.3] for details).

5 Implementation

Computing IT;;. Explicitly, the projectionl;;(c, d) is given by
= (4 AGAT) T (Ayd + A AT)

ij
k+1/2 k—‘rl 2

(They’““/2 update can be adjusted in a straightforward manner for theklthat contains the column of responses.)

Thus the work reduces to solvidg N linear systems (in parallel) with coefficient matrides AUATJ assumed to be
of modest size. The key fact we can exploit is that these oestistay fixed throughout the runtime of the algorithm.
This means, for instance, that we can fofm A;; AL and its Cholesky factonzatlohw LT (assummgzlw is dense)
once and cache them, then simply reuse these in all subgeitgrations, giving a very large speed improvement.
There are a number of ways of solving linear systems of thisifeome of which can be superior to the simple
method described here, but we omit a further discussiondaces reasons. (In particular, an iterative method like
conjugate gradient or LSQR is likely best whdris sparse.) See [24.2—4.3] for related material.

Parallelism. Several of the steps in the algorithm be carried out indepethdin parallel. The first three steps can

all be performed in parallel: Each of the " *'/%'s, the N 2% *'/*'s, and theM N (; k12 yk7+1/2) pairs can all be
updated separately. Similarly, each of tNeaveraging and// exchange operatlons ‘¢an be carried out independently
in parallel, and the final three steps can also be carriednulgpiendently in parallel. Overall, the algorithm thus
involves three distinct stages. Intuitively, threg andexch operations are the mechanism by which the local variables
coordinate to move towards the global solution.

Communication. We use a total of\/ N processes split across some number of machines. For exanglaay
want each process on a separate machine, in whichid@gemachines are required; alternatively, each process may
use a distinct core, in which case multiple processes waman the same machine. Only the averaging and exchange
steps require communication. The averaging step commiesieathin each block column (but not across columns),
and the exchange step communicates within block rows (Huheross rows). The main collaborative component in
computing both is summing a set of vectors, so both can besighted viaeduceoperations in parallel programming
frameworks like MPI; averaging involves reduce steps run in parallel and exchange involMesduce steps.

Separ ating data from problems. Note that the datal;; and the objective terms andr; never appear together; the
objective terms appear in their own proximal step and the daty appears in thH;; projection step. This implies
that if one wishes to train multiple models on the same dgttsefitting problems can be solved simultaneously, and
a large amount of computational work can be shared and reusess the problems (such as the cached factorizations
mentioned above). Roughly speaking, one can fit multipleetsofibr the price of one. Obtaining an algorithm for a
specific problem only requires working out the proximal @pers ofl; andr;. Though this is not the main use case
of the algorithm, it is an interesting and unusual side bénefi

6 Experiments

We solve three instances of the lasge.(sparse regression), which involves solving
minimize (1/2)||Az — b||3 + ||z||1,

where A is the feature matrix and is the vector of outputs or responses. In the form (1), thislires setting

I = (1/2)|| - |3 andr; = A|| - |1, So the proximal operators féy andr; areT, andS) ,, respectively, as described
in §3. These operators are so efficient to evaluate (both ardesgfgmentwise vector operations) that the bulk of the
work is in computingdll;;; this is often the case for many other problems as well.

To get a reasonably large problem, we generate synthetdatsimilar manner as [211.1]. We implemented the
algorithm above as written (with factorization cachingibising MPI and the GNU Scientific Library (linked against
ATLAS [19]); the computations were done on Amazon EC2. Belbw ‘factorization step’ refers to forming,;; A

and factoringl + AijAfj once, and the ‘main loop’ refers to all the iterations after factorization has been cached.

We take thed;; to be dens&000 x 5000 blocks and then set/ and N as needed to produce problems at different
scales. For example, ¥/ = 4 and N = 2, the totalA matrix is 12000 x 10000 and contains 120 million nonzero
entries. We solved such a problem in parallel on a singler84c@chine; the factorization step took around 15 seconds
and the main loop (90 iterations) took around 10 secondkligigea total solve time of 28 seconds. Since each iteration
takes only 0.10-0.15 seconds (including all communicgtiamning for more iterations costs little in total runtime

Second, we solved a problem willf = 8 and N = 5 (600 million nonzero entries in total) across 5 machines (40
cores total). The Cholesky factorization step still takesiad 15 seconds, since it is carried out in parallel. Theamai
loop ran for 230 iterations, taking around 27 seconds, ¥igld total solve time of 50 seconds.

Finally, we solved a problem with/ = 8 and N = 10 (1.2 billion nonzero entries and over 10 GB of data) across 10
machines (80 cores total). Again, the only difference was tie main loop ran for 490 iterations, taking around 60

seconds, yielding a total solve time of 80 seconds. Noteghelh iteration still takes only 0.05-0.15 seconds, despite
the larger problem size. In general, larger problems do roéssarily require more iterations to solve, so in some
cases, it is possible that larger problems can be solvednwithcrease in total solve time.

Acknowledgements

We thank Eric Chu and Yang Wang for helpful discussions.

References
[1] H. H. Bauschke and P. L. Combette€Convex Analysis and Monotone Operator Theory in Hilbertcega
Springer-Verlag, 2011.
[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Ecksteirstribiuted optimization and statistical learning via the
alternating direction method of multiplierBoundations and Trends in Machine Learnjrf1):1-122, 2011.
[3] S. Boyd and L. Vandenbergh€&onvex OptimizationCambridge University Press, 2004.

[4] G. B. Dantzig and P. Wolfe. Decomposition principle fardar programs.Operations Resear¢t8:101-111,
1960.

[5] J. Douglas and H. H. Rachford. On the numerical solutibheat conduction problems in two and three space
variables.Transactions of the American Mathematical Soci88:421-439, 1956.

[6] J. C. Duchi and Y. Singer. Efficient learning using forardrackward splitting Advances in Neural Information
Processing System®2:495-503, 2009.

[7] H. Everett. Generalized Lagrange multiplier methoddolving problems of optimum allocation of resources.
Operations Resear¢chi1(3):399-417, 1963.

[8] M. Fortin and R. Glowinski. Augmented Lagrangian Methods: Applications to the Nuraér®olution of
Boundary-Value Problem$North-Holland: Amsterdam, 1983.

[9] D. Gabay and B. Mercier. A dual algorithm for the soluti@inonlinear variational problems via finite element
approximationsComputers and Mathematics with Applicatip@sl 7—40, 1976.

[10] R. Glowinski and A. Marrocco. Sur I'approximation, patements finis d’ordre un, et la resolution, par
penalisation-dual@, d'une classe de problems de Dirichlet non lineaf®evue Francaise d’Automatique, In-
formatique, et Recherche @mtionelle 9:41-76, 1975.

[11] J. Langford, A. Strehl, and L. Li. Vowpal Wabbit, 200%t t ps: // gi t hub. com’ JohnLangf or d/ vowpal _
wabbi t .

[12] P. L. Lions and B. Mercier. Splitting algorithms for ttseim of two nonlinear operatorsSIAM Journal on
Numerical Analysis16:964—979, 1979.

[13] J.-J. Moreau. Fonctions convexes duales et pointsimnxx dans un espace HilbertieReports of the Paris
Academy of Sciences, Serig2A5:2897-2899, 1962.

[14] H. Ohlsson, L. Ljung, and S. Boyd. Segmentation of ARXemuls using sum-of-norms regularizatigkutomat-
ica, 46(6):1107-1111, 2010.

[15] R. T. Rockafellar. Augmented Lagrangians and appbeetof the proximal point algorithm in convex program-
ming. Mathematics of Operations Resear@97-116, 1976.

[16] R. T. Rockafellar. Monotone operators and the proxipwht algorithm. SIAM Journal on Control and Opti-
mization 14:877, 1976.

[17] C. H. Teo, S. V. N. Vishwanathan, A. J. Smola, and Q. V. Bandle methods for regularized risk minimization.
Journal of Machine Learning Researctil:311-365, 2010.

[18] R. Tibshirani. Regression shrinkage and selectiorthgalasso.Journal of the Royal Statistical Society, Series
B, 58(1):267—-288, 1996.

[19] R. C. Whaley and J. J. Dongarra. Automatically tuneddmalgebra software. IRroceedings of the 1998
ACMI/IEEE Conference on Supercomputing (CDROp&ges 1-27, 1998.

[20] M. Yuan and Y. Lin. Model selection and estimation inmeggsion with grouped variabledournal of the Royal
Statistical Society: Series B (Statistical Methodolo@g(1):49—-67, 2006.

[21] P. Zhao, G. Rocha, and B. Yu. The composite absolutelfpesidamily for grouped and hierarchical variable
selection.Annals of Statistigs37(6A):3468—-3497, 2009.

